
Have your students ever wondered what mathematics is, and exactly what
it is that a mathematician does? In this paper different schools of

thought are discussed and compared to encourage lively classroom discussion
and interest in mathematics for high achieving Form 12 students and first (or
higher) year university students enrolled in a mathematics degree program.
(The topic also fits well under the rationale for Queensland Senior
Mathematics B Syllabus, Queensland Studies Authority, 2008.) In particular
the work and views of two mathematicians, Kurt Gödel (1931) and Ian Stewart
(1996), mathematician and professor Reuben Hersh (1998) and university
lecturer, researcher and writer Robyn Arianrhod (2003) are used to illustrate
different views of mathematics. Two documentaries are suggested for viewing
by students: Dangerous Knowledge, relating the work and place of Gödel in the
history and foundations of mathematics (Malone & Tanner, 2008), and How
Kevin Bacon Cured Cancer (Jacques, 2008) which illustrates how mathematicians
and scientists work together developing and applying mathematics. 

The philosophy of mathematics

Does the mathematician ‘create’ an elegant theorem, or does he or she
‘discover’ it? Is mathematics ‘mind independent’ or ‘mind dependent’?
(VCAA, 2008). Mathematical investigations have always been connected with
a critical analysis of their foundations, according to the accepted knowledge
of the time. The situation at the beginning of the twentieth century was as
follows, there were three main schools of thought: the logistic or realist, the
formalist, and the intuitionist, see Table 1.

Of course the summary in Table 1 is a simplification, even mathematicians
and philosophers may alter their views and may indeed belong to more than
one camp throughout their lives, but it is useful to describe the situation at
the beginning of the twentieth century. As for Gödel, Stewart and Hersh it
seems reasonable to refer to the opinion of the people who actually do math-
ematics—mathematicians—what, in their opinion, mathematics is.
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At the beginning of the twentieth century, the mathematician David
Hilbert challenged mathematicians to prove that the axioms (or assump-
tions) of arithmetic are consistent—that a finite number of logical steps based
on them cannot lead to contradictory results. A decade later the Principia
Mathematica was published (Russell & Whitehead, 1910–1913) in which the
authors attempted to prove that all mathematics is based on logic, that all
pure mathematics can be derived from a small number of fundamental
logical principles. But they failed to prove the consistency of arithmetic. 

Kurt Gödel: Realist/Platonist

Kurt Gödel responded to Hilbert’s challenge. However, his incompleteness
theorems show that there are an endless number of true arithmetical state-
ments which cannot be formally deduced from any given set of axioms by a
fixed, or predetermined, set of rules of inference (Nagel & Newman, 2001).
He showed that any proof that a ‘formal system’ is free from contradictions
necessitates methods beyond those provided by the system itself. A formal
system S, with a formal language L, is an idealised model of mathematical reason-
ing. It is described as complete if each sentence A of L either A, or its negation
–A, is provable. It is said to be incomplete, if for some sentence A, both A and
not –A are unprovable. It is described as consistent if there is no sentence A,
such that both A and –A are provable in S. For more detail, see Padula (2011).
He demonstrated that mathematical statements can be ‘undecidable’, that is,
undemonstrable or unprovable within the system.

In essence, he combined an ingenious numbering system, or code, which
mapped or mirrored number-theoretical statements onto their meta-mathe-
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Logistic/realist Formalist Intuitionist

Abstract entities
(e.g., numbers)

Numbers etc. exist
in and of them-
selves.

Numbers etc. and
their manipula-
tions are ‘games
with marks on
paper’ with no real
interpretation.

Numbers etc. are
‘creatures of the
mind’.

Mind… independent dependent

Definition Mathematics is not
created, mathe-
maticians discover
and describe it.
Number laws can
be reduced to
logic alone.

Mathematics is
simply a formalised
manipulation of
symbols according
to carefully
prescribed rules.

Mathematics is
autonomous and
self sufficient with
no need of support
by extended logic
or rigorous formal-
isation.

Statements Statements must
be true or false
(law of excluded
middle).

Statements are
neither true nor
false.

Statements can be
true, false or
neither.

