
By Bill Heldman

EC MEETCCCS
Where’s the in

?

U.S. high schools must create robust

computer science programs if they

want students to be competitive in

a global economy that is increasingly

driven by technology. Here are a few

tips to get them started.

16 Learning & Leading with Technology | August 2010

Copyright © 2010, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

With few exceptions, students
interact with technology in
one way or another every

day. And yet, in most U.S. schools, the
term computer science (CS) refers only
to generic skills classes, such as key-
boarding and computer applications.
Even most Web programming classes
usually teach students only how to use
conventional graphical user interface
(GUI) tools instead of HTML and
CSS, perhaps because they are often
led by teachers with no background
in CS. Even worse, many U.S. high
schools have dropped CS programs
altogether.

The end result of this lack of focus
on CS is that most U.S. students grad-
uate into an increasingly tech-driven
world with little knowledge of how it
all works or any chance of contribut-
ing to the field. In fact, only 1–2% of
students who apply for U.S. colleges
major in CS.

Until schools bring CS out of math’s
backroom and give it a place of promi-
nence as a STEM discipline (changing
the acronym to SCTEM, using the same
pronunciation, but with a much dif-
ferent meaning), the United States will
produce fewer CS majors, and CS work
will continue to be outsourced to those
countries that do have the C correctly
placed.

Create a Strong CS Program
I’m a former IT worker with a long
background in the industry. Five
years ago, I turned to teaching 11th
and 12th grade computer science and
game programming. The combina-
tion of my private and public sector
IT experience, coupled with teaching
high school, has given me the insight
to recognize the roots of the issue and
how it can be fixed with enough par-
ticipation and effort.

A big part of the problem is that
few educators really understand what
computer science is. Administrators
may be able to identify the tip of the
CS iceberg, but they are ignoring
the burgeoning mass beneath. It
will take some detailed, hard work
for school stakeholders to define the
subject within the context of the over-
all curriculum.

To begin with, CS isn’t treated as an
academic standard, but it should be. CS
needs to take its place alongside Eng-
lish language arts, science, and math as
a fundamental academic necessity and
be addressed as such in state standards,
academic content, curricula, and edu-
cator licensing requirements. Teaching
CS actually fosters better knowledge of
other academic subjects, because when
it is taught properly, it drives students
to want to know more about math,
science, and reading so they can learn
more about CS. The subjects feed off of
one another.

Once administrators have a clear
understanding of the complete con-
text of CS within the curriculum, the
next hurdles are creating a standalone
CS program, bringing it up to today’s
technological standards, and sup-
porting it with a continuous improve-
ment process. Because of the pace of
technological change, schools must
revise CS curriculum on an annual or
even semi-annual basis. Administra-
tors must be visionary leaders or have
visionaries on staff who recognize
and understand those changes so they
can create new curricula that parallels
current technologies and anticipates
emerging technologies.

Why go through all this trouble?
Because CS is an important career
choice in U.S. society. According to
a 2009 news release from the Bureau
of Labor Statistics, 5 of the 30 fastest
growing jobs in the United States are
CS jobs, and they all require bachelor’s
degrees or higher. Many other sur-
veys as well as recent breakthroughs
in graphical and holographic arenas
point to an even broader increase in
the need for CS.

It is hard work to flesh out a CS pro-
gram. The good news is that schools
don’t have to go it entirely alone, and
they don’t have to build their CS pro-
grams in a vacuum.

The school should integrate com-
puter science industry and business
leaders into its advisory board and
give them a voice in the CS program.
This will help teachers keep up with
the pace of change and shape class
content around industry expectations
regarding CS career paths. Students
should learn, for example, what game
programmers do during a workday.
Do they play games? Do they write
code all day long, and if so, what kind
of code do they write? How do they get
the art into the game? How does the
game story come about? The industry
tie-in is not only relevant, it’s key to
student engagement and success.

Forging strong articulation agree-
ments with community colleges will
also strengthen a school’s ability to
help students interested in CS un-
derstand what they need to know
to prepare for college. Community
colleges can allow students who have
uncompleted prerequisites or who are

CS needs to take its place alongside English language arts, science,
and math as a fundamental academic necessity and be addressed
as such in state standards, academic content, curricula, and
educator licensing requirements.

