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In order to be treated quantitatively, subjective gains and losses (utilities/disutilities) 
must be psychologically measured. If legitimate comparisons are sought between 
them, measurement must be at least interval level, with a common unit. If 
comparisons of absolute magnitudes across gains and losses are further sought, as in 
standard definitions of loss aversion, a common known zero must be added to the 
common unit requirement. These measurement issues are typically glossed over in 
complex models of decision under risk. This paper illustrates how Functional 
Measurement (FM) affords ways of addressing them, given some conditions. It 
establishes a relative ratio model for the integration of gains and losses in a mixed 
gamble situation with independent outcome probabilities. It subsequently documents 
how this model yields functional estimates of gains and losses on a common unit 
scale with a known zero. The psychological significance of the found integration 
model is discussed, and some of its implications for measurement further explored 
across two studies. 

 
The need to measure subjective value has been around since the 

introduction of Expected Utility Theory by Bernoulli (1738/1954), and that 
of measuring subjective probability since the introduction of Subjective 
Expected Utility Theory by Savage (1954). Obtaining valid subjective 
measures has thereby become a critical endeavor in testing decision 
theories, and a difficult one to attain, moreover, in the absence of suitable 
psychological theories of measurement (Anderson, 1991; Anderson, 1996, 
chap. 10).  
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One complicating aspect in this regard concerns attitudes toward 
risk. Under expected utility theory, curvature of the utility function is the 
only source of risk attitudes. To take an example, risk aversion would be 
entirely determined by a concave utility function, with the intensity of the 
former directly reflecting the degree of curvature of the latter. Rabin (2000) 
has demonstrated in the meantime that the theory is unable to provide a 
realistic account of empirically observed degrees of risk aversion, and 
pointed out the need for additional sources of risk attitude. A similar stance 
was taken by many authors in face of the evidence of systematic violations 
of expected utility (Brooks & Zank, 2005; Köberlling & Wakker, 2005) and 
of inconsistencies in utility measurement based on the theory assumptions 
(Hershey & Schoemaker, 1985; Abdellaoui, Bleichrodt, & Paraschiv, 2007). 
As they moved away towards alternative theories of decision under risk, 
additional components of risk attitude were called upon, chiefly among 
them Loss Aversion and Probability Weighting (Köberlling & Wakker, 
2005). 

Loss Aversion is currently seen as a major cause of risk aversion and 
as capable of explaining a variety of previously anomalous field data 
(Abdellaoui et al., 2007). It refers generally to the notion that people are 
more sensitive to losses than to perfectly commensurate gains (for a 
somewhat distinct intuition, see Brooks & Zank, 2005). It was modeled 
under Prospect Theory (Kahneman & Tversky 1979; Tversky & Kahneman, 
1992) as a kink of the value function at the reference point, resulting in 
greater steepness for losses than for gains. The three components of attitude 
toward risk allowed for in Prospect Theory are the utility function, the 
probability weighting function, and loss aversion. The latter is thus not to be 
confused with the intrinsic curvature of utility, which is a distinct 
component (Fox & Poldrack, 2009; Köberlling & Wakker, 2005; Tversky & 
Kahneman, 1992). Despite their formal independence, however, both 
notions are closely intertwined from the practical standpoint of 
measurement, as made clear in the formal definition of loss aversion 
(Kahneman & Tversky, 1979): 

 
.                                                     (1) 

 
Comparing –v(–x) and v(x) amounts to be able to measure subjective 

gains and losses on a scale having a known zero and a common unit. The 
additional specification «for all x > 0» amounts to measuring utility 
completely across gains and losses, and rests on the same demanding 
measurement conditions (a loss aversion coefficient can then be derived as 
the mean or median of the ratios –v(−x) / v(x) across the relevant range of x: 
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Abdellaoui et al., 2008). Thus, both loss aversion and the full 
characterization of “basic utility” require ratio level measurement of 
subjective values across gains and losses. 

One problem is that existing preference-based methods cannot 
handle gains and losses simultaneously under complex models of risky 
decision, such as prospect theory (Abdellaoui et al., 2007; Abdellaoui et al., 
2008).  The reason is that they do not take account either of loss aversion or 
of probability weighting, which may be different for losses and for gains. 
This applies to the probability, certainty, and lottery equivalence methods 
(Hershey & Shoemaker, 1985; McCord & de Neufville, 1986; see also 
Wakker & Deneffe, 1996; Abdellaoui et al., 2008), and explains why so 
much of what is supposedly known on risk attitudes is based on strictly 
positive prospects. Imposing a priori parametric assumptions to the 
probability weighting function, the utility function, or both, has thus often 
appeared as the only practicable path for measuring utility (Tversky & 
Kahneman, 1992). 

