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Businesses and individuals both like to make money from their invest-
ments. Individuals may focus on the return they earn in their at call

savings accounts, in their term deposits or from their share portfolios.
Businesses have similar interests to individuals in this way but may also be
interested in the return they can expect to earn from a new business venture.
Why, from a financial perspective, would a business proceed with a venture
that can only promise a return on investment which is lower than it could
earn in a risk-free savings account? The methods for calculating returns on
investments are taught to undergraduate level business students. In this paper
we demonstrate how such calculations are within the scope of senior school
students of mathematics. In providing this demonstration we hope to give
teachers and students alike an illustration of the power and the utility of the
mathematics they are working with in the senior school classroom which in
turn can be a source of motivation for them. 

Everyone and every business wants to earn a return on their investments.
Suppose a school is considering putting on a production by the students in
the drama class. Before such a production can go ahead, there will be a range
of expenditures relating to hire of the venue, costume hire and employment
of staff to work with the student actors. All these costs will need to be met
before a single dollar of revenue can be earned from the sale of tickets to
parents and fellow students. Suppose the school can reliably estimate the
initial costs and the revenues to be earned from ticket sales. It can then calcu-
late the return earned on its investment. Of course in reality there will be
some unknowns in this exercise—an obvious one is whether the ticket sales
will match that anticipated. We will assume that the school has done sufficient
research to be able to make reliable estimates of its costs and revenues.
Schools may consider making available to students information on revenues
and expenses related to a particular drama production for the purposes of
this example. Indeed, some students may elect to run their next production
on a commercial basis after assessing their expected return on investment.

This paper bridges the gap between calculations of rates of return and the
senior mathematics syllabus. It is organised as follows. Following this intro-



duction, the next section defines precisely what we mean by a rate of return
on an investment. The subsequent section describes how a business might
determine the rate of return it requires before making an investment or
before undertaking a new venture. Next we provide illustrations of the
method of calculating returns on investments. Links between the senior
school mathematics syllabi and these calculations are made to enable teach-
ers to see how this application can be incorporated into many aspects of their
teaching. The practical problem that some projected cash flows may have
multiple rates of return and the issues this can cause for businesses are then
considered. We also provide a new proof that a particular characterisation of
the projected cash flows from a business venture will lead to a unique positive
rate of return. This will provide a thought-provoking challenge to capable
senior students. We also provide a practical example in that section to illus-
trate the result proven there. 

Rate of return for a financial project

Students from Year 9 onwards (Board of Studies, 2007) are familiar with the
concept of a compound interest rate. In order to establish our notation, we
repeat here a formula that will be familiar to all,

A = P(1 + i)n (1)

where A is the accumulated value (or final value) at time n years when P
dollars is invested at time 0 at rate of interest i per annum.1

Equation (1) can be solved for P. We obtain a unique solu-
tion which works as a formula for determining the value today,
at time 0, of money available in the future. The expression is 

A = P(1 + i)–n (2)

where P is commonly called the present value (PV) of A dollars available at time
n years, where interest earns at i per annum. Clearly, for positive interest rates,
i, we have P < A. 

The annual (effective) rate of return for a project is defined to be the rate
of interest, i, such that the present value (at time 0) of all cash inflows or
receipts (revenue from ticket sales in the example given in the introduction)
matches the present value of all cash outflows or payments (costs of hiring the
venue and costumes and costs linked to employment of the training staff in
our example given in the introduction). 

To illustrate, suppose a particular business venture has anticipated cash
receipts, rj at time j for (say) j = 3, 4 and 5. Suppose the set up costs or
payments linked to this project are denoted pj at time j for (say) j = 0, 1. Note
that the payments occur before the receipts. This is common, although as we
shall see later, not universal, in new business ventures. The rate of return,
often called the internal rate of return (IRR), for this project, is the rate of inter-
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1. This formula can be easily used
to show, using logarithm laws,
that money invested today with
interest applying at 10% per
annum will take about 7.3 years
to double in value. 



est i which solves the equation

(3)

This equation is often written with all the terms on the left hand side.
When written this way, the IRR calculation can be thought of as determining
the rate of interest i which equates to zero the present value of cash receipts
minus the present value of cash payments. This interpretation is encapsulated
in the following equation

(4)

The IRR is just one of many different rates of return that can be consid-
ered by businesses. We describe one other rate of return, the continuously
compounded rate of return, denoted δ. 