August 2010 | Learning & Leading with Technology 17

is
to

c
k

p
h

o
to

.c
o

m
/t

r
a

c
k

5

Copyright © 2010, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

18 Learning & Leading with Technology | August 2010

occupational requirements
(see the Resources section at
the end of this article for the
URL to a white paper the
Computer Science Teach-
ers Association released on
this topic). But it will take
extensive and ongoing
professional development
to bring non-CS teachers up
to speed technically and keep them
there. Principals can’t simply assign
the program, toss a how-to book in
the door, and expect teachers to be suc-
cessful. That leads to content that is ele-
mentary and unsatisfying, and students
won’t get anything out of the course.

Collaborate for Curriculum
Conventional CS can be a boring sub-
ject. Students will have a hard time
getting interested in subjects such as
binary trees and linked lists, classes
and objects, TCP/IP, and the OSI mod-
el without some colorful, fun hook by
which to teach them. Game program-
ming turns out to be one such hook,
but there are other ideas for teaching
CS that work equally well. High-touch
and hands-on labs and assessments
linked to real-world project outcomes
are the elements that make students
want to learn.

It is vital that administrators and
teachers understand that CS is more
than the Web and more than program-
ming. The CS whole is the sum of the
parts, but not just computer parts; it’s
also made up of math, art, science,
and English language arts, particularly
when it comes to today’s interactive
media environments, including social
networking sites and games.

For one thing, CS is an intensely
graphical world that requires stu-
dents to foster a healthy knowledge
of both 2D and 3D graphics as well
as animation environments. It’s also
a world of story and literature. So
it’s not enough for a teacher to show
a student how to write a program.
She must also help the student flesh

Building on the lessons of the past and the needs of the present and the future,
the computer science teachers association (csta) proposes a four-level model
curriculum for k–12 computer science that focuses on fundamental concepts.
this model includes:

Level I—Foundations of computer science (recommended for grades k–8).
instruction at this level should provide elementary school students with
foundational concepts in computer science by integrating basic skills
in technology with simple ideas about algorithmic thinking. this can be
accomplished by adding short modules to existing science, mathematics,
and social studies units or through specific computing courses.

Level II—Computer science in the modern world (recommended for
grade 9 or 10). students at this level should acquire a coherent and broad
understanding of the principles, methodologies, and applications of computer
science in the modern world. this course focuses on the foundational concepts
underlying the science and on knowledge and skills all students require. it can
best be offered as a one-year course accessible to all students, whether they
are college bound or workplace bound.

Level III—Computer science as analysis and design (recommended for
grade 10 or 11). students who wish to study more computer science may enroll
in a one-year elective that would earn a curriculum credit (e.g., math or science).
this course continues the study begun at Level ii, but it places particular
emphasis on the scientific and engineering aspects of computer science—
mathematical principles, algorithmic problem-solving and programming,
software and hardware design, networks, and social impact. students will
elect this course to explore their interest and aptitude for computer science
as a profession.

Level IV—Topics in computer science (recommended for grade 11 or 12).
this elective provides depth of study in one particular area of computer science.
this may be, for example, an ap computer science course that focuses on
computer science principles or programming and data structures. alternatively,
this offering may be a projects-based course in multimedia design or a vendor-
supplied course that leads to professional certification.

This modified text was excerpted from CSTA’s “A Model Curriculum for K–12 Computer Science:
Final Report of the ACM K–12 Task Force Curriculum Committee.”

intimidated by the college/university
setting to gently integrate into the
system. This is important because
postsecondary teaching environments
are night-and-day different from sec-
ondary environments, and a student’s
comfort level translates to better aca-
demic performance.

The next step is recruiting and/or
training qualified CS teachers. It’s sim-
ply not good enough for a marketing

teacher to offer a Dreamweaver class
and teach a little HTML, or for a math
teacher with an extra free section to
teach AP Computer Science. CS has
much deeper tentacles and a far longer
reach than that. The teachers have to
understand the nuances of the subject
at a deep level.

Conventional teachers who do not
have a CS background can teach CS as
long as they meet the educational and

A Model CS Curriculum

is
to

c
k

p
h

o
to

.c
o

m
/m

B
o

r
to

Li
n

o

Copyright © 2010, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

August 2010 | Learning & Leading with Technology 19

out program concepts in a graphical
environment in a way that is pleas-
ing to the eye, easy to understand
and manipulate, and rich in allegory
and metaphor. In fact, in many cases,
students must use the complete liter-
ary construct, including a protagonist,
antagonist, plot, conflict, increasing
stakes, and so forth.