Table 1. Traditional schools of thought in the philosophy of mathematics 
at the beginning of the twentieth century.



matical translations. Meta-mathematics is an aspect of mathematical logic; it
is not concerned with the symbolism and operations of arithmetic primarily,
but with the interpretation of these signs and rules (Boyer, 1968). It is the
study of mathematics itself by mathematical methods. The formula x = x
belongs to mathematics because it is built up entirely of mathematical signs,
but the statement, “‘x’ is a variable,” belongs to meta-mathematics because it
characterises a certain mathematical sign, ‘x’, as belonging to a specific class
of signs, the class of variables (Nagel & Newman, 2001).

Gödel realised that a statement of number theory could be about a state-
ment of number theory (possibly even itself), if only numbers could stand for
statements. His code numbers are made to stand for symbols and sequences
of symbols. Each statement of number theory, a sequence of symbols, acquires
a Gödel number by which it can be referred to and in this way statements of
number theory can be understood on two different levels: as statements of
number theory, and also as meta-mathematical statements about number
theory (Hofstadter, 1999). 

Up to a point, Gödel uses an ancient paradox from philosophy called the
Liar’s paradox: This statement is false analogically, to argue that a statement from
number theory can be true but not provable within the system, so that Principia
Mathematica (PM) and related formal systems are ‘incomplete’ (i.e., it is just
not possible to deduce all arithmetical truths from the axioms and rules of
these systems). He introduces a lemma or argument which says: “This state-
ment is unprovable,” (or, more precisely: “not demonstrable using the rules of
PM”, Nagel & Newman, 2001), but which he then shows to be true in a formal
arithmetic (Peano Arithmetic, laid down by Giuseppe Peano in the 1890s).
But, if it is true it must be false and if it is false it must be true and we have a
contradiction—since it cannot be both provable and unprovable. Therefore
PM and related formal systems are inconsistent—not free of contradiction.

Gödel’s paper showed that the axiomatic method had certain inherent
limitations and he proved that it is impossible to establish the internal logical
consistency of a very large class of deductive systems, number theory (formal
arithmetic) being one, unless you adopt principles of reasoning so complex
that their internal consistency is as open to doubt as that of the systems them-
selves. On the other hand his paper introduced into the study of the
foundations (of mathematics) a new technique of analysis. This technique
suggested new problems for logical and mathematical investigation and it
provoked an investigation, still happening, of widely held philosophies of
mathematics, and of philosophies of knowledge in general (Nagel &
Newman, 2001). Gödel also showed the “in principle inexhaustibility” of pure
mathematics, in the sense of the never ending need for new axioms or postu-
lates (Feferman, 2006a).

Gödel’s philosophy

Gödel was a mathematical Platonist. He believed that mathematics is discov-
ered, not created. In other words he believed that mathematical concepts had
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an independent existence. It is well to note here that Gödel actually attrib-
uted his success not so much to mathematical invention as to attention to
philosophical distinctions (Hersh, 1998). 

Gödel himself wrote, describing classes and concepts, fundamental aspects
of set theory:

Classes and concepts may … be conceived as real objects … existing inde-

pendently of our definitions and constructions. It seems to me that the

assumption of such objects is quite as legitimate as the assumption of physical

bodies and there is quite as much reason to believe in their existence. (Gödel,

1944, p. 137) 

Again, when he talks about set theory, Gödel states:

Despite their remoteness from sense experience, we do have something like a

perception also of the objects of set theory, as is seen from the fact that the

axioms force themselves upon us as being true. I don’t see any reason why we

should have less confidence in this kind of perception, i.e., in mathematical

intuition, than in sense perception. … This, too, may represent an aspect of

objective reality. (Hersh, 1998, p. 10)

Furthermore, when Gödel explained his achievements for an article by
Hao Wang, he pointed out: “How indeed could one think of expressing meta-
mathematics in the mathematical systems themselves, if the latter are
considered to consist of meaningless symbols which acquire some substitute
of meaning only through meta-mathematics” (Feferman, 1988, p. 107). 

Gödel was not alone in his views; according to Goldstein (2005) mathe-
matician after mathematician has testified, like G. H. Hardy (1940) and Paul
Erdös (Barabási, 2002), to their Platonist conviction that they are discovering,
rather than creating, mathematical truths. Hofstadter (1999) claims that
many famous mathematicians are basically Platonist—even formalists: 

The formalist philosophy claims that mathematicians only deal with abstract

symbols, and that they couldn’t care less whether these symbols have any appli-

cations to or connections with reality. But that is quite a distorted picture.

