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Understanding Rolle’s Theorem 

Revathy Parameswaran 
 

 
This paper reports on an experiment studying twelfth grade students’ understanding of Rolle’s 
Theorem. In particular, we study the influence of different concept images that students employ when 
solving reasoning tasks related to Rolle’s Theorem. We argue that students’ “container schema” and 
“motion schema” allow for rich concept images. 

 

Introduction 

Advanced mathematical concepts are characterized 
by complex interactions between intuitive and rigorous 
reasoning processes (Weber & Alcock, 2004). 
Learning calculus, which involves processes pertaining 
to advanced mathematical thinking, has been a subject 
of extensive research. One of the significant 
conclusions arising out of this research is that students 
typically develop routine techniques and manipulative 
skills rather than an understanding of theoretical 
concepts (Berry & Nymann, 2003; Davis & Vinner, 
1986; Ervynck, 1981; Parameswaran, 2007; Robert, 
1982; Sierpinska, 1987). 

The subject of calculus is rich in abstraction and 
calls for a high level of conceptual understanding, 
where many students have difficulties.  Ferrini-Mundy 
and Graham (1991) argue that students’ understanding 
of central concepts of calculus is ‘exceptionally 
primitive’: 

Students demonstrate virtually no intuition about 
the concepts and processes of calculus.  They 
diligently mimic examples and crank out 
homework problems that are predictably identical 
to the examples in the text.  Misconceptions exist 
as a result of student attempts to adapt prior 
knowledge to a new situation.  Research suggests 
that students have a strong commitment to these 
misconceptions and that they are resistant to 
change and direct instruction (p. 631-632). 

 While teaching calculus to a wide range of 
students, it is more practical to appeal to students’ 
intuition when conveying mathematical concepts and 
ideas, building on what they have already learned 

without making heavy demands on their aptitude for 
abstract and rigorous mathematical understanding. 
Some researchers argue that an introductory calculus 
course should be informal, intuitive, and conceptual, 
based mainly on graphs and functions (Koirala, 1997); 
formulas and rules should be carefully and intuitively 
developed on the basis of students’ previous work in 
mathematics and other sciences (Heid, 1988; Orton 
1983). One of the guiding principles of teaching 
calculus could be the ‘Rule of Three,’ (Hughes-Hallet, 
et al., 1994) which says that, whenever possible, topics 
should be taught graphically, numerically, and 
analytically. The aim is to balance all three of these 
components to enable the students to view ideas from 
different standpoints and develop a holistic perspective 
of each concept. 

There has been extensive research into the 
difficulties that students encounter in understanding 
limits, functions, differentiability, continuity, and so 
on. However, there is not much literature on students’ 
understanding of other concepts in calculus. Apart 
from the cognitive obstacles that arise in the learning 
of calculus concepts due to the complexity of the 
subject matter, students sometimes encounter 
difficulties inherent in mathematical reasoning. For 
example, deductive reasoning is a fundamental tool for 
mathematical thinking; however, students reveal 
serious difficulties developing such reasoning skills. 
Orsega and Sorizio (2000) propose the mental model 
theory of Johnson-Laird and Byrne as a cognitive 
framework to analyze students’ difficulties in 
deductive reasoning. Orsega and Sorizio argue that a 
didactical model should be designed to enable 
undergraduates to overcome the fallacies of their 
deductive inferences.  They consider a teaching 
method that enables first-year undergraduates to make 
explicit the tautologically implicit properties in the 
hypothesis of Rolle’s Theorem and to reflect on them. 
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The purpose of this paper is to report on an 
experiment carried out to study twelfth grade students’ 
understanding of Rolle’s Theorem and its relationship 
to the closely related Mean Value Theorem. In 
particular, I set up tasks designed to study (1) the 
learner’s ability to state the theorem and apply it to 
reasoning tasks, (2) the influence of concept images in 
his or her reasoning about the theorem, and (3) the 
learner’s ability to perceive the relationship between 
Rolle’s Theorem and other related mathematical 
concepts. 

For the reader’s convenience, we recall below the 
statement of Rolle’s Theorem.  

Let f be a function that satisfies the following three 
hypotheses: (1) f is continuous on the closed 
interval [a,b], (2) f is differentiable on the open 
interval (a,b), and (3) f(a) = f(b). Then there is a 
number c in (a,b) such that f'(c) = 0 (Stewart, 
1987). 

