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ABSTRACT 
Testing is an important stage of teaching as it can assist teachers in auditing students' learning results. A good test 
is able to accurately reflect the capability of a learner. Nowadays, Computer-Assisted Testing (CAT) is greatly 
improving traditional testing, since computers can automatically and quickly compose a proper test sheet to meet 
user requirements. For example, the users can specify the number of test items to be selected in the test sheet, the 
average difficulty with respect to the test sheet can be restricted within a lower bound and an upper bound, and 
the generated test sheet is able to cover each basic concept in the scope of the testing subject. In order to design 
an algorithm for test sheet composing in a CAT system to meet the above objectives, we model it as a 0-1 integer 
optimization problem and then transform it to a dominating set selection problem of graph theory. A Multi-stage 
Test Sheet Composing Algorithm (MTSCA) is proposed to give a near optimal solution to this optimization 
problem. Due to the fact that exposure rate control is also an important issue in test sheet composing, our 
proposed MTSCA adopts a randomized rounding technique to reduce the average item exposure rate. The 
simulation results show that the performance of the MTSCA can not only achieve high average discrimination in 
the generated test sheet, but the item exposure rate can be properly controlled as well. 
Keywords: Computer-assisted testing, test sheet composing, randomized rounding, dominating set 
 
INTRODUCTION 
As information technology evolves, it gives fresh impetus to the educational field. For instance, the development 
of a computer-assisted testing (CAT) system can replace paper-and-pencil tests in many situations and provide 
the benefits of time and cost saving. A proper test can help teachers diagnose students’ learning problems in a 
school setting. In addition, when applied to a company setting, a well-designed test will assist supervisors in 
better understanding the performance of their new employees’. Due to the broad range of applications for the 
CAT system, it has received much attention from researchers. Several new theories and tools for testing have 
been proposed in recent decades to enhance the capabilities of the system. For example, the Item Response 
Theory (IRT) can accurately assess the examinee's trait level using fewer test items and less time than the 
traditional approach. On the other hand, the test sheet composing techniques have also been enhanced in recent 
years. 
 
Traditionally, a test sheet is composed by selecting the test items from the item bank in a random fashion. 
Although this method can be used to compose a test sheet quickly, the quality of randomly generated test sheets 
is generally poor. Moreover, if the users issue demands on the generated results, this method will fail to meet 
their requirements. These requirements may include specification of the number of test items, the range of the 
average difficulty of a test sheet having to fall within given upper and lower bounds, the test sheet having to 
cover each basic concept in the scope of the testing subject, and the average discrimination of the generated test 
sheet needing to be as high as possible. However, due to the fact that there are usually thousands of test items in 
an item bank, to automatically compose the best (such as the greatest average discrimination) test sheet among 
every possible test sheet combination that meets the user's requirements is usually time consuming. Thus the 
algorithms designed to meet the objectives discussed above are not easy to design. 
 
As artificial intelligence (AI) techniques and computer algorithms are being brought into CAT systems, the 
intelligence of the developed systems has been dramatically enhanced. Now, a CAT system can not only 
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automatically organize a test sheet to satisfy users' requirements efficiently, but can also help assess the 
examinee's trait level more accurately than traditional methods (Hwang et al., 2006; Yin et al., 2006; Hwang et 
al., 2005). Among the related research, Hwang et al. (Hwang et al., 2006) and Yin et al. (Yin et al., 2006) 
adopted artificial intelligence techniques to optimize test sheet selection according to different criteria, which can 
efficiently compose a near-optimal test sheet from large item banks. These research results provide a good 
approach for test sheet composition, though one of the key issues, the test items' exposure rate control, remains 
unconsidered. The main objective for developing computer algorithms to optimize test sheet composition is to 
find a solution (a test sheet) as close to the optimum as possible. However, this has the drawback that some test 
items will be selected into the test sheet more frequently than others if the same composition demand is invoked 
several times. In the worst case, the algorithms may output almost the same test sheet each time if the specified 
user requirements are the same, resulting in the average exposure rate of an item bank being too high. Therefore 
exposure rate control (Sympson & Hetter, 1985; Barrada et al., 2007; Chang & Ying, 1999; Chang et al., 2001) is 
another important issue worth considering when developing test sheet composing algorithms. 
 
In this study, we consider a test sheet composing optimization problem and take exposure rate control into 
consideration. In the considered problem, we aim to compose a test sheet with the greatest average 
discrimination among every possible test sheet that satisfies the following requirements. The first requirement is 
that the number of test items is equal to a given specified value k. Secondly, the average difficulty of the test 
sheet must be greater than a given lower bound ( lp ) and also less than a given upper bound ( up ). The third 
requirement is to force the generated test sheet to cover each basic concept in the range of the testing subject. 
First, we give a mathematical formulation of the above test sheet composing optimization problem. Then the 
considered problem is transformed to a dominating set problem (Haynes et al., 1998), of the graph theory, which 
is an older branch of discrete mathematics and has plenty of excellent results. In addition, a randomized rounding 
technique is adopted in our algorithm design to limit the average exposure rate of the item bank. A Multi-stage 
Test Sheet Composing Algorithm (MTSCA) with randomized rounding is proposed to give a near-optimal test 
sheet solution to the optimization problem. 
 
The organization of this paper is as follows. First, we describe some relevant research about the existing test 
sheet composing algorithms and the exposure rate control techniques developed so far. Second, the formal 
problem description and the problem transformation are specified. Then the proposed algorithm MTSCA and the 
simulation results are shown. The concluding remarks are stated in the last section. 
 
Relevant research 
Recent published research work related to test sheet composing is twofold. The first category of research aims to 
design efficient algorithms to generate proper test sheets to meet the user's specified requirements, while the 
second category aims to design techniques to limit the item exposure rate of an item bank. However, these two 
areas of research fail to consider the above two issues jointly, though both are important for test sheet 
composition. In the following, we describe each of the two categories of relevant research in detail. 
 