Methods have been offered which seemingly account for probability 
weighting separately in the domains of loss and of gain (Fenemma & Van 
Assen, 1988; Wakker & Deneffe, 1996). However, because they cannot deal 
with both domains at a time, they do not make room for loss aversion and 
do not afford a full determination of utility. Separate examination of risk 
behavior in pure gain and pure loss lotteries would be supported, but this 
yields different results from directly assessing the effects of the integration 
of gains and losses in mixed lotteries (Hershey, Kunreuther, & Schoemaker, 
1982; Abdellaoui et al., 2007) 

In face of the reported shortcomings, a method to completely 
measure utility under Prospect Theory has more recently been proposed by 
Abdellaoui and collaborators (Abdellaoui, 2000; Abdellaoui et al., 2007, 
Abdellaoui et al., 2008). The hallmark of the approach is that it doesn’t have 
to constrain the shape of either the utility or the probability weighting 
function, from which it derives the designation of «parameter-free method». 
However, it rests on the assumed validity of some initial trade-offs 
(Abdellaoui, 2000) and, most of all, on the additive composition assumed in 
Prospect Theory for multiple outcomes. 

In the present work, the methodology of Information Integration 
Theory (IIT) and Functional Measurement (FM) is used to investigate the 
integration of gains and losses in a mixed gamble situation involving two 
non-null outcomes with independent probabilities (p + q < 1). Independent 
probabilities were adopted so as to allow the expression of possible 
differences in the weighting of probabilities associated with gains and with 
losses. Gains, losses, probabilities of gain and probabilities of loss could 
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thus be manipulated as independent informers in the task, and their 
integration studied in independence from arbitrary assumptions on how they 
should combine, or about the shape of their mapping into subjective scales. 
As is typical of FM methodology, subjective metrics of utility and 
probability will be derivable upon condition that a cognitive integration 
model is empirically established for the task. The properties of such metrics 
will be similarly dependent upon the model and not decidable a priori, 
which further signals the fundamentally empirical, inductive nature of the 
approach. 

 
STUDY 1 

 
METHOD 

                  
 Participants. 21 undergraduate students at the University of 
Coimbra (aged 18 to 24) participated in the experiment in exchange for 
course credits, all of whom were naïve regarding the purposes of the 
experiment.  
 
 Stimuli. Stimuli were schematic depictions of a one-roulette spinner 
game. In each trial, a disk was presented, divided along its vertical diameter. 
The left half was assigned to losses (signaled by a minus sign), and the right 
half to gains (plus sign). These two sectors were colored to different extents 
in red and green, respectively, causing the probabilities that a spinning 
arrow determined a loss (PL) or a gain (PG) to vary independently from each 
other, with a complementary probability (1 – PL − PG) of a null event. 
Variable money amounts were associated with the loss and gain sectors, 
corresponding to the two possible non-null outcomes in each trial: value of 
loss (VL) and value of gain (VG). 

This gamble situation is distinct from 2-roulette, duplex games 
(Slovic & Lichtenstein, 1968), which comprise, in addition to the possibility 
of either gaining or losing, the further one of simultaneously gaining and 
losing. It was envisioned to favor direct comparisons between gains and 
losses by approaching a sheer “gain-or-lose” situation, though with 
independent probabilities of gaining and losing. This latter feature separates 
it, on the other hand, from standard 1-roulette gambles with complementary 
probabilities. The way this feature was implemented makes that no sure (P = 
1) non-null outcomes are possible. As a downside, it also makes uncertain 
how the colored areas in the disk map onto the 0-1 range of probabilities 
(“low”, “medium” and “high” probabilities can only have a relative meaning 
in this setting).  
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Figure 1. Illustration of a two (non-null)-outcome mixed prospect with 
independent probabilities of loss and gain, as presented to the 
participants. 
 
 

The following notational conventions will be used throughout the 
paper: PL, PG, VL and VG will stand for Probability of Loss, Probability of 
Gain, Value of Loss and Value of Gain, respectively. P will stand for 
Probability and V for Value. G and L will denote Expected Gain 
(combinations of Probability and Value in the gain domain) and Expected 
Loss (combinations of Probability and Value in the loss domain). Subscript i 
will index the variable levels of these factors. Italicized versions of these 
notations will be used to represent their subjective, psychological 
counterparts.  

 
 Design and procedure. Three colored portions of each sector (0.15, 
0.50, 0.85) were factorially combined with three monetary values of gain 
and loss ( € 25/-25 , 300/-300, 2500/-2500) to produce a 9 (G) × 9 (L) 
overall design, with a 3 (P) x 3 (V) subdesign embedded in each molar 
factor. This layered structure allows for alternatively redescribing it as a 3 
(PG) × 3 (VG) × 3 (PL) × 3 (VL) four-factor design. Participants judged on a 
bipolar graphic scale (left-anchor: “very unsatisfied”; right-anchor: “very 
satisfied”) the satisfaction each game would bring them in case they were 
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forced to play it. Games were never actually played. Careful instructions 
and a block of 10 training trials were provided beforehand. 
 