You may reasonably ask what we mean by a continuously compounded rate
of return. A useful way to start thinking about this concept is to think about
your bank account. You may see that interest is credited to your account
monthly. This is not continuous compounding but rather it is compounding
twelve times per annum. Another example is if you check out your home loan
statement. You may find that interest is levied on the amount you owe every
day! That is still not continuous compounding, rather it is compounding 365
times per year or daily compounding. Daily compounding is so close to
compounding occurring at every instant in time that it is often approximated
by continuous compounding. The analogue to Equation (1) for continuous
compounding is shown in the equation below

A = Pe δn (5)

where A is the accumulated (or final value) of an investment at time n years
when P dollars is invested at time 0 at rate of interest δ per annum with contin-
uous compounding.2,3 We note that this form of compound
interest is identical to the exponential growth model consid-
ered for population sizes, amongst other applications, in
Australian senior mathematics syllabi (e.g., Board of Studies,
2000; VCAA, 2005). As above Equation (5) can be solved for P
to give the present value of A dollars at time n where the rate
of interest is δ per annum with continuous compounding:

P = Ae–δn (6)

Similarly, the continuously compounded rate of return on
our investment described just before Equation (6) can be
found by solving for δ in

–p0 – p1e
–δ + r3e

3δ + r4e
4δ + r5e

5δ = 0 (7)

PV of cash receipts = PV of cash payments
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2. This formula can be easily used
to show, using logarithm laws,
that money invested today with
interest applying at 10% per
annum compounding continu-
ously will take about 6.9 years to
double in value. Note that money
accumulates faster in value with a
continuously compounding rate
of interest than with a standard
per annum interest rate. 

3. By noting that the accumulation
under equation (1) and equation
(5) must be equal, we can derive
a relationship between the
annual rate of interest, i, and the
continuously compounded rate
of interest, δ: 
(1 + i)n = e δn ⇒ δ = ln(1 + i).



How to determine your required rate of return?

Suppose we are running a business and that we are considering a new venture
as a means of expanding our operations. As part of our decision-making
process with respect to this new venture, we should assess the benefits and the
costs to our business of this new venture. Having quantified these anticipated
cash payments and receipts, the business will determine the implied IRR. If
this IRR is less than what the business can earn, risk free, then the new busi-
ness venture is not worth pursuing. Thinking just about financial returns, why
would a business expose itself to risk for a return no greater than that it could
achieve by investing money in a bank? 

The business will often require an IRR in excess of that which can be
earned risk free. This will be particularly relevant if the new business venture
involves significant risk. The higher IRR that the business requires can be
thought of as a reward for the additional risk that the business now faces.

Calculation of the rate of return for a given set of
cash flows and links to the mathematics syllabus

In this section we give a series of examples of IRR and continuously
compounded rate of return calculations and how these can be included as
applications of diverse areas of the senior mathematics syllabi. An overview is
provided in Table 1. Elaborations of some of the cases are then presented.

To illustrate in more detail on the use of the examples provided in Table
1, we expand on two of the cases there: equations reducible to quadratics and inte-
gration involving exponential functions.

Example 1: Equations reducible to quadratics

Suppose that a school canteen launches a small advertising campaign. The
costs connected to the advertising amount to $1000. The increased revenue
for the next year, assumed for simplicity to be earned at the end of that first
year, is $700. The assumed additional revenue in the second year, again
assumed to be all earned at the end of that year is $600. After two years the
effect of the advertising will have worn off—students have short memories! If
the school normally earns 5% per annum on its investments, determine
whether the advertising campaign was worthwhile. To answer this question,
calculate the IRR for the investment and see if this exceeds the school’s
normal, risk free, annual effective return of 5%.

Solution to Example 1
Using (4), we need to solve

where i is the annual effective rate of return. To solve this, we make the substi-
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tution, u = 1 + i to obtain

Using the “quadratic formula”, the solutions for u are 

or u = 1.2 or –0.5. Disregarding the negative solution, and substituting back
for u = 1 + i, we obtain an annual effective rate of return of 20%. This far
exceeds the 5% that the school can earn from its risk free investments. So,
assuming that expansion of the school’s canteen sales is agreeable to the
school community (healthy foods, etc.!), this is certainly a viable advertising
campaign.