In a CAT system, composing a test sheet using a comprehensive computer algorithm is a more proper approach 
than manually or randomly selecting test items from an item bank. In (Hwang et al., 2006), they used a tabu-
based algorithm to generate test sheets for multiple assessment criteria. Their work aimed at optimizing the 
average discrimination of the generated test sheets. The constraints of their considered model include the 
following two criteria: (1) the selected test items must have a total expected relevance of each concept to be 
learned which is greater than a given lower bound; (2) the selected test items must also have a total expected 
assessment time for answering the selected items which is bounded by a specified range of assessment times. A 
tabu search is one of the efficient heuristic algorithms for finding near-optimal solutions for optimization 
problems, such as the traveling salesman problem, the network planning problem, the job-shop scheduling 
problem, etc. Generally, these problems are NP-hard, and no polynomial time algorithms exist to solve them to 
optimally. The tabu search consists of the following features: configuration, a move function, neighborhood 
definition, tabu restriction, aspiration level, and stopping criteria. It starts with a randomly generated 
configuration (that is, a test sheet in the considered test sheet composing problem). And then it will 
iterativelymake the best move from the current configuration to a new configuration whose objective function 
value is the greatest among the current configuration’s neighbor set according to the designed move function.  
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Figure 1. A numerical example illustrating the a-STR method (N=10, K=2) 
 
During the iterative configuration refinement movement, in order not to revisit recently visited configurations, 
the tabu search design includes a feature called the tabu restriction, which records recently visited configurations 
into a tabu list when each move is taken. The method also uses an aspiration level to relax the tabu restriction by 
accepting a refinement move that violates the tabu restriction in order to attain a better solution. The authors 
designed a tabu-search method to solve the test sheet composing optimization problem taking into consideration 
the above criteria. 
 
In (Yin et al., 2006), they used a newly developed heuristic approach called particle swarm (Kennedy & 
Eberhart, 1995) to compose near-optimal serial k test sheets. Particle swarm is also an efficient heuristic 
algorithm to deal with the NP-hard problem by iteratively refining an initial solution to achieve a near-optimal 
solution. It is a biologically inspired algorithm which models the flocking behavior of bird. Initially, the method 
generates a set of solutions (test sheets) called swarms. In each iteration step, the algorithm will update the set of 
swarms according to the flying velocities and the fitness function until a stopping condition is met. For more 
details of the procedure, one can refer to the study of (Kennedy & Eberhart, 1995). Yin et al. proposed test sheets 
composing optimization problem called the STSC (Serial Test Sheet Composition) problem. This problem aims 
to minimize the difference between the average difficulty of each test sheet and a user specified difficulty value. 
The constraints are the same as for the research work in (Hwang et al., 2006) (i.e., the specified range of 
assessment time and the relevant concept constraint), plus a new constraint to limit the number of test items in 
common between any two generated test sheets being no more than a user specified value.  
 
The above research used comprehensive computer algorithms (such as tabu search and particle swarm) to 
develop test sheet composition methods. Their simulation results showed that these developed algorithms can 
efficiently generate good-quality near-optimal test sheets under different considered problem models. For more 
details, one may refer to these two research works (Hwang et al., 2006; Yin et al., 2006). There are many other 
modern heuristic techniques (Bertsimas et al., 1999; Kennedy & Eberhart, 1995; Michalewicz & Fogel, 2002; 
Aart & Lenstra, 1997) which can be applied to solve the test sheet composing optimization problem, including, 
the genetic algorithm, simulated annealing, the ant colony optimization algorithm, neural networks, fuzzy 
systems, etc. The readers may refer to (Linden, 2005) for a discussion of more modern heuristic techniques 
which are being applied in the test sheet design field. As discussed earlier, however, these do not take exposure 
rate control into consideration; thus, the average exposure rate of the item bank may be too high, which could 
consequently endanger the accuracy of the test items used in the future. 
 
In the following we describe some existing exposure rate control techniques for testing. Due to the fact that 
exposure rate control is an important security issue for testing theory, many researchers have developed methods 
to prevent a test item from being selected too frequently (Sympson & Hetter, 1985; Barrada et al., 2007; Chang 
& Ying, 1999; Chang et al., 2001; Revuelta & Ponsoda, 1998; Wang & Chang, 2011) to prevent a test item from 
being selected too frequently. The simplest approach is to associate each test item with an exposure value. Each 
time a test item is selected for testing, its exposure value will be increased. Thus the current exposure value with 
respect to each test item can be an important parameter for considering the test items being selected into the test 
sheet for examinees' assessment. For more comprehensive methods, 
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Figure 2. A numerical example illustrating the ba-STR method (N=10, K=2) 

 
Chang and Yin (Chang & Ying, 1999) proposed a multi-staged approach called the a-stratified selection method 
(a-STR) for a Computer Adaptive System, where a denotes the value of discrimination. Let the test length be L; 
that is, the Computer Adaptive System will select L test items from the item bank for serial testing. The testing 
chooses the test items with higher discrimination value and a difficulty value (or the examinee's estimate traitθ̂ ) 
as close as possible to the examinee's true scoreθ . In order to meet this objective, the a-STR method firstly 
partitions the test items into K levels (stages) according to the discrimination value. Then the system will 
select in test items according to the user's requirement from the i-th ( Ki ≤≤1 ) level, respectively, such 
that Lnnn K =+++ ...21 . 
 