RESULTS 

 Cognitive algebra. Fig. 2 displays the factorial diagram 
corresponding to the G x L overall design. Visual inspection reveals a 
barrel-shaped trend in the patterns (cigar-like), consistent with a relative 
ratio model of the form:   
                                   

,                                                                       (3) 
 
where � represents the ������	�
���	� ��������� Relative ratio rules can 
actually give rise to more than one kind of graphical patterns. Typical 
barrels occur when three or more equivalent and geometrically spaced levels 
are used in both factors. Linear fans occur when levels in one factor are 
consistently larger (smaller) than levels in the other (Anderson, 1981, p. 77).  
As a first, qualitative check on the model, three ancillary 3 × 3 experiments 
were thus performed with specific levels of G and L selected among those 
of the focal experiment. In agreement with the hypothesized model, barrel 
patterns occurred with matched geometrically spaced levels, and linear fans 
were observed when levels of G (respectively L) were made consistently 
inferior to levels of L (respectively G).  

Statistical analysis buttressed the visual inspection. A repeated 
measures ANOVA performed over the raw data of the G × L design 
disclosed significant main effects of  G, F(8, 160) = 127.7,  p < .001, and L, 
F(8, 160) = 129.3,  p < .001, as well as a significant G × L interaction, 
F(64,1280) = 11.3, p < .001. This interaction rested mainly on highly 
significant linear × quadratic and quadratic × linear components, F(1, 20) = 
69.4 and 47.4 respectively, p < .001, as could be expected from the signaled 
barrel trend in the data.  

The possibility of redescribing the 9 (G) × 9 (L) design as a 3 (PG) × 
3 (VG) × 3 (PL) × 3 (VL) design motivated a second round of graphical and 
statistical analysis, focusing now on the P × V embedded designs. Two-way 
plots of the four stimuli variables are displayed in Figure 3. A multiplicative 
integration of V and P in both the gain and loss domains is suggested by the 
linear fans observed in plots A and B. This was supported in the associated 
ANOVA by significant PG × VG and PL × VL interactions, F(4, 80) = 18.1 
and 18.3 respectively, p < .001, concentrated moreover in their bilinear 
components, F(1, 20) = 32.3 and 42.7 respectively, p < .001. 
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Figure 2. Factorial plot associated with the 9 (G) x 9 (L) overall design.  
Increasing marginal means of G (Expected Gain) are used in the 
abscissa, and L (Expected Loss) is the curve parameter. 
 
 

The slanted barrel patterns in plots C and D are on their turn 
consistent with a relative ratio operation between the probabilities of gain 
and loss (PG and PL). Statistical results concurred with the visual inspection 
by revealing a significant interaction term, F(4, 80) = 14.7, p < .001, resting 
entirely in its linear × quadratic and quadratic × linear components, F(1, 20) 
= 51.8 and 16.6 respectively, p ≤ .001. The same holds for plots E and F, 
concerning the relations between VG and VL. The noticeable barrel-shapes 
indicate a relative ratio operation, well supported by a significant 
interaction, F(4, 80) = 29.4, p < .001, concentrated once again in the linear × 
quadratic and quadratic × linear components, F(1, 20) = 70.1 and 49.8 
respectively, p < .001. 
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Figure 3. Two-way factorial plots for the 3 (PG) × 3 (VG) × 3 (PL) × 3 
(VL) design. Plot A: PG × VG. Plot B: PL × VL. Plot C: PG × PL. Plot D: 
PL × PG. Plot E: VG × VL. Plot F: VL × VG. VG  and VL stand for Value of 
Gain and Value of Loss, respectively, PG  and PL for Probability of Gain 
and Probability of Loss. 

 
 
 

Taking altogether, the complete algebraic structure of the model 
should thus write as:  

 
,                                             (4)  

     
A foremost concern in the IIT/FM framework is the linearity of the 

response scale, without which no sensible interpretation can be made of the 
data patterns (Anderson, 1981; 1982). On this regard, the finding of a 
multiplying model between P and V, replicated in the gain and loss domains 
and well in line with previous findings in the FM literature (e.g., Anderson 
& Shanteau, 1970; Shanteau, 1974; 1975), can be viewed as support for the 
linearity of the response. The inner consistency between the clear-cut barrel 
patterns found in the VG × VL and PG x PL plots and the overall barreled 
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shape of the G x L plots can similarly be argued to support the validity of 
the response scale.  

 
 Functional estimates of subjective expected values of gain and 
loss: Cognitive algebraic models implicitly carry subjective metrics of the 
stimuli, which can be derived by functional measurement (Anderson, 1981; 
1982). These subjective values are the parameters of the empirically 
established model. For additive-type models, as for the multiplying model, 
the marginal means of the rows and columns of the design provide 
legitimate functional metrics (Anderson, 1982). Being nonlinear, however, 
the relative ratio model requires iterative estimation procedures.  