Why Rolle’s Theorem? 

As observed by Berlinski (1995), “Rolle's Theorem 
is about functions, and so a theorem about processes 
represented by functions, an affirmation among other 
things about the coordination of time and space. ... The 
constraints deal with the two fundamental 
mathematical properties of continuity and 
differentiability...” (191–192). Berlinski further 
observes that: “Rolle's Theorem establishes a 
connection between continuity and differentiability. 
Continuity guarantees a maximum; differentiability 
delivers a number. Fermat's Theorem [which says that 
if f has a local extremum at c and if f'(c) exists, then 
f'(c) = 0] supplies the connection between concepts” 
(196). The statement of the theorem involves multiple 
hypotheses, the universal quantifier  (for all) and the 
existential quantifier  (there exists). Also Rolle's 
Theorem offers the opportunity for pictorial, intuitive, 
and logical interpretations. 

The knowledge components required for the 
understanding of this theorem involve limits, 
continuity, and differentiability. The proof of the 
theorem is given using the Fermat’s Theorem and the 
Extreme Value Theorem, which says that any real 
valued continuous function on a closed interval attains 
its maximum and minimum values. The proof of 
Fermat's Theorem is given in the course while that of 
Extreme Value Theorem is taken as shared (Stewart, 
1987). Hence we appeal to the learners' intuition rather 
than be rigorous in our approach. 

The beauty of this theorem also reveals itself in its 
connection with real life.  A ball, when thrown up, 
comes down and during the course of its movement, it 

changes its direction at some point to come down. 
Rolle’s Theorem thus can be used to explain that the 
velocity of the ball which is thrown upwards must 
become zero at some point (Berlinski, 1995). 

Theoretical Background 

We shall use the concepts introduced by Weber 
and Alcock (2004) in their research on syntactic and 
semantic proof production. A proof is referred to as 
syntactic if it involves only manipulation of facts and 
formal definitions in a logical manner without 
appealing to intuitive and non-formal representations 
of the mathematical concepts involved. The prover 
need only to have the ability to make formal 
deductions based on the relevant definitions and 
concepts. Such knowledge and understanding is called 
syntactic knowledge or formal understanding. On the 
other hand, if the prover uses instantiations to guide the 
formal inferences, he or she is said to possess semantic 
or effective intuitive understanding.  Instantiation is 
described as “a systematically repeatable way that an 
individual thinks about a mathematical object, which is 
internally meaningful to that individual” (p. 210). 
“Semantic or effective intuitive understanding is 
described as the ability on the part of the prover to 
explicitly describe how she could translate intuitive 
observations based on instantiations into formal 
mathematical arguments” (p. 229). While formal 
understanding is at the superficial level, effective 
intuitive understanding lies at a deeper level and is 
characterized by the following features, which we 
illustrate in the context of Rolle’s Theorem:  

• Instantiation “One should be able to instantiate 
relevant mathematical objects” (p. 229). For example, 
in the case of understanding Rolle’s Theorem, the 
learner instantiates the statement of the theorem if he 
recognizes its applicability (or non-applicability) in the 
case of a “typical” function --  not merely that of a 
quadratic-- possibly in terms of a graph.  

• Richness “These instantiations should be rich 
enough that they suggest inferences that one can draw” 
(p. 229). 

• Accuracy “These instantiations should be 
accurate reflections of the objects and concepts that 
they represent” (p. 229). In our context, the examples 
should not be too special as to suggest properties not 
implied by the theorem. For example, one may be 
misled to believe that there is a unique point where the 
derivative vanishes if one always instantiates the graph 
to be a parabola. 

• Relation to formal definition “One should be able 
to connect the formal definition of the concept to the 
instantiation with which they reason” (p. 229). 
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In their foundational work, Vinner and Tall (1981) 
have provided a framework for analyzing how one 
understands and uses a mathematical definition. 
According to Vinner and Tall, a concept definition and 
a concept image are associated with every 
mathematical concept. Concept image is the total 
cognitive structure associated with the mathematical 
concept in the individual’s mind. Depending on the 
context, different parts of the concept image may get 
activated; the part that is activated is referred to as the 
evoked concept image. The words used to describe the 
concept image are called the concept definition. This 
could be a formal definition and given to the individual 
as a part of a formal theory or it may be a personal 
definition invented by an individual describing his 
concept image. A potential conflict factor is any part of 
the concept image that conflicts with another part of 
the concept image or any implication of the concept 
definition. Factors in different formal theories can give 
rise to such a conflict. A cognitive conflict is created 
when two mutually conflicting factors are evoked 
simultaneously in the mind of an individual. The 
potential conflict may not become a cognitive conflict 
if the implications of the concept definition do not 
become a part of the individual’s concept image. The 
lack of coordination between the concept image 
developed by an individual and the implication of the 
concept definition can lead to obstacles in learning 
because resolution of the resulting cognitive conflict is 
crucial for learning to take place. 