For example, as shown in Figure 1, there are 10 (N=10) test items in the item bank, and the difficulty and 
discrimination values with respect to each test item are shown in the left part of Figure 1. Assume the number of 
stages is 2 (K=2) and the test length is 4 (L=4). Then firstly, the a-STR method will partition the test items into 2 
groups (the upper and lower groups) according to the discrimination value in non-decreasing order (see the right 
part of Figure 1). Note that the lower (higher) group is the test item group with higher (lower) discrimination 
values, respectively. Then in ( Ki ≤≤1 ) test items in group i will be selected, for which their difficulty values are 
close to the specified difficulty. For instance, if 31 =n , 12 =n and the specified difficulty is 0.4, then Item5, Item7, 
and Item2 are selected from the first group, and test Item1 is selected from the second group. Though the a-STR 
method can control the exposure rate, there still remain many drawbacks with such an approach. 
 
In (Chang et al., 2001), Chang et al. refined the a-STR method and proposed an a-Stratified with b blocking 
method (ba-STR) to improve the quality of item exposure rate control and to reduce the mean squared errors. In 
general, the discrimination value and the difficulty value of a test item are positively correlated. Based on this 
result, the ba-STR method firstly partitions the item bank according to the difficulty value instead of the 
discrimination value, which the a-STR method does. The detailed method can be illustrated using the numerical 
example in Figure 2. Assume that there are 10 (N=10) test items in an item bank, which is shown in the upper-
left part of Figure 2. We also assume that ba-STR uses 2 (K=2) stages and the testing length is equal to 4 (L=4). 
Firstly, sort the test items according to the difficulty values in non-decreasing order and then partition these test 
items into M blocks, where M=N/K=5. In each block, the ba-STR again sorts the test items according to the 
discrimination value in non-decreasing order, and forms each block into 2 (K=2) subgroups, as shown in the far-
right part of Figure 2. Finally, collect the test items in the i-th ( Ki ≤≤1 ) subgroup of each block to form a group 
(the i-th group), as shown in the bottom-left part of Figure 2. The rest of the operation to select L test items for 
adaptive testing is the same as the method that is described in a-STR. 
 
The other approach to suppressing overexposed items is the progressive strategy (Revuelta & Ponsoda, 1998; 
Wang & Chang, 2011). The primary idea of this approach is to add a stochastic component into the item 
selection method to avoid frequently choosing the highest information items in an IRT-based CAT. Recently, 
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Wang and Chang (Wang & Chang, 2011) proposed two item selection methods, the restrictive progressive 
method and the restrictive threshold method, to include additional stochastic components in the item selection 
method so as to increase the usage of underexposed items in the item bank. In the restrictive threshold method, a 
threshold value (δ ) is given to extend the candidate set of selection items instead of the highest information 
item only. A larger (lower) value of δ  will result in a larger (smaller) size of the candidate item set. The 
candidate item set ( cS ) is the collection of items such that the respective information falls within the information 

interval ]max,[max infinf oo δ− , where oinfmax denotes the maximum information value among all items. That 

is, set cS collects the items with an information value close to the maximum such that the information difference 
between them is less than or equal to δ . Then the method will randomly select one of the items in the candidate 
item set cS to be the chosen item, and put it into the test sheet. In this way, the exposure rates of the items may 
tend to be uniform. For the restrictive progressive method and a detailed description of the method, one can refer 
to the literature (Wang & Chang, 2011). The above research works for controlling the exposure rate fit into 
Computer Adaptive Testing, but most of them are not suitable for single test sheet composition. Besides, the aims 
of these approaches are not to optimize some parameters; thus, they may not be directly applied to our 
considered problem model. 
 
PROBLEM DESCRIPTION AND FORMULATION 
In this paper, a test sheet optimization problem is considered. Assume a user specifies the following parameters: 
(1) the number of test items in a test sheet is m; (2) the average difficulty of the test sheet is greater than alower 
bound lp and is less than an upper bound up ; (3) the number of basic concepts to be learned in the testing scope 
is k. Then our considered problem aims to optimize the average discrimination of the test sheet, such that the 
number of test items in the test sheet is equal to m, the average difficulty of the test sheet is bounded within the 
interval ),( ul pp , and all the k basic concepts have to be covered by the generated test sheet. In the following, 
we firstly describe the notations and parameters that are discussed throughout this paper. Then, a special 
structure called the Item Relationship Graph (IRG) is introduced for transforming the considered problem into a 
graph theory optimization problem. Some preliminary results of IRG are also given. Finally, a mathematical 
formulation for our considered problem is provided. 
 
The characteristic vector of a test item 
 Let Item1, Item2, …, Itemn be the test items in the scope of testing and the number of these test items be n. 
Let 1e , 2e , …, ke be the basic concepts to be learned in the testing scope. Set C, called the basic concept set is the 
collection of these k basic concepts; that is, },...,,{ 21 keeeC = . For each test item Itemi ( ni ≤≤1 ), there are three 

associated parameters namely, the discrimination value ib , the difficulty value ip , and CeeeC itiii ⊆= },...,,{ 21
, 

called the basic concept subset of C to denote the basic concepts being covered by test item Itemi. That is, if the 
test item Itemi is placed in the test sheet, then the t basic concepts

1ie ,
2ie ,…, and ite  can be used to assess whether 

or not the examinees have learned these concepts. Thus, a three-tuple vector ),,( iii Cpb called the test item 
characteristic vector is associated with each test item Itemi ( ni ≤≤1 ), and is given in advance. Note that the 
discrimination value and the difficulty value can be obtained by using some existing item analysis techniques. 
 