One useful consideration is that the relative ratio rule may be viewed 
as an instance of the averaging model of IIT in applying to two competing 
informers (Anderson, 1981, p. 77; 1996, pp. 59-60). The averaging equation 
then writes as: 

 ,                                                (5) 
 
with wAi and wBi  representing the weight (importance) of informers Ai and 
Bi, and Ai and Bi their scale values. By setting Ai = 1 and Bi = 0 to signal the 
polarization of the response, the strength of the judgment/decision in one or 
the other direction boils down to the relative ratio of their weights 
(Anderson, 1996, p. 59): 
 
  .                                                                     (6) 
 
 This authorizes using the AVERAGE program (Zalinski & 
Anderson, 1987) for simultaneously testing the goodness-of-fit and 
estimating the parameters of the relative ratio model.  Since weights are 
given by AVERAGE on ratio scales with an arbitrary unit (see Anderson, 
1982, Section 2.3.2), the ensuing Gi and Li estimates will share a common 
unit and a common zero, a measurement condition enabling their direct 
comparison. Estimations were accordingly performed with AVERAGE, for 
each participant, using the differential weighting averaging model with scale 
values of loss and gain set to 0 and 1 respectively. Following standard 
practice in IIT, goodness-of-fit was assessed via a repeated-measures 
ANOVA over the residuals left by the model (see the “replications method” 
in Anderson, 1982, Section 4.4). No significant main effects were present, 
while the G × L interaction was still significant, F(64, 1280) = 1.5, p = 
0.025. This was due to high-order components of the interaction term (linear 
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× order 6, cubic × quadratic, order 6 × order 7), taken as expressing the 
sensitivity of the test to small deviations from predictions (Anderson, 1982, 
p. 196) rather than challenging the basic adequacy of the model. 

An additional set of estimations was performed with the Solver 
function of Excel, using minimization of the root-mean-square-deviation as 
a criterion (mean obtained RMSD = .039). As with AVERAGE, data were 
previously normalized to the full range of the response scale.  The obtained 
estimates showed noticeable convergence with those of AVERAGE, which 
were just slightly higher. The Pearson correlation between the two series of 
estimations was 0.99 (p < .001) and, with one exception for the higher value 
of L, no significant differences were found among them. These results on 
the one hand lend credence to the adjusted parameters and on the other hand 
endorse the use of Solver for estimation with the relative ratio model. 

Table 1 presents some of the derived Gi and Li estimates, which can 
be lawfully compared among them. The values in the table agree with the 
notion that “losses loom larger than gains”, and thereby illustrate loss 
aversion at the level of the expected value of matched gains and losses. Loss 
aversion was more formally quantified, following Inequality 1, as the mean 
of the ratios between the functional values of losses (Li) and those of their 
commensurate gains (Gi). Thus computed, a result > 1 signals loss aversion, 
a result < 1 gain seeking (see Abdellaoui et al., 2007), and a result = 1 a 
neutral attitude towards losses and gains. 
 
Table 1. Functional estimates of G (Expected Gains) and L (Expected 
Losses) 
 

 AVERAGE   SOLVER TOOL 

Estimates Gain (G) Loss (L)   Gain (G) Loss (L) 
Lowest 4.9 |-5.9|   4.3 |-4.6| 
Highest 35.8 |-46.8|   34 |-44.6| 

 
 
 
The mean computed value of loss aversion was 1.19 using the 

AVERAGE estimates, and 1.13 using the Solver estimates, which is rather 
close to a neutral attitude. As estimations proceeded on an individual basis, 
an LA index was calculated for each participant. 86% had an index > 1, and 
14% an index < 1. Loss aversion was thus prevalent, even if some of the 
participants actually qualified as gain seeking subjects (the opposite of loss 
averse: see Abdellaoui et al., 2007). 
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 Functional estimates of value and probability. The layered 
structure of the model, which also includes a multiplying operation between 
probabilities and values, makes room for the derivation of additional 
functional estimates, this time for Vi and Pi.  By virtue of the linear-fan 
theorem of IIT (Anderson, 1981, p. 41), the column and row means of a 
multiplying model offer legitimate functional metrics of the stimuli 
variables. One problem in making a straightforward use of this theorem in 
the present situation is that the marginal means of the PG × VG × PL ×VL 
design do not directly provide the sough metrics, since the overall relative 
ratio rule is nonlinear. Yet, the Gi and Li values obtained at the previous 
stage may legitimately be used, in the terms of the model (G = VG  × PG; L = 
VL × PL), for deriving marginal means which are valid functional measures 
of Vi and Pi . 

 

 

Figure 4. Factorial plots of Probability × Value in the gain and loss 
domains, with mean functional satisfaction in the ordinate (i.e., mean Gi 
and Li functional estimates in place of the raw data means). Spacing on 
the abscissa is in functional coordinates. For convenience, functional 
satisfaction for losses is represented in absolute value. Gi and Li in the 
parenthesis stand for the functional value of expected gains and 
expected losses, respectively. 
 