Nowhere is this clearer than in metamathematics. If the theory of numbers is

itself used as an aid in gaining factual knowledge about formal systems, then

mathematicians are tacitly showing that they believe these ethereal things

called “natural numbers” are actually part of reality – not just figments of the

imagination. (Hofstadter, 1999, p. 458).

Hersh (1998) holds a similar opinion. He states that Platonism was and is
believed by nearly all mathematicians; like an underground religion it is:
“observed in private, rarely mentioned in public” (p. 162).
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Philosphical consequences

Feferman (2006b), a scholar, academic and Gödel’s editor (Gödel,
1931/1986), does not think that the incompleteness theorems support math-
ematical Platonism. However, he concedes that Gödel himself did support
Platonism from his university-undergraduate days (Feferman, 1988),
although he did not become firm in his philosophical views until 1940
(Feferman, 2006a).

Feferman (2006a) believes the incompleteness theorems do not have
direct philosophical consequences but that they raise questions of great philo-
sophical interest. These questions are:

If mathematics is to be founded on systems of axioms, on what basis are these

systems to be chosen? (Whatever system is chosen, one will need further

axioms to arrive at previously unprovable truths.) 

Which axioms and why? (Various answers have been proposed but none has

gained universal acceptance.) 

If mathematics is about a non-physical Platonic reality, how can mathemati-

cians gain knowledge of it? (Feferman, p. 9)

G. H. Hardy (1940) would perhaps have some suggestions here regarding
“taking notes of our observations”. Perhaps by looking for patterns and rela-
tionships in the world and nature and writing down these observations in a
shorthand way, with mathematical notation?

However, “if it is a human creation, as formalists assert, what ‘confers on it
its exceptional certainty, which distinguishes it from most other areas of
human thought’? … From both (realist and formalist) points of view, how
come mathematics is so useful in describing the physical world?” (Feferman,
2006a, p. 9).

These are all valid and fascinating questions (even though Gödel and
Feferman, 2006a, agree that 99.9 percent of mathematics follows from a small settled
part of the axiomatic theory of sets). Let us try and answer the last one, possibly
the last two, and maybe some of the previous ones in the process.

A modern mathematician’s view—Ian Stewart

Professor Hilton (1991) states that: 

the great areas of mathematics: algebra, real analysis, complex analysis,

number theory, combinatorics, probability theory, statistics, topology, geome-

try, and so on—have undoubtedly arisen from our experience of the world

around us, in order to systematize that experience, to give it order and coher-

ence, and thereby to enable us to predict and perhaps control future events.

However, … progress is often made with no reference to the real world, but in

response to what might be called the mathematician’s apprehension of the

natural dynamic of mathematics itself. (Hilton, 1991, p. xxi)
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According to mathematician and author Ian Stewart (1996), mathemati-
cians neither discover nor invent mathematics (it is a bit of both and neither
word is adequate), but what they do is complex, context dependent, and a
mixture of invention and discovery. The world of mathematical ideas is a
collection of more or less identical individual sub-consciousnesses, made
similar by their common social context, and mathematics is distributed
throughout the minds of the world’s mathematicians, each with his or her
own mathematics inside his or her head. (This is not the same as the rather
vague idea of a ‘world soul’, Stewart adds.)

As a mathematician himself Stewart (1996) writes that it feels like discov-
ery when you are carrying out mathematical research in a previously defined
area because there is no choice about what the answer is; but when you are
trying to formalise an elusive idea or find a new method, it feels more like
invention. Once you have made a few assumptions or axioms, then everything
that follows is predetermined by those axioms; but, Stewart continues, this
summing up excludes the most crucial features: significance, simplicity,
elegance, and how compelling the argument is.

Also, Stewart continues, mathematics is so powerful because it is an
abstraction, an abstraction that came out of reality (2 + 2 = 4, whether it is
sheep, cows, wolves, warts or witches). Since the abstraction came out of
reality, it is no surprise it applies to reality. 

However, Stewart continues, mathematics has an internal structure of
logical deduction that allows it to grow in unexpected ways. New ideas can be
generated internally too. 