The Study 

Participants  

The students in our study were in twelfth grade in a 
school affiliated with the Central Board of Secondary 
Education of India. The twelfth grade is the terminal 
grade in senior high schools in India and its successful 
completion qualifies one for university education. 
After completion of tenth grade, mathematics is an 
optional subject for eleventh and twelfth grades, but is 
required for pursuing a degree in science or 
engineering in universities.  The mathematics 
curriculum is of a high standard and covers a wide 
range of topics. In eleventh and twelfth grades, the 
students learn algebra, trigonometry, elementary two 
and three dimensional analytical geometry, complex 
numbers, differential and integral calculus, differential 
equations, matrices and determinants, Boolean algebra, 
set theory, theory of equations, statics, dynamics and 
probability theory.  

The experiment was conducted after the students 
had been taught differential and integral calculus over 

a period of six months, forming part of a year-long 
twelfth grade curriculum. Rolle’s Theorem was part of 
the curriculum. The rigorous proof is omitted in the 
course, while graphical interpretations and 
explanations are offered as to why the statement is 
valid. 

Research Method 

Our experiment was comprised of two written 
tasks followed by interviews. The second task was 
conducted one week after the first and the interviews 
were held two days later. Thirty students participated 
in our study, out of which two students were selected 
for interviews based on their clarity of expression. 
They had responded to all the tasks given. The errors 
that they had committed in the tasks were also 
committed by many other students of the sample. In 
view of the depth and detail of analysis we planned, 
resource restriction limited us to only two participants. 

The first task was descriptive in nature and it 
aimed to probe students' understanding of the 
statement of Rolle’s Theorem. In the second task, we 
gave the students four graphs along with questions 
related to Rolle’s Theorem. The purpose of this task 
was to find out if the students were able to connect 
Rolle’s Theorem with problem situations that were 
presented graphically. Considering the teaching 
methods adopted, it seemed appropriate to test their 
understanding using the tasks. These questions had 
been designed by the researcher to test the intuitive 
understanding because the material had originally been 
taught formally. 

At this point, two students were selected for 
interviews. As the interview progressed, our questions 
built on their responses, so as to gain a better 
understanding of the student's conception of the 
theorem. The questions also aimed to provoke a 
considerable amount of reflection on the part of the 
students. As a result of the interview, we hoped to 
ascertain the obstacles, if any, that students face in 
understanding Rolle’s Theorem. 

Data Analysis 

First Task 

The first task consisted of two questions about 
Rolle’s Theorem. The first question was “Explain in 
your own words what you understand of Rolle’s 
Theorem.” Representative responses were identified 
and are given below.  

Abhi (all names used are pseudonyms) exemplifies 
the response of a student who has a sufficiently rich 
concept image. 
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 Response 1. (Abhi):  [She had drawn two 
graphs of functions and labeled them (i) and (ii).] 
“When we draw a graph like graph (i), we can draw 
tangents at every point on the curve and these tangents 
will have different slopes. But at one point, say M, if a 
tangent is drawn, its slope will be equal to the slope of 
the x-axis, [i.e.,] this tangent is parallel to the x-axis...” 

 Abhi's response shows a preference for 
viewing analytic properties geometrically. Her pictorial 
representation was that of a downward parabola 
intersecting the x-axis. The hypotheses and conclusion 
of Rolle's Theorem are stated geometrically and 
perhaps understood thus. Her notation for the point M 
on the graph is suggestive of the maximum point. 

The following responses are illustrative of 
inaccuracies in the concept images: 

 Response 2. (Sweta) [The drawing is given in 
Figure 1.] “Two points, A, B, are such that they lie on 
the x-axis: y-coordinates equal to zero. f(A) = f(B) = 0. 
A curve passes through them such that AD = BD. The 
graph is continuous since it can be drawn without a 
gap. It is differentiable, i.e., it can be differentiated at 
all the points. When all these conditions are satisfied 
then there lies a point c such that f'(c) = 0. On 
satisfying these Rolle's Theorem is said to be verified.” 