 

Figure 4 illustrates exactly the replotting of PG × VG and PL × VL 
with mean Gi and Li values in place of the raw data on the ordinates. This 
new dependent variable will be designated “mean functional satisfaction”, 
as distinct from “mean rated satisfaction”. Like before, the patterns go on 
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revealing the typical fan-like signature of multiplying models (Anderson, 
1981; 1982). Statistically, a multiplying model implies that the bilinear 
component of the interaction should be significant and leave no significant 
residuals behind. This was verified with the FM routine of the CALSTAT 
program (Weiss, 2006), which disclosed F < 1 for residuals in both cases. 
As entailed by the linear-fan theorem, then, the marginal means of rows and 
columns as computed from the Gi  and Li values provide valid functional 
scales of Vi  and Pi. 

Of note, however, is that functional estimates of Vi and Pi are not at 
the same level of measurement as Gi and Li estimates. The latter form a ratio 
scale, with a common known zero and a common unit across the gain and 
loss domains. The former are on linear, equal-interval scales, without a 
common unit across domains due to the multiplication operation. 
Limitations stemming out of these measurement properties and ways to at 
least partly overcome them will be addressed in Study 2 below. Also of note 
is that measurement at the interval level actually ensures meaningful 
psychophysical curves when plotting Vi and Pi against probabilities and 
monetary outcomes. An overall characterization of those curves as linear or 
nonlinear, or as concave or convex, might thus legitimately be pursued from 
there. Considering however that only a few data points were available for 
that purpose in the present experiment (3 per curve), this was also left to be 
more specifically address in Study 2. 
 

DISCUSSION 
 

Study 1 empirically documented the participants’ use of a compound 
relative ratio rule for the integration of gains and losses in the present task. 
This is a critical step to enable the use of functional measurement, which 
depends on cognitive algebra as its base and frame (Anderson, 1981; 1996), 
for deriving psychological measures of both gains and losses.  

The established model conjoins an overall relative ratio rule, 
operating on expected gains and expected losses, and an embedded 
multiplying rule, operating upon probabilities and values. This latter rule is 
consistent with what has been defended by most descriptive models for the 
combination of value and probability (Edwards, 1955; Kahneman & 
Tversky, 1979) and is also in line with numerous results in the FM literature 
(Anderson & Shanteau, 1970; Shanteau, 1974; Schlottmann & Anderson, 
1994; Schlottmann, 2001). The relative ratio rule is at odds with the adding 
assumption for the combination of multiple outcomes, and it generally 
concurs with frequent reports of additivity violation in the FM literature 
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(e.g., Shanteau, 1974; 1975; Troutman & Shanteau, 1976; Lynch & Cohen, 
1978; Schlottmann, 2000; 2001).  

Based on the compound structure of the model, two sorts of 
estimates could be derived using the methodology of functional 
measurement. One sort concerns the subjective values of expected loss and 
expected gain, which were obtained from the relative ratio rule on a 
common unit scale, with a common known zero, across the loss and gain 
domains. Direct comparisons between them were thus legitimate, which 
allowed computing meaningful indices of loss aversion according to its 
standard definition. Another sort of estimates were derived from the 
embedded multiplying rules and concerned the subjective values of 
probability and monetary outcomes. These latter were on linear scales and 
allowed for meaningful psychophysical curves of value and probability. 
However, lack of a common unit across gains and losses drastically limited 
the possibilities of comparison among them.  

 
STUDY 2 

 
Study 2 includes two replications of Study 1 aimed at exploiting 

further the capabilities for measurement of the established model. A 
shortcoming of Study 1 was the reduced number of monetary outcomes and 
probability values in each domain (gain, loss), which was deemed not 
suitable for the fitting of psychophysical functions. Study 2 had the goal of 
circumventing this limitation and allowing for the characterization of 
psychophysical functions of value and probability, with an additional view 
to their possible comparison across domains. 

 
METHOD 

 
 Participants. 30 naïve undergraduate students at the University of 
Coimbra (aged 18 to 25) participated in the experiments in exchange for 
course credits. 
 
 Stimuli. Identical to those of Study 1, except for the range and 
number of the monetary outcomes and the probability levels employed. 
 
 Design and procedure. Study 2 consisted of two experiments. In 
one of them, the Value Experiment, 5 levels of gain and loss were used (+/- 
15, 150, 500, 2000, and 7000 €), and only 2 levels of probability (0.25 and 
0.85 of the area in each sector).  5 levels of probability (0.05, 0.275, 0.5, 
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0.725, and 0.95) and only 2 levels of gain and loss (+/-150, 2000 €) were 
used conversely in the other, the Probability Experiment. The factorial 
combination of Probability × Value in each domain (gain, loss) thus 
originated an overall 10 (G) x 10 (L) design.  Procedures, including 
instructions and the response required, were as in Study 1. Participants 
performed in both experiments, which were counterbalanced for order.  
 

RESULTS 
 
 Cognitive algebra. The findings in Study 2 closely mimicked those 
in Study 1, offering good support for the compound relative ratio model. 
Similar barrel-shaped patterns were apparent in the G × L plots in both 
experiments, and clear-cut linear fans in the PG × VG and the PL × VL plots. 
Noticeable barrels occurred as well in the VG × VL plot of the Value 
Experiment, and in the PG × PL graph of the Probability Experiment, in 
accordance with the proposed model. 