Mathematics, claims Stewart, is the art of drawing necessary conclusions,
independently of interpretations: two plus two just has to be four! (Unless you
are counting clouds or something equally amorphous. As Hofstadter (1999,
p. 457) relates, you have to match the kind of mathematics to the patterns you
are trying to find: “Mathematics only tells you answers to questions in the real
world after you have taken the one vital step of choosing which kind of math-
ematics to apply.”) 

Our minds search for pattern because human minds evolved in the real
world and they learnt to detect patterns in order to survive (Stewart, 1996). If none
of the patterns detected by these minds bore any relation to the world they
would not have helped their owners survive and so would have died out. He
is sure that there are definitely some mathematical things in the Universe, the
most obvious being the mind of the mathematician. 

A physicist’s view: Wigner

However, Eugene Wigner, physicist, in his 1960 paper is surprised that math-
ematics is applicable to reality. He claims that mathematics is the science of
skilful operations with concepts and rules invented just for this purpose with
the principal emphasis on the invention of concepts. Mathematics would soon
run out of interesting theorems if these had to be formulated in terms of the
concepts which already appear in the axioms. Further, whereas the concepts
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of elementary mathematics, particularly elementary geometry, were formu-
lated to describe entities suggested by the actual world, the same does not
seem to be true of the more advanced concepts, in particular the concepts
which play an important role in physics. He argues that: “The miracle of the
appropriateness of the language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither understand nor deserve”
(Wigner, 1960, p. 11).

Mathematics as language: Arianrhod

Arianrhod (2003) agrees that mathematics is language. She states that the
uncanny predictive power of physical theories like James Clerk Maxwell’s on
electromagnetism lies in the difference between mathematics and ordinary
language. The differences being of: precision in its measurement of quantity;
its form: the symbolism that enables you to see at a glance, patterns and
generalities, similarities and differences; the economy of thought arising from
that symbolism; and its linguistic structure which seems to reflect hidden, often
unimaginable physical structures. She gives the example of Einstein’s theory
of relativity: the language, in the form of the equation E = mc 2 came first; only
later did experimental physicists discover that it described something real.

The humanist view: Hersh

Hersh (1998), mathematics professor and humanist, argues that mathematics
is a social-historical-cultural phenomenon without need of Platonism or
formalism or intuitionism, and that mathematical ‘objects’ are also processes—
they change. The rules of mathematics, like those of language, are historically
determined by the workings of society that evolve from the inner workings
and interactions of social groups, the physical and biological environment of
earth, and simultaneously by the biological properties, especially the nervous
systems, of individual humans. Those biological properties and nervous
systems have permitted us to survive on earth, so of course they somehow
reflect the physical and biological properties of this planet.

In illustration of how these processes, and consequently our view of math-
ematical objects change, Hersh describes how our perception of 2 has altered
over the centuries. For Pythagoras, God was 1, 2 was the ‘female principle’.
Today 2 is no longer only a counting or natural number it is: an integer, a
rational number, an element in a dense ordered set and a point in the
complex plane. 

Hersh reports that some mathematicians say that if history started all over,
mathematics would evolve in much the same way, in much the same order.
The opportunities and questions arise from what we know, and decide what
advances are made. 
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Working together with scientists, physicists

An interesting case in point is James Clerk Maxwell’s mathematical expression
of Michael Faraday’s electro-magnetic fields. Michael Faraday thought nature
contained more complex patterns than the ‘Newtonian’ forces (of gravity)
and fortunately for the theory of electromagnetism, so did mathematics. As
Maxwell showed, a relatively new branch of calculus, and some new mathe-
matical objects called ‘vectors’, turned out to be perfect for describing
Faraday’s field idea, and for summarising the new science of electromagnet-
ism. But even this complex new language had been derived from the simple
patterns of arithmetic, in a historical and intellectual process (Arianrhod,
2003; see also the Appendix). 

However, sometimes mathematicians develop mathematics at the same
time without working with scientists or other mathematicians.

Synchronicity

Hersh (1998) recalls that Igor Shafarevich, an algebraic geometer, said that
mathematicians do not make mathematics, they are instruments for mathematics
to make itself. Although this theory sounds strange it is supported, Hersh
remarks, by many examples of repeated or simultaneous discovery.