The Item Relationship Graph (IRG) 
An Item Relationship Graph (IRG) ),( EVG = with respect to the testing is defined as follows. The vertex set V 
is the collection of all test items within the testing scope, thus V={Item1, Item2, …, Itemn}. For any two test 
items Itemi and Itemj in V, let the corresponding basic concept subsets be },...,,{ 121 itiii eeeC = and 

},...,,{ 221 jtjjj eeeC = , respectively. If the vertices Itemi and Itemj in V are said to have an edge between them, if 

φ≠∩ ji CC , this means the two test items have basic concepts in common. Thus the edge set E is defined 

}Item,Item, and  if|)Item,Item{( VjiCCE jijiji ∈∀≠≠∩= φ . As shown in Figure 3(a), there are 9 test items 

in the testing scope. Assume that the basic concept set in the testing scope is },,,,{ 54321 eeeeeC = . The 
discrimination value and the difficulty value with respect to each test item are also shown in the figure. Suppose 
the basic concept subset iC with respect to Itemi ( 91 ≤≤ i ) is as follows: },,{ 3211 eeeC = , 

}{ 32 eC = , },,{ 3213 eeeC = , }{ 14 eC = , }{ 15 eC = , },{ 536 eeC = , }{ 47 eC = , },{ 438 eeC = , and }{ 59 eC = . Since φ≠∩ 14 CC , 
φ≠∩ 34 CC , and φ≠∩ 54 CC , then E∈)Item,Item( 14 , E∈)Item,Item( 34

, and E∈)Item,Item( 54
. 
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     Now we define an augmented graph of IRG, called the A-IRG ( ),( AAA EVG = ) as follows. A test item Itemi, 

whose basic concept subset iC only contains a single basic concept, is called an identity test item. That is, Itemi is 
an identity test item, if 1=iC . For the example in Figure 3, the test items Item2, Item4, Item5, Item7, 

  
 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3. An example of an IRG 
 
and Item9 are all identity test items. In the case of a basic concept Cet ∈ not being contained by any identity test 

item Iteml such that }{ tl eC = , then te is called a missing basic concept. Let MC be the collection of all missing 

basic concepts. Then, for each missing basic concept Mt Ce ∈ , a pseudo vertex Itemt is added to AV , and the 

characteristics vector with respect to Itemt is let to be }){,,( te∞−∞ . The edge set AE of the A-IRG is then 
obtained by the same definition of the edge set in the IRG. For the example in Figure 3, since 2C , 4C , 5C , 7C , 

and 9C are all identity basic concept subsets and },,,{ 543197542 eeeeCCCCC =∪∪∪∪ , then 2e is a missing basic 

concept. We then add a pseudo vertex Iteml0 in AG and let the test item characteristic vector with respect to Iteml0 
be }){,,(),( 210,1010 eCpb ∞−∞= . The resulting A-IRG with respect to the IRG in Figure 3(a) is shown in Figure 3(b). 
In the following we give some preliminary results related to the augmented IRG, and describe the relationship 
between the basic concepts covering constraint and the dominating set of graph theory. A vertex subset AVD ⊆ of 

the A-IRG is called a dominating set, if for each vertex Itemi AV∈ , either Itemi D∈ or a vertex Itemt D∈ exists, 
such that (Itemi, Itemt) AE∈ (or simply, Itemi )(DN∈ , where )(DN denotes the collection of all neighboring 
vertices of D). For the example in Figure 3(b), subsets {Item1, Item6, Item8}and {Item3, Item8, Item9} are two 
dominating sets of the A-IRG AG . The following theorem gives the relationship between the basic concept 

covering constraint of our considered problem with the dominating set in AG . 
 
Theorem 1. For any dominating set in an A-IRG, the corresponding test sheet meets the basic concept covering 
constraint and vice versa.  
 
Proof. 
Let D be a dominating set in the A-IRG and C be the basic concept set in the testing. For each basic 
concept Cet ∈ , there exists an identity test item At V∈Item such that }{ tt eC = . According to the definition of 
the A-IRG and the dominating set, the Itemt is dominated by D. Thus, CeCe tlDt ∈∀∈ ∈ ,

lItemU . That is, the set D 
meets the basic concept covering constraint. 
 Conversely, we will show that given any vertex subset AVS ⊆ that satisfies the basic concept covering 

constraint, then S must be a dominating set in AG . Suppose not, then there exists a vertex AVv∈ , but Sv∉  
and )(SNv∉ . Suppose that },...,,{ 21 iliiv eeeC = . Since vit Ce ∈ , ( lt ≤≤1 ), according to the definition of edge 
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in the A-IRG, we have tSit Ce ∈∉
tItemU . Since S does not cover any one of the l basic concepts ite ( lt ≤≤1 ), 

then it does not meet the basic concept covering constraint, which violates the assumption. Thus set S is a 
dominating set.                                                                       Q.E.D. 
 
Note that the above theorem gives the fact that the basic concepts covering the constraints of our problem model 
can be completely eliminated by finding a dominating set in the A-IRG instead. Thus we have transformed the 
test sheet composing optimization problem into a dominating set finding optimization problem in graph theory. 
Due to graph theory being a field with fertile theoretical results, this transformation builds a bridge from the test 
sheet composing problem to graph theory. 
 
Mathematical formulation 
Let {=V Item1, Item2,…, Itemn}be the collection of test items in the testing scope. And let },...,,{ 21 keeeC =  be 
the basic concept set. For each test item Itemi ( ni ≤≤1 ), a test item characteristic vector ),,( iii Cpb is associated 

with it, where ib denotes the discrimination value, ip denotes the difficulty value, and iC denotes the basic 
concept subset. Let graph ),( AAA EVG = be the augmented item relationship graph with respect to the above test 
items. Suppose a user issues a demand for test sheet composition and specifies that the test sheet size be m and 
the upper (lower) bound of the average difficulty of the test sheet be

up (
lp ). The considered problem aims to 

determine a vertex subset AVS ⊆* and its average discrimination value maximizes every possible vertex subset 
that meets the following three constraints. 
 
1. The set *S satisfies the difficulty constraint; that is,

u
S i

l p
S

p
p i ≤≤

∑ ∈

*
Item * . 

2. .* kS =  

3. *S is a dominating set. 
As discussed above, we give a formal mathematical formulation of our considered problem, called the Test 

Sheet Composing Optimization Problem (TSCOP) as follows. 
 