Note that investments involving cash flows at more than three times (only
three separate cash flows were considered in the quadratic equation example
above), will produce IRR equations of the form (4), which, if payments are at

− + + = ⇒ − − =1000
700 600

0 10 7 6 0
2

2

u u
u u

u =
± +7 49 240

20

Mathematics Syllabus Topic IRR Calculation

Solving linear equations Initial investment at time 0 followed by a (larger) cash
receipt exactly one year later.

Equations reducible to
quadratics by substitution

Initial investment at time 0 followed by cash receipts
after one year and after two years. The sum of the
cash receipts should exceed the initial investment in
order to ensure a positive solution for the IRR.

Polynomials Initial investment at time 0 followed by cash receipts
after one year, two years and three years. 

Problem solving (“Guess-check-
refine”) or for solving with a
graphics calculator

An initial investment followed by a series of cash
receipts at a range of times. 

Exponentials and logarithms Calculation of the continuously compounded rate of
return requires the use of exponentials and loga-
rithms. Consider an initial investment followed by a
single (larger) cash receipt. The continuously
compounded return can be calculated using exponen-
tial and logarithmic functions. 

Integration involving
exponential functions

Suppose an initial investment of $1000 will yield a
continuous stream4 of funds payable for t years at the
rate of $r per annum. The continuous rate of return
can be calculated as the solution, in δ, of

Other rates of cash receipt, possibly dependent on
time t could be used as a way of applying other inte-
gration techniques such as integration by parts.

1000
0

= ∫ −r e dss
t

δ

Table 1. Calculating the rate of return and links to senior mathematics syllabus.
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4. In reality we can only receive
cash flows at discrete times
rather than continuously. In
practice, however it is often
convenient to model cash flows
that occur very regularly as
continuous cash flows. An
example is the toll receipts for
cars using a busy tollway. The
funds are being received every
minute and possibly even more
frequently. Such cash receipts
could accurately be modelled as
a continuous cash flow.



positive integer times, polynomials of higher degree than 2. Polynomials of
degrees 3 and 4 are treated in some depth in the New South Wales and
Victorian senior mathematics syllabi, amongst others (e.g., Board of Studies,
2000; VCAA, 2005). Often however the solutions of such equations can be
difficult to locate and for higher order polynomials the difficulties are
compounded. Such equations offer a suitable application of either the Goal-
Seek function (or the Solver function) in Excel or the solve function on a CAS
calculator, such as the TI-NSpire. (For details, see for example 
http://mathbits.com/MathBits/TInSection/Opennpage.htm.)

Example 2: Integration involving exponential functions

Suppose that an initial investment of $1000 produces returns at rate $300 per
annum, continuously, for five years. Find the IRR related to this investment.

Solution to Example 2
Students will need guidance in relation to the concept of a continuous cash
flow in this example. “$300 per annum, continuously” can usefully be thought
about using a bathtub analogy. Suppose the tap is turned on at a constant rate
of flow. Instead of water, the tap yields money! After one year of continuous
and constant flow of money, the bathtub will contain $300 worth of money. 

Using a continuous analogue of (7), we need to solve

where δ is the continuously compounding IRR. Note here that the integral
replaces the summation of individual terms in (7). Integrals, as discussed in
the calculation of areas under graphs of functions bounded by the co-ordi-
nate axes in Year 11 and 12 calculus, are the continuous analogue of
summation. 

Solving, we have

The solution to this equation in δ can be obtained using the solve function
on a CAS calculator or the Goal-Seek (or Solver) function in Excel. We find,
using Excel, a continuously compounding rate of return of 17.48%, correct
to two decimal places. This is a very high IRR and, based on our calculations
and assumptions, we would support going ahead with this investment. 

Multiple IRRs and conditions on cash flows to
ensure a unique IRR

One well-documented problem with the IRR calculation is that it can, in some
situations, lead to multiple solutions—that is more than one possible rate of
return can be calculated. This should not come as a complete surprise. Table

− = ⎡⎣ ⎤⎦ = −( )− −1000
300

1000
300

1
0

5 5

δ δ
δ δe et or

− + =−∫1000 300 0
0

5
e dttδ
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1 shows that IRR calculations can be found by solving quadratic and higher
order polynomial equations. Such equations are well known to have multiple
solutions and indeed these multiple solutions can even be complex rather
than real-valued. 