Certainly, it is possible that two mathematicians could arrive at the same
solution to a mathematical problem at (approximately) the same time in
different countries without communicating with each other—in the same way
that scientists working in different places can make a scientific breakthrough,
or create new technologies (such as the telephone) simultaneously. The
mathematician Gottfried Leibniz devised the calculus independently and
around the same time as Sir Isaac Newton (Hawking, 2005). In a similar way
logarithms were devised by John Napier, a Scotsman, in 1614, and by Joost
Burgi, a Swiss, in 1620. Napier’s approach was algebraic and Burgi’s, geomet-
ric (Marcus, 2008; Pont, 2007). Hersh (1998) gives many more examples of
mathematical synchronicity.

Conclusion

Today some mathematicians still call themselves formalists or constructivists
(constructivists only accept mathematics that is obtained from the natural
numbers by a finite construction). In philosophical circles one hears more
often of Platonists versus fictionalists. Fictionalists reject Platonism: they can
be formalists, constructivists, or something else (Hersh, 1998). 

These days mathematical philosophers are not easy to classify. They study
questions and results from different, partially contradictory standpoints as
they try not to overstep the perimeters of widely accepted knowledge. The
study of the foundations of mathematics has however contributed in a practi-
cal way with, for example, the theory of algorithms which has led to computer
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languages such as ALGOL and FORTRAN (and many others), and the theory
of formal systems and computation. 

As Davis and Hersh (1981) ask, perhaps we need to rethink our aims for
mathematical philosophy. 

Do we really have to choose between a formalism that is falsified by our every-

day experience, and a Platonism that postulates a mythical fairyland where the

uncountable and the inaccessible lie waiting to be observed by the mathemati-

cian whom God blessed with a good enough intuition? It is reasonable to

propose a different task for mathematical philosophy, not to seek indubitable

truth, but to give an account of mathematical knowledge as it really is—fallible,

corrigible, tentative, and evolving, as is every other kind of human knowledge.

Instead of continuing to look in vain for foundations, or feeling disoriented

and illegitimate for lack of foundations, we have tried to look at what mathe-

matics really is, and account for it as a part of human knowledge in general.

We have … to reflect honestly on what we do when we use, teach, invent, or

discover mathematics. (Davis & Hersh, 1981, p. 406)

Davis and Hersh’s comment has implications for teaching mathematical
philosophy.

Implications for teaching

Firstly, teachers reflecting on what they do when they teach mathematics need
to realise that how they themselves define mathematics is important. Do they
have a view of mathematics that is sufficiently broad, of a mathematics that is
evolving, and a firm conviction that mathematics, including mathematical
philosophy, is inherently interesting? 

Secondly, upon reflection, teachers will realise that mathematics education
begins and proceeds in language (with the learning of basic concepts by pre-
school-age children (Padula & Stacey, 1990) and the mathematics children
learn in primary school); it advances or stumbles because of language, and its
outcomes are often assessed in language (Durkin & Shire, 1991)—and, it is
language, a highly abstract, symbolic, economical and ubiquitous language
(Patel, 2008). That part of philosophy adapted by Gödel in the incomplete-
ness theorems is expressed in a linguistic device, a paradox. Moreover, as
Arianhrod (2003) remarks, we define ourselves as a species mainly by our
ability both to create abstract languages and to appreciate patterns, so mathemat-
ics is the quintessential expression of a defining aspect of what it means to be human.

Thirdly, along with the knowledge that mathematics is language, teachers
need to (if they do not already) realise the importance of communication
skills in mathematics teaching and learning. Not only must the teacher be
able to communicate and illuminate the topic, but also students themselves
must learn to communicate what they know—and not just at examination
time. As Sillence (2008) comments: the mathematics graduate, still excited by
the power, beauty and utility of mathematics, no matter how brilliantly they
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have solved the problem in industry, must be able to communicate both the
relationship between the mathematically-posed problem and the industrially-
posed parent problem and how the solution materially affects the price of the
resultant product or process. Students will surely be willing to try to improve
their ability to communicate mathematical ideas when they realise this.
Discussing mathematical philosophy is a good way to learn how to communi-
cate mathematical ideas.