Statistical analysis (repeated measurements ANOVAs) also 
disclosed the same trends as in Study 1. Alongside with significant main 
effects of G and L (p < .001), significant linear × quadratic and quadratic × 
linear components of the G × L interaction (p < .001) were found in both 
experiments. The same happened in the Value Experiment and in the 
Probability Experiment, respectively, with the VG × VL and the PG × PL 
interactions, both concentrated in the linear × quadratic and quadratic × 
linear components (p < .001). The linear fans observed in the PG × VG and 
PL × VL factorial diagrams were well supported by significant interactions 
concentrated in the bilinear component (p < .001) in both experiments. 

 
 Functional estimates. Study 2 was foremost concerned with 
estimating Pi and Vi parameters from the embedded P × V multiplying 
model, with the goal of assessing typical psychophysical assumptions about 
the value and probability functions. However, as illustrated in Study 1, 
functional estimates of Gi and Li are required for that, which were obtained 
by using Solver to fit the relative ratio model to data and estimate its 
parameters (mean RMSD values were 0.045 in the Value Experiment and 
0.043 in the Probability Experiment).  

Functional measures of monetary value and probability could then be 
derived as in Study 1, which were at the interval level and lacking a 
common unit across the loss and gain domains. This latter feature has the 
signaled consequence of limiting comparisons across domains to the overall 
profile of psychophysical curves. Another limitation of these measures, 
arising from the lack of a known zero, is that parameters of the functions 
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that best fit the data cannot be properly interpreted (e.g., exponents of 
adjusted power functions do not have a precise meaning unless 
measurement has a known zero). Taking measurement up to the ratio level 
would thus seem desirable for further characterization of the value and 
probability functions.  

This very possibility is afforded in principle by the multiplying 
model, which essentially embodies a true zero (Anderson, 1982, pp. 82-83). 
The practical problem, however, is the need to estimate the zero point in the 
response scale, corresponding to the C0 parameter in the full algebraic 
expression of the multiplying model: 

 
 ,                                                                      (7) 
 

where R represents the observable response, sAi and sBi the subjective 
counterparts of stimuli Ai and Bi, and C0 and C1 constants in the linear 
transformation of the psychological multiplication onto R. Once C0 is 
estimated, R − C0 provides a ratio-scale measure of sAi × sBi, and thus the 
basis for measuring sAi and sBi at the ratio level.  

To the end of estimating  C0, we adopted in this study the procedure 
set out in Masin (2004), resting on the use of differences with minimum 
relative error (for details on the procedure and its algebraic derivation see 
Masin, 2004; for an applied illustration in a different domain, see Teixeira 
& Oliveira, 2008). 10 estimates of subjective value/utility (5 for gains, 5 for 
losses) were thus derived from the Value Experiment, after estimation and 
subtraction of C0. Likewise, 10 estimates of subjective probability (5 for 
gains, 5 for losses) were derived from the Probability Experiment. These 
ratio level measures were the ones used for plotting the psychophysical 
functions of value and probability (Figures 5 and 6), as well as in all 
associated analysis.  

As it happens, the best adjusted curvature parameters (e.g., power 
exponents) do now hold a meaning independent of the measurement units 
(absorbed by the scaling constants). This enables comparisons across gains 
and losses, thus partially solving for the lack of a common unit across 
domains. However, that the solution is only partial can be seen in that 
comparisons of height or steepness of the curves remain barred by the 
absence of a shared unit of measurement. 

 
 Psychophysical functions. Figure 5 presents the psychophysical 
plots obtained with mean Vi functional estimates in the ordinate, designated 
as “mean functional monetary value”. Pronounced non-linearity of the 
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curves, concave for gains and convex for losses, is the most salient feature. 
The best fitted functions (in the least-squares sense) to the aggregated data 
were power functions, with similar exponents for gain and for loss (.38 and 
.39 respectively). Analogous trends were found at the individual level. Since 
estimations were performed on a single subject basis, a power exponent 
could also be derived for every participant. Out of 30 subjects, only 1 
approached linearity (0.9 ≤ α < 1) in the gain domain and 2 in the loss 
domain. A paired t-test between the mean exponents for gain and for loss 
(.42 and .43) disclosed a nonsignificant result, t (29) = .22, p = .65. Overall, 
these results seemingly converge with standard assumptions in PT and 
disagree with rival assumptions of linearity of the value function (see Lopes, 
1996; Lopes & Oden, 1999). On the other hand, the exponents found were 
considerably lower than the reference value of .88 suggested by Kahneman 
& Tversky (1992), implying a more pronounced curvature of the value 
functions. 
 