∑
∑

≤≤

≤≤
⋅

ni i

ni ii

x
bx

1

1 Max.                                        (1) 

s.t. 

u
ni i

ni ii
l p

x
px

p ≤
⋅

≤
∑
∑

≤≤

≤≤

1

1                                     (2) 

∑ ≤≤
=

ni i mx
1

                                      (3) 

Ai
Nj

j Vx ∈∀>∑
∈

Item,0
)}Item(Item|{ ij

                              (4) 

Aii Vx ∈∀∈ Item},1,0{                                   (5) 
 
 
In the above mathematical programming model, each test item Itemi ( ni ≤≤1 ) corresponds to a 0-1 variable ix . 

If ix is set to be 1, this means Itemi is selected into the test sheet; otherwise 0=ix (see Equation (5)). Equation 
(2) guarantees the test sheet will meet the difficulty constraint. Equation (3) gives the test sheet size constraint. 
Finally, Equation (4) ensures that the neighboring set with respect to each test item Itemi in A-IRG must have at 
least one test item selected into the test sheet, which guarantees that the resulting test sheet will meet the 
dominating set constraint. 
 
Exposure rate control 
Assume a testing system has generated t test sheets 1S , 2S ,…, and tS for testing so far. Suppose the test item Itemi 
appears x times in the t test sheets. Then the exposure rate iXposure with respect to test item Itemi is defined 
as, txXposurei /= , and the average exposure rate )(_ tXposureAvg with respect to the t test 
sheets is defined as follows: 
 



 
TOJET: The Turkish Online Journal of Educational Technology – July 2012, volume 11 Issue 3  

 

Copyright © The Turkish Online Journal of Educational Technology 
40 

 

t

SSS i

SSS

Xposure
tXposureAvg ti

∪∪∪
=
∑ ∪∪∪∈

...
)(_

21

...Item 21                       (6) 

 
In the next section, we describe the proposed algorithm, which can generate a near-optimal test sheet for our 
considered problem for which the average exposure rate will not be too high compared to other conventional 
algorithms. 
 
The proposed algorithm 
The main objective of the TSCOP is to optimize the average discrimination of the generated test sheet; however, 
the other objective is to decrease the average exposure rate of the testing. The above two objectives conflict with 
each other, since the previous one tends to always select the "better" test items into the test sheets, but the latter 
one tends to balance the chance of each test item being selected into the test sheets in order to control the average 
exposure rate such that it is below a certain level. In this paper, we propose a Multi-stage Test Sheet Composing 
Algorithm (MTSCA) using the randomized rounding technique in our algorithm design. The main approach of 
the MTSCA is that, first, we relax the integer programming optimization problem TSCOP to be a linear 
programming optimization problem, which can be solved to optimize the result by using some well-known 
polynomial time algorithms (for example, the Ellipsoid method or Interior-point algorithm). Then, we use the 
randomized rounding technique on the above optimum linear solution to round it to be an integer solution with 
random fashion. Due to the resulting integer solution possibly not being feasible, a feasibility modification 
process is also proposed to modify the current solution so that it can be feasible. Then the corresponding test 
sheet with the resulting solution will be the generated test sheet of our proposed MTSCA. Since the above 
MTSCA adopts randomized rounding, the generated test sheet will be different each time the algorithm is 
invoked. A detailed algorithm description of the MTSCA is provided as follows. 
 
The Multi-stage Test Sheet Composing Algorithm (MTSCA) 
Let set {=V Item1, Item2,…, Itemn} and },...,,{ 21 keeeC = be the test item set and the basic concept set, 
respectively. Let ),,( iii Cpb be the test item characteristic vector with respect to test item Itemi V∈ . Assume the 
user specifies the test sheet size to be k and the upper (lower) bound of the average difficulty of the generated 
test sheet to be up ( lp ). Firstly, we will construct the A-IRG ),( AAA EVG = with respect to the above test items. 
The proposed MTSCA consists of the following three stages.  

 
Stage 1. Solving the linear programming problem model 
First, we relax the integer decision variables ix , Ai V∈∀Item of the integer programming problem model TSCOP 
to be real decision variables. The resulting linear programming model is as follows: 
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Aii VRx ∈∀∈ Item,                                     (11) 
 
Generally, the above model can be easily solved using some existing polynomial time algorithms, such as the 
well known Ellipsoid method or Interior-point algorithm. For detailed solution steps, one can refer to some 
Combinatorial Optimization works (e.g., Aarts & Lenstra, 1997), so we omit the detail here. Let the resulting 
optimum solution be ),...,,( **

2
*
1 nxxx , where niRxi ≤≤∈ 1 ,* . 

 
Stage 2. Randomized rounding 
This stage rounds the above real number solution ),...,,( **

2
*
1 nxxx to be 0-1 integer solution 

)ˆ,...,ˆ,ˆ( **
2

*
1 nxxx according to the following rules. 
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For each solution value nixi ≤≤1 ,* , 
 
Case 1 if 1* ≥ix , then 1ˆ* =ix ; 
Case 2 if 0* ≤ix , then 0ˆ* =ix ; 

Case 3 if 10 * << ix , then we randomly choose a real number t from range [0,1]. In case of *
ixt ≤ , then 1ˆ* =ix ; 

otherwise, 0ˆ* =ix . For example, assume 7.0* =ix and the random number t=0.5. Since *
ixt ≤ , we set the 

resulting value *ˆix to be 1. 
Perform the above randomized rounding process on each of the solution values nixi ≤≤1 ,* , and an integer 
solution )ˆ,...,ˆ,ˆ( **

2
*
1 nxxx will then be obtained. Due to the above solution perhaps not being feasible with respect to 

the TSCOP, the following stage will modify the resulting integer solution )ˆ,...,ˆ,ˆ( **
2

*
1 nxxx so that it becomes feasible 

solution.  
 