Schools that integrate CS at the
highest levels of their mission state-
ments find that professional learning
communities and work teams natu-
rally assemble to discuss amalgamated
curriculum and assessments. They
want their students to be success-
ful, and they soon find out that CS
students will need more than just the
black box of programming to find
success in the industry. Good school
leaders set out to find and assemble
teams that are able to play off of
one another’s strengths to get to the
greater goal of a holistic student. It’s
no longer just about English language
arts or history or art or mathematics.
In this case, it’s about using CS to in-
tegrate a story into a program, game,
or social networking site by using the
tools of the trade in addition to all of
the underlying academics that make
the story complete.

I have seen this firsthand in my
game programming classroom at War-
ren Tech, a career and technical educa-
tion high school in Lakewood, Colo-
rado. Students learn how to program
in C++, C#, and Adobe’s ActionScript
3.0. At the same time, however, we

work on the idea of story. They learn
that they must put a good story into a
console-based (DOS-like) application
to create a game that is both fun and
playable. I stress that story is not just
one element of a game, but the most
important element.

Once they have thoroughly pol-
ished a story and made sure that it is
interesting and consists of the proper
constructs, we start to think about
how to describe the story in a graphi-
cal world. They learn to think about
color, 2D versus 3D, speech prompts,
visual hints and cues, and Easter eggs.
They’re still dealing with the same old
story, but now they’ve brought it into
a visually satisfying place. And, along
the way, I’ve had an opportunity to
help the students learn how to manip-
ulate the tools they need to turn their
visual stories into games.

Other subjects also come into play.
Suppose, for example, the story talks
about a cannon firing. To create an
accurate scene, students need to un-
derstand the equation of the ballistics
of a cannon and scientific ideas, such
as the coefficient of friction and veloc-
ity versus acceleration. The desire to
make the story right drives students
to want to know more about the math
and physics of the story. A student
recreating the board game Battleship
needs to understand matrix math. An-
other student working on a whirlwind
wants to know about the Coriolis ef-
fect, and so on. The same applies to
the historical accuracy of a subject as
well as possibly its anthropology, soci-
ology, and ethnology.

Can I personally teach all this stuff?
No! I rely on coaches and other teach-
ers to help me round out the teaching
model. For example, the mathematics
coach might come in and give a half-
hour miniclass on logarithms. It is this

notion of teamwork and a team attitude
toward teaching CS that fosters great
advances in student achievement across
a plethora of subjects—not just CS.

Schools that seriously integrate CS
at the important, vital level it needs
to be find that students want it, are
good at it, and can be successful at it.
On the flip side, if schools fail to in-
troduce full and robust CS courses in
high schools, they will do a disservice
to their students, colleges and univer-
sities, and industry. With that in mind,
we need to begin to work together to
take back the ground that CS has lost
and move forward into new terrain as
collaborative educators.

Resources
“A Model Curriculum for K–12 Computer

Science: Final Report of the ACM K–12 Task
Force Curriculum Committee” (2003) by
the Computer Science Teachers Association
(CSTA): http://csta.acm.org/Curriculum/
sub/CurrFiles/K-12ModelCurr2ndEd.pdf

“Ensuring Exemplary Teaching in an Essential
Discipline” by CSTA: http:/csta.acm.org/
ComputerScienceTeacherCertification/sub/
TeacherCertificationRequi.html

“The 30 Fastest Growing Occupations Covered
in the 2008–2009 Occupational Outlook
Handbook,” U.S. Bureau of Labor Statistics:
www.bls.gov/news.release/ooh.t01.htm

Warren Tech High School: www.warrentech.org

Bill Heldman is a former long-
time IT professional as well as
the author of more than a doz-
en technical books and numer-
ous articles for technical publi-
cations. These days, he teaches
teenagers how to make video

games, writes curriculum, and collaborates to
better the public secondary teaching environment.

Help ISTE revise its Secondary
Computer Science Standards!
Give us your feedback through the
survey at www.iste.org/compsci-refresh.

It’s no longer just about English language arts or history or art or mathematics.
In this case, it’s about using CS to integrate a story into a program, game, or
social networking site by using the tools of the trade in addition to all of the
underlying academics that make the story complete.

Copyright © 2010, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