A well-known example of multiple IRRs occurs when you have an initial
investment of $10 (at time 0), followed by a return of $21 after one year (at
time 1) and a final payment of $11 after two years (at time 2). Such payment
patterns are common in mining projects where there are initial exploratory
expenses and final clean-up related expenses. We set up our IRR equation as
follows

(8)

When we solve (8) for the IRR, i, we obtain internal rates of return of 0 and
10%! Which one is correct? The answer is that both are correct. This situation
however does create real problems for financial decision makers who are
interested in finding the IRR rather than a set of IRRs. 

To see the intuition behind the two IRRs possible from this example,
consider the difference between earning 0% and earning a positive return on
investment in this example. The cash flow at time zero, $10 in our example,
has present value of $10 regardless of the interest rate earned. The present
value of the positive, $21 in our example, cash flow at time 1 is reduced when
interest rates are positive compared to when interest rates are zero. This is
clear by calculating the present values at 0% and at some positive investment
rate using (6). Consider now the negative cash flow, –$11 in our example, at
time 2. This will have present value of –11 if interest rates are zero. However,
if interest rates are positive, the present value of this negative $11 cash flow at
time 2 will be less negative. So positive interest rates, compared to interest
rates of zero, reduce the present value of positive cash flows and increase the
present value of negative cash flows. In our example, when the interest rate is
10%, these two effects on the cash flows at times 1 and 2 exactly offset each
other. Hence the two possible IRRs. 

It is of interest then to determine which patterns of cash flows (payments
and revenues) will ensure that there is a unique IRR. One such result, first
proven, to our knowledge, by Norstrom (1972) is given below.

Result

If the cumulative cash flows under an investment change sign only once, then
there is a unique positive solution for the IRR.

Proof

Norstrom’s proof involved a fairly complicated argument which ultimately
establishes a contradiction if there are multiple IRRs when the cumulative
cash flows change sign only once. In addition his proof only applied in the
case of discrete cash flows. Here we provide a new and alternative proof for

− +
+

−
+( )

=10
21

1
11

1
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this result which is accessible to senior students of mathematics. We assume
that cash flows are payable continuously.

Denote the net rate of cash flow at time t under the project as c(t). Note
that c(t) = r(t) – p(t) where r(t) and p(t) are the continuous rates of cash
receipts and cash payments respectively under the project at time t.

Denote the accumulated value (without interest) of the net cash flows
received up to time t as f(t). It may help to think of f(t) as the amount of
money held at time t if all receipts are kept in a secure box and all payments
are made from this box. Mathematically,

(9)

To help understand (9), note that an integral is a continuous version of
summation. We see then that f(t) is simply the total of all cash receipts minus
all cash payments up to time t.

The IRR (expressed as a continuously compounded rate of return), is the
solution, in δ, to the equation

(10)

To see that (10) is true, we write c(t) = r(t) – p(t). Then (10) becomes 

Note that r(t)e –δt is the present value of a cash receipt of r(t) at time t, using
(6). So in (10), we are equating the total present value of receipts to the total
present value of payments. The value(s) of δ that solve this equation is/are
the IRR(s).

Equivalently our IRR is the solution, in δ, to

(11)

We now define 

Using integration by parts, taught for example in the NSW Year 12
Mathematics Extension 2 course (Board of Studies, 2000) or a well-known
property of Laplace transforms, we see that 

(12)

where the final equality holds since the accumulated cash flow prior to any
cash receipts or payments, f(0) is 0. Using Equation (12), we see that the solu-
tion(s) to the IRR equation are the same as the solution(s) to F(δ) = 0. 

We now consider the function F(δ). As the continuously compounding
rate of interest, δ, tends towards zero, we have 

d
dt

f t e dtt( )( ) =−
∞
∫ δ 0
0

F f t e dttδ δ( ) =
∞

−∫ ( )
0

d
dt

f t e dt F f Ft( ) ( ) ( ) ( )( ) = − =−
∞

∫ δ δ δ δ δ0
0

f t c r dr
t

( ) = ∫ ( )
0

c t e dtt( ) =−
∞
∫ δ 0
0

r t e dt p t e dtt t( ) − ( ) =− −
∞∞
∫∫ δ δ

00
0



A
ustralian S

enior M
athem

atics Journal 2
4

 (1
) 2

0
1

0
Investm

ent return calculations and senior school m
athem

atics

15

(13)

which is clearly positive for investments where ultimately cash receipts exceed
cash payments. 