Stage 3. Performing the feasibility modification process 
In the case of the obtained solution )ˆ,...,ˆ,ˆ( **

2
*
1 nxxx after performing Stages 1 and 2 being feasible for the TSCOP, 

then the execution of Stage 3 is omitted. On the other hand, if the solution is infeasible, then the three steps of 
Stage 3 have to be performed in order to obtain a feasible solution. The three steps include, the difficulty 
feasibility modification, the dominating feasibility modification, and the test sheet size feasibility modification, 
and are stated as follows. 
 
1. The difficulty feasibility modification: 

Let set S be the test item set in graph AG with respect to the current solution )ˆ,...,ˆ,ˆ( **
2

*
1 nxxx . That 

is, }1ˆ if|Item{ * == ii xS . If S meets the difficulty constraint, then skip this step. Otherwise, if the average 

difficulty of S is less than the specified lower bound lp , then we let set U={Itemi1, Itemi2,…, Itemil} be the 
collection of test items not currently selected in S, and its difficulty value is greater than the lower bound 
(that is, if Itemit U∈ , then Itemit SVA −∈ and li pp

t
> ). Choose the test item Itemit with the highest 

discrimination value in set U, and then put it into S. Then update sets S and U by ∪S {Itemit} and U=U-
{Itemit}. Repeat the above process until the average discrimination value of S is greater than the lower 
bound lp . On the other hand, if the average discrimination of the current solution after performing Stages 1 

and 2 is greater than the specified upper bound up , then the operations are similar to the above description 
except that set U={Itemi1, Itemi2,…, Itemil} is set to be the collection of test items not currently selected in 
S, and its difficulty value is less than the upper bound. 

 
2. The dominating feasibility modification: 

If set S is not a dominating set in graph AG , then the following operations will be performed. Let set 
SVU A −= and let the test item *

itItem be the highest discrimination value in set U. If adding *
itItem will not 

violate the difficulty constraint and can enhance the basic concept coverage, then }Item{ *
itSS ∪=  

and }Item{ *
itUU −= . Otherwise, we just drop it from set U; that is, }Item{ *

itUU −= . Repeat the above 
process until set S becomes a dominating set. 

 
3. The test sheet size feasibility modification: 

If the current test sheet size is greater than the user specified number k; that is kS >|| , then some test items 
have to be removed. Firstly, we sort the test items in S according to the discrimination value in 
nondecreasing order, and let Itemi1, Itemi2,…, Itemi|S| be the resulting order. Then, starting from the first test 
item Itemi1, check whether or not removing this item from S will violate the difficulty constraint or the 
dominating constraint. In case of either one of the constraints being violated, then skip this item and do 
nothing; otherwise, remove Itemi1 from S and let the resulting set S be S-{Itemi1}. Continue the above 
process sequentially on the test item list until kS =|| , and then output the resulting solution set S. 

On the other hand, in case of kS <|| , then some test items which have not been selected in set S have to be 
added to S. Similar to the above case ( kS >|| ), the candidate test item checking list is no longer S but 

SVU A −= . Then sort the test items in U according to the discrimination value in nonincreasing order, and 
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decide whether or not to and the current item in the list to S until kS =|| . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The complete procedure for the Feasibility-modification-process 
 
 
 
 
 

Procedure Feasible-modification-process; 
{ 
 /* Step 1. The difficulty feasibility modification */ 
   let S be the test item set in AG with respect to solution )ˆ,...ˆ,ˆ( **

2
*
1 nxxx ; 

   if (S does not meet the difficulty constraint) then { 
     repeat 
       if (the average difficulty value of lpS < ) then 
          }; and Item|Item{ litAitit ppSVU >−∈=  
       else }; and Item|Item{ litAitit ppSVU <−∈=  
       if ( φ=U ) then randomly remove some test items from S  
                   until the resulting U becomes nonempty; 
       let *Itemit be the test item with the greatest discrimination value in U; 
       }Item{ *

itSS ∪= ; 
       }Item{ *

itUU ∪= ; 
     until (S meets the difficulty constraint); 

} 
 /* Step 2. The dominating feasibility modification */ 
   repeat 
     SVU A −= ; 

     let *Itemit be the test item with the greatest discrimination value in U; 

     if (add *Itemit into S will not violate the difficulty constraint and can enhance the basic concept 

coverage) then }Item{ *
itSS ∪= ; 

     }Item{ *
itUU −= ; 

   until (S becomes a dominating set); 
 /* Step 3. The test sheet size feasibility modification */ 
   if ( kS > ) then { 
      sorting the test items in S according to the discrimination value in nondecreasing order, and let the 

resulting order list be )Item,...,Item,Item( ||21 SiiiL = ; 
      repeat 
        remove the first item

jItem from L; 
        if ( }Item{ jS − does not violate the difficulty and dominating constraints) then }Item{ jSS −= ; 

      until ( kS = ); 

   } 
   else if ( kS < ) then { 
      sorting the test items in SVA − according to the discrimination value in nonincreasing order, and let 

the resulting order list be )Item,...,Item,Item( ||21 SViii A
L −= ; 

      repeat 
        remove the first item jItem from L; 
        if ( }Item{ jS ∪ does not violate the difficulty and dominating constraints) then }Item{ jSS −= ; 

      until ( kS = ); 

   } 
  return(S); 
}



 
TOJET: The Turkish Online Journal of Educational Technology – July 2012, volume 11 Issue 3  

 

Copyright © The Turkish Online Journal of Educational Technology 
43 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The complete procedure for the Multi-stage Test Sheet Composing Algorithm (MTSCA) 
 
 

 

Figure 6. A numerical example to illustrate the solution steps of the MTSCA 
 
According to our simulations, the test item set S after performing the processes of Stages 1 and 2 is very close to 
being a feasible solution. Thus Stage 3 generally only makes minor modifications to set S. The complete 
feasibility modification process and the proposed algorithm description are shown in Figures 4 and 5, 
respectively. 
 