 

Figure 5. Psychophysical functions of Value.  Mean functional estimates 
of monetary value are plotted against monetary outcomes. Dots 
represent empirical data, lines the best least-squares adjusted functions 
(power functions). In the equations, y represents the variable 
“functional monetary value” and x the variable “monetary outcome”. 
 

 
 
Figure 6 shows the psychophysical curves for probability, based on 

mean Pi functional estimates (“mean functional probability”, in the 
ordinate). A convex overall shape is apparent in both domains, which was 
well adjusted by exponential functions with similar exponents. The noticed 
circumstance that probabilities in this experimental setting can only have a 
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relative meaning (due to incertitude in the mapping of colored areas into the 
0-1 range) prevents additional considerations from being made. In 
particular, nothing can be said concerning the psychophysical 
underweighting/overweighting of probabilities, and the found nonlinearity 
cannot be asserted to hold over the entire range of the probability function. 

 

 
 
 
Figure 6. Psychophysical functions of Probability. Mean functional 
estimates of probability are plotted against the extent of colored 
surfaces in the gain and loss sectors of the roulette. Incertitude in how 
these surfaces, physically equally-spaced, map onto the 0-1 range, 
disallows the use of probability values in the abscissa. Dots represent 
empirical data, lines the best least-squares adjusted functions. In the 
equations, y represents the variable “functional probability” and e the 
base of the exponential function. 

 
 
 

 Loss aversion. A measure of LA was computed as in Study 1 (see 
above) for each participant in the Value Experiment. The mean value of loss 
aversion was 1.11, quite below the reference value of 2.25 adopted in PT 
(Kahneman & Tversky, 1992). A rough classification of participants as 
below or above LA = 1, the point of neutral attitude, resulted in the 
predominance of loss averse participants. However, 6 out of 30 participants 
(20%) still qualified as gain seeking subjects. 
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DISCUSSION 

 
Study 2 was aimed at exploring the measurement capabilities of the 

compound relative ratio model, with a view to checking commonly made 
assumptions regarding the psychophysics of value and probability. One 
concern was with enlarging the number of functional estimates of value and 
probability, which was achieved by tailoring two separate experiments to 
include a larger range and number of monetary outcomes in one case, and a 
larger range and number of probability levels in the other. Both experiments 
supported the relative ratio model established in Study 1, which was thus 
successfully replicated under these changed conditions, and with a new 
sample of participants. Another concern was with stepping up the level of 
the functional measures of monetary value and probability.  This was 
achieved by estimating and subtracting the C0 parameter of the 
multiplicative model from the previous estimates, which endowed them 
with ratio properties. Taken as a function of monetary outcomes and 
probabilities, these ratio level measures could then be fitted by functions 
with interpretable curvature parameters, comparable moreover across gains 
and losses. 

The ensuing characterization of the psychophysical functions may be 
summarized as follows. Characteristic nonlinearity is apparent in the value 
curves for both gains and losses, best adjusted in both domains by power 
functions with similar exponents. Nonlinearity is also featured in the 
probability curves, best adjusted in both domains by exponential functions 
with close exponents. Differently from curvature, height or steepness of 
curves could not be compared across domains (gain, loss) due to lack of a 
common unit 

 
GENERAL DISCUSSION 

 
The foregoing studies illustrate the usefulness of the FM approach 

for simultaneously measuring the psychological value of gains and losses 
under risk. The first required step in this approach is to empirically 
document the existence of a cognitive model deployed by subjects in 
integrating the several information dimensions included in the task. This 
was done mostly in Study 1, which established an overall relative ratio 
model for the integration of subjective expected gains and losses, 
encompassing in addition a multiplicative operation between subjective 
value and subjective probability. The two experiments in Study 2 added 
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strength to this result, by fully replicating the graphical and statistical 
findings in Study 1. 

Only then can functional measurement be used to derive the 
subjective metrics of the stimuli implicit in the algebraic model (Anderson, 
1981; 1982).  Functional measurement of expected gains and losses (i.e., of 
utility weighted by probability) was pursued in both studies. It rested on the 
overall relative ratio rule and provided functional scales with a common 
known zero and a common unit across gains and losses.  Functional 
measurement of monetary value and probability was also addressed in both 
studies, but was more fully developed in Study 2. It rested on the embedded 
multiplying rule, and it provided functional scales with ratio properties (in 
Study 2), though lacking a common unit across gains and losses. 

One key comparative advantage of the FM approach is that it 
dispenses with arbitrary assumptions invoked in alternative approaches. 
Empirically establishing an integration model evades the need for 
conjectured composition rules, like the one that weighted utilities should be 
added. Also, as functional metrics rely upon the validity of the integration 
model, nothing has to be assumed regarding the form of the utility or the 
probability weighting functions (unlike customary practice: see Abdellaoui 
et al., 2007; Abdellaoui et al., 2008). To be sure, FM can be met with limits. 
The lack of a common unit across gains and losses in the derived scales of 
value and probability can be taken as an example of that. However, as 
before, such limits are also not set by assumption and once for all. Rather, 
they are empirically settled in the process of exploring the measurement 
capabilities of the model, with a link to the substantive problems at hand 
(i.e., to their measurement conditions). 