We next find the first derivative of F(δ) with respect to δ. Assuming (10) is
a convergent integral, which would be the case for the very vast majority of
practical applications of IRR calculations, we obtain

(14)

It is clear then that if F(δ) ≥ 0 then F'(δ) < 0. In fact, for F(δ) = –ε for ε suffi-
ciently small, it will also be the case that F'(δ) < 0. This is true since if the
integral represented by F(δ) is multiplied by a linear and negative factor, –t,
it will become positive if it were originally negative by a sufficiently small
amount under the condition that f(t) changes sign, from negative to positive,
only once.

So the function F(δ) is positive as δ tends to zero. As δ increases, the func-
tion values reduce until they pass through the horizontal axis. For small
negative values of the function F(δ), the function is still decreasing. Since the
function F(δ) is continuous, and for small negative values of the function the
function is a decreasing function in δ, it is therefore impossible for the func-
tion to pass through the horizontal axis at a value of δ greater than the first
positive value for which it passes through this axis. An example of how F(δ)
could appear is given in Figure 1. Hence there is a unique positive solution to
the IRR. 

Figure 1. The IRR equation can only have one positive root.

lim ( ) lim ( )
δ δ

δδ
→ →

∞
−= ∫

0 0 0
F f t e dtt

F tf t e dtt'( ) ( )δ δ= −
∞

−∫
0



Example 3: Illustrating the application of the result proven in this section

We consider two investments opportunities. Both opportunities require an
initial investment of $10. This initial investment occurs at what we will call
time 0. The first opportunity promises a positive cash payment of $31 at time
1 and a subsequent investment at time 2 of $22. The second opportunity
promises a positive cash payment of $21 at time 1 and a subsequent invest-
ment at time 2 of $10. Note that for this example time is measured in years.
The cash flows under each of the two opportunities and the cumulative cash
flows are shown below in Table 2.

Table 2. Cash flows and cumulative cash flows for two investment opportunities.

From Table 2 it is clear that for investment one the cumulative cash flows,
calculated as the running total of the actual investment cash flows, change sign
twice. For investment two, the cumulative cash flows only change sign, from
negative to positive, once. From the result proven in this section, investment
two will have a unique positive IRR. Investment one, also as an application of
the result proven in this section however, may have multiple IRRs.

In order to find the IRR(s) under investment opportunities 1 and 2, we use
(7). We plot the value of the left hand side of (7) as a function of the contin-
uously compounding interest rate δ. The IRR(s) occur when the left hand
side of (7) is zero. Graphically, this corresponds to a horizontal axis intercept
in the graph shown in Figure 2.

Figure 2. Graphical solution for finding the internal rate of return.
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Time (years) 0 1 2

Investment one cash flow –10 31 –22

Investment one cumulative cash flow –10 21 –1

Investment two cash flow –10 21 –10

Investment two cumulative cash flow –10 11 1



We see from Figure 2 that the first investment opportunity, indicated by
the line marked NPV1, has two IRRs between 0 and 120%. The second invest-
ment opportunity only has a single positive IRR over this range, consistent
with the result proven in this section. 

This example illustrates the graphical approach to solving equations.
Throughout the paper we have illustrated how IRRs can be found by solving
equations by hand, for example linear or quadratic type equations, by graph-
ical methods as in Figure 2 or by the use of technology such as a CAS
calculator or Excel. It is valuable for students to understand that all three
methods of solving equations: analytical, graphical and numerical (technol-
ogy) will yield the same results. The IRR calculations provide a useful
application for demonstrating these important ideas that go a long way
towards unifying the senior mathematics syllabi.

Conclusion

The process for calculating rates of return on investments is generally only
taught to undergraduates in business and actuarial science. This paper aims
to show how these calculations can be conveniently woven into the mathe-
matics education of senior school level students. In addition to this we have
provided a new proof to a result about uniqueness of IRRs. Again the proof
of this result has been written so as to be within the grasp of an enthusiastic
and able student of senior school mathematics. Examples throughout illus-
trate the methods for solving IRR equations: analytical approach, graphical
approach and numerical approach through technology. The selection of an
appropriate method is determined by the complexity of the problem.
Importantly the business application presented here will help to illustrate to
students the equivalence of different methods of solving equations while at
the same time introducing them to some applications of mathematics to the
financial world.
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