Numerical example 
In this subsection, we use the problem instance shown in Figure 3(b). Assume that the user specifies the test 
sheet size to be 4 and the difficulty range as [0.4, 0.5]. Suppose the resulting solution after performing the 
processes of Stage 1 is (0, 0, 0.6, 0.8, 0.8, 0, 0, 0.9, 0.9, 0). In Stage 2, for each non-zero decision variable in the 
above solution, randomized rounding is performed, and we let the resulting solution be (0, 0, 1, 0, 0, 0, 0, 1, 1, 

Algorithm Multi-staged Test Sheet Composing; 
{ 
  construct the A-IRG ),( AAA EVG = ; 
  /* Stage 1. Solving the linear programming problem model */ 
       Solve the linear programming model and let the resulting solution be ),...,,( **

2
*
1 nxxx ; 

/* Stage 2. Randomized rounding */ 
       for each solution value *

ix in ),...,,( **
2

*
1 nxxx do { 

         if ( 1* ≥ix ) then 1ˆ* =ix ; 
         else if ( 0* ≤ix ) then 0ˆ* =ix ; 
         else { choose a random number t from [0,1]; 
              if ( *

ixt ≤ ) then 1ˆ* =ix ; else 0ˆ* =ix ; 
             } 
       }  

/* Stage 3. Performing the Feasibility-modification-process */ 
       S=Feasible-modification-process(); 
  output(S); 
} 
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0). As shown in Figure 6(a), the corresponding test item set S for the above solution is {Item3, Item8, Item9}, 
which is identified by gray nodes. Since S is not feasible, thus the modification processes in Stage 3 will be 
performed to modify S and make it feasible. In the difficulty feasibility modification process, due to the average 
difficulty value of S being equal to =++ 3/)( 983 ppp up=>=++ 5.053.03/)7.06.03.0( , which violate  the 
difficulty constraint, some test items in SVA − with a smaller difficulty value than )5.0(=up will be selected and 
added to S to lower the average difficulty value until the difficulty constraint is met. 
 
In this example, the U={Item1, Item2, Item6, Item7}. Since Item7 U∈ has the greatest discrimination value in U, 
then add it into S and the resulting S becomes {Item3, Item7, Item8, Item9} (see Figure 6(b)). The average 
difficulty value of S becomes (0.3+0.4+0.6+0.7)/4=0.5. Since S meets the difficulty constraint the difficulty 
modification process stops. In the dominating feasibility modification process, due to S being a dominating set 
in AV , nothing will happen to it after performing this process. Finally, since 4=S , it meets the test sheet size 
constraint. Similarly, set S remains unchanged after performing the test sheet size feasibility modification 
process. Therefore, set {Item3, Item7, Item8, Item9} is the resulting output test sheet of our proposed MTSCA. 
 
Time complexity analysis 
Let the number of test items in the considered problem be n and the given size of the test sheet be k. The time 
complexity analysis for the feasibility modification process is as follows. Initially, the construction of the 
augmented graph will take O(n) computation steps in the worst case, since the number of basic concepts is much 
less than n in general. The Step 1 (difficulty feasibility modification) will firstly take )log( nnO computation 
steps to sort the test items according to the discrimination values in non-increasing order. The loop in this step 
will iteratively remove (or add) test items from (to) the solution until the difficulty constraint is met, and will be 
repeated at most O(n) times. Moreover, in each item remove (or add) step, the average discrimination value has 
to be updated, which will take O(n) computation times. Thus, Step 1 will totally take )()()( 2nOnOnO =×  
computation steps. Similar arguments can be made for Step 2; thus it takes )( 2nO  computation steps to adjust the 
current solution to meet the dominating constraint. For Step 3 (test sheet size feasibility modification), it firstly 
sorts the test items in either set S (the if case) or SVA −  (the else case) according to the discrimination value in 
non-increasing order, which will take at most )log( nnO computation steps. Then for either of the above cases, 
the loop in Step 3 will repeatedly modify the solution by removing (or adding) at most k items. In addition, for 
each iteration step of the loop, the process has to check whether the updated solution will violate the difficulty 
and dominating constraints by taking O(n) computation steps in the worst case. Thus the sorting and loop in Step 
3 take at most )()log( knOnnO ⋅+  computation steps. Finally, summing the computation time of the above three 
steps, we conclude that the feasibility modification process (Stage 3 of the proposed algorithm MTSCA) will 
take )()()log()()( 222 nOknOnnOnOnO =⋅+++  computation steps to modify the solution to becomes a feasible 
solution in the worst case.  
 
Now, let us get back to the time complexity analysis of the proposed algorithm MTSCA. The first stage of 
MTSCA tries to use a polynomial time algorithm (such as the Ellipsoid method or Interior-point algorithm) to 
solve the linear programming model, which is known to take )( 3 LnO ⋅  computation steps, where L denotes the 
bit-length of the data. In Stage 2 (Randomized rounding) of MTSCA, it iteratively rounds the n solution values 
one by one into a 0-1 value in random fashion; thus Stage 2 will take O(n) computation steps.  According to the 
above arguments, we have that Stage 3 (the feasibility modification process) takes )( 2nO  computation steps in 
the worst case. Summing the computation time of the above three stages, we have that the worst case running 
time of MTSCA is )()()()( 323 LnOnOnOLnO ⋅=++⋅ . In the following, we demonstrate the performance of the 
MTSCA against other conventional methods through simulations.  
 