As for teaching mathematical philosophy to upper-high-school students,
Sriraman (2003, 2004) found that even 13–14 year old students could discuss
mathematical philosophy at an elementary level. (They were evenly divided
between the Platonist, or realist camp—mathematics is discovered, mind
independent—and the Formalist view—mathematics is invented, mind
dependent.) Some of our more thoughtful students wonder about these ques-
tions; it is up to teachers to kick-start the discussion and make them want to
engage more passionately in the study of both pure and applied mathematics. 

The two documentaries previously mentioned are an excellent way to start
the journey. The first (Malone & Tanner, 2008) will help them to understand
Gödel’s place in the study of the foundations of mathematics and the history
of human thought, and the second (Barabási, 2002; Jacques, 2008; also see
Appendix) will assist them to gain an understanding of the way mathemati-
cians and scientists, working collaboratively and learning from each other’s
data and published papers, formulated an important part of modern-day
mathematics. A viewing of these documentaries at the beginning (or end) of
a course will illustrate the development of mathematical theory and practice
and hopefully inspire many mathematicians (and badly needed teachers of
mathematics) of the future. 

Appendix

In further illustration of Hersh’s (1998) view that mathematics evolves histor-
ically, that the opportunities and questions arise from what we know and
decide what advances are made, consider the development of graph theory,
the shared knowledge supporting networks science.

Graph theory, the science of networks

In 1736 Leonhard Euler considered the problem of the Bridges of
Konigsberg. Was it possible to cross all seven bridges over the Pregel River
only once between four land areas? With four nodes (areas of land) and seven
links (bridges) he proved it was not. This was the beginning of graph theory.

Then in 1960 Paul Erdös and Alfréd Rényi concluded that random
networks showed the probability (P) that a vertex (point or node) has k links
(edges) and follows a Poisson distribution (the probability of a number of
events occurring in a fixed period of time), thus: 

P k
e

k

k

( )
!

=
− λλ
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where

(Barabási, Albert, & Yeong, 1999)
Erdös and Rényi’s paper was followed by the work of Steven Strogatz and

Australian Duncan Watts (Strogatz & Watts, 1998) who studied the
synchronicity of the sound made by snowy tree crickets, followed by a study of
the network of Hollywood movie stars. They were inspired by the idea of ‘six
degrees of separation’: if a person is one step away from each person they
know and two steps away from each person who is known by one of the people
they know, then everyone is an average of six ‘steps’ away from each person
on earth (Guare, 1990). They devised a ‘small-world’ model where N vertices
form a one-dimensional lattice, each vertex being connected to its nearest
and next-nearest neighbours. With probability p each vertex is reconnected to
a vertex chosen randomly (Strogatz & Watts, 1998). 

Meanwhile, Hungarian physicist Albert-Laszlo Barabási was studying the
World Wide Web and he and graduate student Réka Albert discovered ‘hubs’
—nodes that had more connections than others—after reading Strogatz and
Watts’ (1998) paper and borrowing their data on the Hollywood network.
These hubs, formed through growth and preferential attachment were governed
by a power law, not the well-known bell curve of distribution. (In a random
network the peak of the distribution implies that the majority of the nodes
have the same number of links, and nodes deviating from the average are
extremely rare. In a power-law distribution we see a continuous hierarchy of
nodes, spanning from the rare hubs to the numerous tiny nodes.) Barabási
devised an equation P(k) ~ k–γ where P(k) stands for the probability that a
node in the network is connected to k other nodes and where the parameter
γ is the degree exponent of the resulting graph (Barabási & Albert, 1999).

Applications were found by Alessandro Vespignani, an expert on diffusion,
and geneticist, Mark Vidal, who was studying cancer. Vespignani realised that
highly sexually active people were hubs in the small world of sexual relations,
with important implications for the spread of diseases such as HIV/AIDS.
Vidal devised a map, or network, of diseases and genes, an important advance
in the research into treatment of diseases such as breast cancer and individu-
alised health treatment (Jacques, 2008).

Networks science has implications for understanding networks in econom-
ics (highly relevant today, in light of the recent economic downturn), health
research, epidemiology, sociology, military strategy and saving endangered
species. The story of how Andrew Wiles solved Fermat’s last theorem (Singh,
2005) by building on the work of other mathematicians is yet another
example of mathematics growing and evolving historically.
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