Schools can leverage the ways students are already using mobile digital devices to organize and support learning activities in STEM content areas.

Shiloh and Jason, two seventh graders at a school in the Sacramento area, are making videos to capture and model linear change. Yesenia and Beatriz are interviewing their classmates about their fondness for alligators and jellyfish, and tabulating the results to test hypotheses about bias. Earl is building an interactive, three-dimensional representation of musical melodies. Andrew is creating parametric equations for the motion of his clock.

And they’re doing it all on iPods.

These vignettes capture a sample of student inquiry projects and activities during a two-week pilot study exploring intersections between digital practices learners already engage in with mobile devices, and substantive aspects of mathematical practice.

Reconsidering computing in the classroom

Part of the appeal of the current generation of mobile devices — smartphones, media players and other handhelds — is their computing power, which surpasses desktop computers of the recent past. Yet as computer replacements they are problematic, with small screens, no physical keyboards, and no precision pointing devices. Their real potential, we believe, arises from the cluster of digital practices that have emerged around these devices.

As mobile devices become increasingly pervasive among youth, the gap between students with and without access to personal computers at home may soon be replaced by a new digital divide: between one set of informal ways of using those tools that are familiar, personally meaningful, and relevant to their out-of-school lives, and another set of uses in formal instruction contexts that has nothing in common with the first except hardware.

Admittedly, learners’ personal forms of digital activity — texting, social networking, listening to music, watching videos, playing games — can appear quite different from and even oppositional to productive, school-based activity, and to educational uses of the same devices. But we argue for a different perspective, namely that those informal dig-
digital practices may provide uniquely powerful resources around which to organize innovative and engaging instructional approaches.

Many of the ways students are already using smartphones and other contemporary mobile computing devices—to take photos, capture video and audio records of events, interact and communicate with peers, consume media content, and create artifacts and personal forms of expression such as documents and photo slideshows—correspond to core aspects of disciplinary practice in STEM (Science, Technology, Engineering and Mathematics) fields.

We believe that leveraging these existing ways learners use digital devices as resources for organizing learning activities represents a particularly powerful approach to supporting student learning in STEM content areas.

Study reveals potential

A recent study conducted in four California school districts revealed some interesting results about the potential for supporting student mathematics learning with tablet computers. In randomized control trials with eighth-grade Algebra classes, students who used iPads loaded with the HMH Fuse digital textbook app performed about the same as those who used a conventional paper text.

One of the four districts, Riverside, did see significantly higher achievement among students in the experimental group. However, the success of the iPad program at that site may be explained by the fact that both students and teachers reported greater frequency of use of their devices than in the other districts.

Indeed, in an Op-Ed about the study, Educated Guess blogger John Fensterwald writes that Riverside’s superintendent attributes the success of the program in his district as stemming in part from a greater willingness in their schools to freely permit learners’ personal use of the iPads outside class: “Allow students to download their own applications, including music, and they’ll be more prone to access math videos and use the technology for learning” (TOP-Ed, April 18, 2012).

Beneath the surface of these results lurk deeper questions about the kinds of instructional activity—technology-mediated or not—that engage learners in substantive mathematical meaning-making. The Khan Academy phenomenon of thousands of freely available online videos illustrating a wide range of topics in the K-12 math curriculum has recently invited a corresponding critique of these resources because the lecture style and the emphasis on mathematical procedures rather than concepts simply reinforces the same flawed elements of traditional instruction that turn so many students off to mathematics in offline environments.

Capitalizing on emerging media

Our own aim is not so much to challenge the use of new technology for old purposes (namely, delivering content to students in print and spoken forms) as to call attention to opportunities, often missed, to capitalize on emerging media for innovative and even transformative educational use.

Contemporary handheld and tablet computers are powerful platforms for recreating conventional instructional materials and activities in digital and mobile form, promising to replace textbooks, desktop computers, and even paper and pen with a single device. But students who have access to them are already using these devices in a much wider range of ways outside instructional settings, which we believe offer additional learning opportunities.

Modern mobile devices like smartphones, tablets and media players include tools to support several distinct forms of activity: 1. capturing and collecting information and experiences across a variety of settings, through photos, audio and video recordings, numerical and text entry, and other inputs; 2. communicating and collaborating with others via phone, text, email and social networks; 3. consuming and critiquing various forms of media including music, photos, videos, games and text documents; and 4. constructing and creating personal forms of representation and expression such as digital films, photo slideshows or archives, and blogs or other written reflections.