Simulation results 
Our experiments had two purposes, namely to compare the performance in terms of the average discrimination 
value and the average exposure rate of the proposed algorithm MTSCA with three different traditional test sheet 
composition methods. The compared methods, including the random selection method, the genetic algorithm 
(GA), and a GA modified method with exposure rate control called GA-exposure, are described as follows. 
 
The compared algorithms 
(1) The random selection method 

Firstly, this method randomly selects some test items to form an initial test sheet. Due to the resulting test 
sheet perhaps not being feasible, the feasibility modification process proposed above is adopted to obtain a 
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feasible solution. 
 
(2) The genetic algorithm 

In this method, each test sheet solution is encoded by an n-bits binary string ),...,,( 21 nxxxX = . In the case 
of nixx ii ≤≤== 1 ),0( 1 , it stands for the test item Itemi being (not being) selected in the test sheet. The 
fitness function F(X) in the GA is defined as follows. Function F(X) takes the average discrimination value 
( ∑ ∑= =

=
n

i

n

i iii xxbw
1 1

/ ) as the main part, and some penalty functions are adopted to force the solution not to 

violate the constraints. The penalty functions include the coverage constraint violating penalty function (δ ), 
and two difficulty constraint violating functions (α andβ ). The coverage constraint violating penalty 
function δ is defined as, 

        )1(
m
aw −×=δ                                                                 (12) 

where m denotes the number of basic concepts in the testing range and a denotes the number of 
basic concepts covered by the current solution  
 

The lower bound (upper bound) of difficulty constraint violating penalty functionsα (β ) are defined as,  
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Note that the function }0,max{][ xx =+ . Combining the above functions, the fitness function of the GA 
is δβα −−−= wXF )( . 
The selection method of the GA in our simulation uses Roulette Wheel selection, and the crossover 
operation and mutation uses one-point crossover and bit-mutation, respectively. Similarly, in the case of the 
solution generated by the GA not being feasible, we again invoke the feasibility modification process to 
obtain a feasible solution. 

 
 
(3) The GA-exposure algorithm 

The GA-exposure is similar to the GA described above, except that the discrimination value ib in the fitness 

function is replaced by ii Xposureb / , where )1( niXposurei ≤≤ denotes the current exposure rate with 
respect to Itemi. The other operations (such as the selection method, the crossover operation, and the 
mutation operation) are all the same as in the GA. Once again the feasibility modification process is invoked 
if the generated solution is not feasible. 

 
The numerical results 
The first purpose of our experiment is to conduct a comparison of the performance results of our proposed 
algorithm MTSCA with the other test sheet composing methods in the average discrimination results 
estimations. For each simulation case of test item number n (n=500, 1000, 1500, 2000, …, 5000), we randomly 
generated 500 problem instances for simulation. The specified test sheet size k is set to 25 and the difficulty 
range is set to [0.5,1] and [0.4,0.6], respectively. Thus, there are totally 500 average discrimination values for 
each test sheet composition method. We then take the average of the 500 discrimination values. The performance 
results are shown in Figures 7-8 with different sets of specified difficulty range. These results demonstrate that 
the performance of our proposed method MTSCA is very close to that of the GA, which gains a high average 
discrimination value of the composed test sheets. The random selection method gains the worst discrimination 
value in these performance evaluations. We also conducted another experiment for evaluating the performance 
on the average discrimination value when the number of test items was fixed (n=2000) and the number of test 
sheets generated varied. As shown in Figures 9-10, the GA (random selection method) achieved the greatest 
(lowest) average discrimination values compared with the others in each of the evaluation cases. Our proposed 
method MTSCA is very close to the GA's performance. 
 
The second purpose of our experiment was to evaluate the proposed method MTSCA against the other test sheet 
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composition methods on the average exposure rate comparison. In the experiment, the number of test items is 
fixed and set to 2000 (n=2000), and we randomly generated 500 problem instances for each given test sheet's 
value. Figures 11-12 show the performance results of these experiments. As shown in these figures, the GA has 
the worst performance results on the average exposure rates. Besides, the GA-exposure performs much better 
than the GA does; however, the exposure rates are greater than 0.6 in most cases. Among these methods, without 
a doubt, the random selection method achieves the best performance results, and our proposed method MTSCA 
performs very close to the random selection method. Based on the above simulation results, we conclude that the 
traditional test sheet optimization composition methods (such as the GA) only perform well  on average 
discrimination comparisons, but perform worse on average exposure rate comparisons. In contrast, the random 
selection method performs well only on average exposure rate comparisons, but is the worst in the other 
comparison cases. However, our proposed method (the MTSCA) performs comparably on both the average 
discrimination values and the average exposure rate comparisons, making it, overall, the most effective method. 
 
CONCLUDING REMARKS 
In this paper, we propose a test sheet composing optimization problem called the TSCOP. We then transform the 
TSCOP to a dominating set optimization problem in graph theory. A randomized rounding based algorithm 
called the MTSCA is proposed to give a near optimal solution to the considered problem. The simulation results 
show that our proposed MTSCA performed better than other conventional test sheet composition methods on 
both average discrimination value and average exposure rate comparisons. In the future, the considered problem 
model will be extended to a multi-objective optimization problem, and we will try to design algorithms to 
enhance the generated results. 
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Figure 7. Performance evaluation on average discrimination value (difficulty range is [0.5,1]) 
 

 
 

Figure 8. Performance evaluation on average discrimination value (difficulty range is [0.4,0.6]) 
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Figure 9. Performance evaluation on average discrimination value as the number of generated test sheets varied 

(n=2000 and difficulty range is [0.5,1]) 
 

 
 
Figure 10. Performance evaluation on average discrimination value as the number of generated test sheets varied 

(n=2000 and difficulty range is [0.4,0.6]) 
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Figure 11. Performance evaluation on exposure rate (difficulty range is [0.5,1]) 

 
 
 

 
 

Figure 12. Performance evaluation on exposure rate (difficulty range is [0.4,0.6]) 