 Another advantage of the approach is affording insights on how the 
task is construed by participants. This is a direct benefit of the emphasis on 
the integration model, not accessible to measurement frameworks whose 
foundations lie outside the psychological realm (see Anderson, 1981, chap. 
5, and Anderson, 2001, pp. 716-721). The two algebraic rules subsumed 
under the found model thus have intrinsic interest as psychological 
structures, not just as a basis for measurement. The multiplying rule, which 
operates upon subjective probability and subjective value, illustrates a 
general expectancy × value model often documented in FM studies (see 
Anderson, 1991, pp. 108-109). The broad psychological significance of this 
model has been shown among others in developmental studies (Schlottmann 
& Anderson, 1994; Schlottmann, 2001), and in studies of the everyday 
usage of probability (Anderson & Schlottmann, 1991).  

The relative ratio rule, which operates on subjective expected values, 
suggests on its turn that subjects conceive of the task as a competition 
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between two opposite tendencies, expressing trough their judgments the 
compromise found between them (for a decision rule of this same form, 
applying to dichotomous competing responses, see Anderson, 1981, p. 77, 
and Anderson, 1996, p. 59). The degree to which this construal of the 
combination of expected gains and losses by participants depends on 
peculiarities of the task cannot be assessed at present. However, that it may 
have generality beyond the devised setting is supported by evidence that 
even strictly positive gambles with two outcomes might be viewed as 
entailing a compromise between competing tendencies (Schlottmann, 2001).  

One worth noting result of the approach is the level at which 
expected values could be measured, on a ratio scale with common unit and 
common zero across losses and gains. This measurement level allows 
computing legitimate indices of loss aversion, except that these indices 
would now concern expected values, instead of proper gain and loss values 
in isolation from probabilities. Notwithstanding this departure from the 
standard definition (see Kahneman & Tversky, 1979; Tversky & Kahneman, 
1991; Tversky & Kahneman, 1992), such indices would actually be 
consistent with alternative views of loss aversion, as the one propounded in 
Brooks & Zank (2005): «a potential loss is perceived more harmful than an 
equally likely gain of the same magnitude is perceived to give pleasure» (p. 
303).  To views of this latter sort, which underline the behavioral relevance 
of expected value in everyday life and do not require disentangling utility 
and probability, the relative ratio model does provide for a meaningful 
quantification of loss aversion.  

The mean values of loss aversion obtained from the model in both 
studies were considerably below the reference values of 2.25 indicated in 
Kahneman & Tversky (1992). More importantly still, they disclosed a 
significant role of individual differences. While loss-averse subjects 
predominated (loss aversion > 1), a non negligible percentage of participants 
(14% and 20% in Studies 1 and 2, respectively) classified as gain seeking 
subjects (loss aversion < 1; see Abdellaoui et al., 2007). This latter finding 
is hardly compatible with modeling loss aversion as a structural component 
of the value function, and more in keeping with a dispositional or 
motivational account of it. 

One additional result obtained with the FM approach concerns the 
characterization of psychophysical curves of value and probability. The 
measurement level achieved for subjective value and probability was 
enough in both studies for that, even if in Study 2 it was taken further to the 
ratio level, which allowed fitting meaningful curvature parameters to data. 
Both at the aggregate and the individual levels, all curves displayed marked 
nonlinearity, best fitted by power functions in the case of value, and 
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exponential functions in the case of probability. This is in overall agreement 
with standard assumptions concerning, in particular, the value function 
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), and diverges 
from a view of probability weighting as the major, if not exclusive, locus of 
nonlinearity in decision under risk (Lopes & Oden, 1999). 

It should be noted that psychophysical regularities, in this approach, 
are subordinate and derived from the psychological rules embodied in the 
integration model. They are not endowed with the status of general 
psychophysical laws. In particular, the finding that the value data were best 
adjusted by power functions entails no more than the flexibility of the power 
function as a fitting tool (see Anderson, 1981, pp. 341-342). However, the 
kind of nonlinearity observed in the curves can be thereby characterized, 
and the adjusted curvature parameters (power exponents) compared across 
the two domains of gain and loss. Close exponents were found for value in 
both domains, in the range of 0.3 to 0.4, expressing a similar rate of 
diminishing returns for gains and for losses. 

In conclusion, it seems fair to say that the compound relative ratio 
model opens way for addressing key issues in the simultaneous 
measurement of subjective gains and losses under risk. There is no 
fundamental reason to believe that other integration models cannot be found 
by varying the nature of the task, which might prove equally profitable for 
the quantification of gains and losses under complex models of decision. 
Nor do the problems addressed in this paper (e.g., loss aversion and the 
psychophysics of value) exhaust the possibilities afforded by the current 
model. The work here reported may thus be more generally envisaged as 
one further illustration of the lasting potential of Functional Measurement to 
beneficially contribute to the fields of judgment and decision making. 
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