Each of these sets of digital practices with mobile devices has close analogs with key forms of STEM activity: collecting empirical data in a variety of forms, viewing and critically examining arguments and evidence across multiple and diverse media and representational modes, communicating STEM ideas or sharing empirical results, and producing representations to model phenomena and to examine relationships and patterns (White, Booker, Martin & Ching, 2012).

Indeed, we see in these distinct forms of digital practice the seeds of several central elements of mathematics, science and engineering practice highlighted in the Common Core Standards for Mathematical Prac-
PLC AT WORK
SUMMIT 2013

Build school culture
where learning thrives.

February
20–22
Phoenix, AZ

Register today!
solution-tree.com/2013plcsummit
800.733.6786
As one student, Earl, told us, he needed to do something "self-regulating." Yet we also heard that students describe the opposite pattern, where their mobile device turned idle moments into opportunities for academic work. Even on campus, students noted that computers for student use were often not available when needed. Earl also told us that it was "a lot easier to have the [iPod] Touch ... instead of [having to] wander over to a computer and hope that it's open, and that not very many people have messed with it, and then just wait for the log in to go through. Just having the device right there and you’re just like, OK.”

Novel and exciting ways of doing math

At the end of the pilot study, students completed an anonymous survey and an in-person interview asking them to reflect upon their experiences. Survey results showed that all students wanted to do similar activities in the future and would recommend the activities to a friend, and 95 percent said they learned new ways to do math from the activities.

Interviews highlighted that many students found creating graphs on the mobile devices to be novel and exciting. Several students said the experience shifted their view of themselves as math students. For example, one said, "I used to think [math] was too hard, and like, I said, 'I don't like it.' But what we just did, over the last two weeks, it's like 'Oh, OK, that's cool. Maybe we should do that in class.'"

Others said that their experience, especially with graphing data, made it easier to imagine themselves in a career that involved analyzing and graphing data.

Educators face a choice

The mobile revolution is well under way outside of school, both in the workplace and in people’s everyday lives. Educators face a choice. One path is to focus on the potential downsides of mobiles, such as the danger of taking students’ attention away from aca-
demic tasks in favor of games, media and social networking. Given this view, educators are likely to resist the penetration of mobile devices into schools and institute rules to regulate their presence and use in the classroom.

A second path is to accept the presence of mobiles and try to find ways to integrate them into existing classroom practices. In this model, mobiles might serve as calculators, calendars with homework reminders, browsers for information online, or as clickers in a classroom response system, depending on the classroom and the needs of the teacher.

Student skills as digital practitioners

A third path, as we advocate here, is to leverage students’ existing uses of mobiles—what we call their informal digital practices—as entry points into STEM disciplinary practices. Instead of focusing solely on the potential utility of mobiles as convenient and potentially powerful tools, this approach instead focuses on the students’ skills and knowledge as digital practitioners.

Capitalizing on students’ informal digital practices provides an avenue for doing more than simply providing an out-of-school relevant “hook” to try to motivate students’ interest on a problem or project. We believe it provides easier avenues for students to bring their own interests and identities into the classroom context, where they can connect to STEM practices and pathways. In doing so, we believe mobiles can help teachers move classroom work beyond the too-common focus on algorithms, facts and procedures, to also embrace mathematical practices of modeling, testing, iterating, communicating and critiquing.

References

International Journal of Learning and Media, 3(3).

Tobin White, associate professor of education at UC Davis, studies the use of technology in teaching and learning mathematics. Using a design-based research approach, he develops collaborative problem-solving tools and activities in order to investigate intersections between conceptual and social dimensions of learning. A former high school mathematics teacher himself, he has also worked for more than a decade in teacher preparation.

Lee Martin, assistant professor of education at UC Davis, studies people’s efforts to enhance their own learning environments, with a particular focus on mathematical thinking and learning. In everyday settings, he looks at the varied ways in which people assemble social, material and intellectual resources for problem solving and learning. In school settings, he looks to find ways in which schools might better prepare students to be more resourceful and flexible in fostering their own learning.

Built to last

Anyone can say something is built to last, but the only true test is the test of time. For more than 26 years, SELF has been a beacon providing guidance through the hazards of catastrophic losses—protecting members from financial disaster. Since its inception, SELF has paid more than a quarter billion dollars in losses on behalf of its members. Now that’s the mark of something that’s built to last.

Leadership

26

SELF

Schools Excess Liability Fund

Join our team now.

Call 866-463-5300

Trust what schools created, Trust SELF.

www.selfspa.org