 

 
Figure 1. Sweta’s response to the first question. 
 
Sweta assumes f(a) = f(b) = 0. She incorrectly 

believes the point D = (c, f(c)) divides the graph into 
two equal parts AD and DB. It is probably because the 
specific instantiation she has of (the graph of) a 
function (such as a parabola symmetric about the y-
axis) has this property.  See Figure 5. If this is so, her 
instantiation is not sufficiently rich. Since her example 
is a specialized one, her figural representation of 
Rolle’s Theorem forces her to assume properties that 
are not implied by the theorem. 

Response 3. (Sheela) “The given part is a function 
which by nature is continuous and this function is 
differentiable and our claim is that there exists a point 
c on that function for which f'(c) = 0 and in a way this 
point c divides the function into two halves.” 

 Sheela had omitted the condition that f(a) = 
f(b). The phrase “in a way this point divides the 
function into two halves” indicates that she probably 
imagines the function to have only one extremum, 
suggesting lack of accuracy in her instantiations.  

 The following response indicates confusion in 
distinguishing between hypothesis and conclusion. 
Like Sweta, she explains through an example. 

 Response 4. (Anita) “Rolle’s Theorem is 
satisfied for a function in [a, b] only if the following 
conditions are satisfied: (a) The function should be 
continuous, i.e., it could be drawn without lifting your 
hands, (b) f(a) = f(b), (c) c ∈ (a,b) which means that c 
must be between a and b, where f'(c) = 0. For example, 
f(x) = cos(x) ∈ [-π/2, π /2]. (i) It is continuous since it 
is a trigonometric function. (ii) f(π /2)=0, f(-π /2)=0. 
Therefore f'(c) = 0. f'(x) = sin(x) implies f'(c) = sin(c) = 
0, c = 0 ∈ (-π /2, π /2).” 

 We observe that Anita includes as part of the 
hypothesis the existence of an element c ∈ (a, b) such 
that f'(c) = 0. Nine students committed similar errors.  
Perhaps this is due to recent exposure to “if, then” 
mathematical propositions, particularly those involving 
quantifiers. Yet they do understand what to do when 
asked to verify Rolle’s Theorem in a specific context 
as exemplified by her verification in the case of the 
sine function on [-π /2, π /2], although the syntactical 
error still persists. 

 Observe that Anita writes ‘only if f(a) = f(b)’ 
although examples abound where f'(c) = 0 for some     
c ∈ (a,b) (e.g. f(x) = x3 on [-1, 1]). We conclude that 
the instantiations she carries with her are not 
sufficiently rich.  

 Response 5. (Siva) [The drawing is given in 
Figure 2.] “We draw a tangent P on the curve AB such 
that tgt is parallel to the curve at the x-axis. This is 
satisfied only if (a) f(a) = f(b), (b) the graph is 
[continuous], and (c) there is a derivative for the graph.  

 
Figure 2. Siva’s response to the first question. 
 
Siva prefers to express the conclusion in terms of 

tangents at extrema. Again, we note that he states the 
converse to Rolle’s Theorem as evidenced by the 
phrase “only if.” 

The second question of the first task asked students 
“How are Rolle’s Theorem and the Mean Value 
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Theorem related?” Typical responses were identified 
and are presented here. 

 Response 1. (Abhi) “Mean Value Theorem is 
different from Rolle’s Theorem because in Mean Value 
Theorem it is sufficient that the function [be] 
continuous and differentiable, but in Rolle’s Theorem 
besides the function should be continuous and 
differentiable, it should also satisfy f(a) = f(b).” 

 Response 2. (Sweta) “In Rolle’s Theorem f(a) 
= f(b) but in mean value theorem f(a) is not equal to 
f(b). In Rolle’s theorem f'(c) = 0 while in mean value 
theorem f'(c) = (f(b) – f(a))/(b – a). 

Response 3. “Mean value theorem is different from 
Rolle’s theorem in only one way. The condition f(a) = 
f(b) is not necessary to be proved in mean value 
theorem, but it is a condition in Rolle’s theorem.”  

Response 4. “Mean value theorem is not 
completely different from Rolle’s theorem.  The 
similarity is that in both the theorems we have got to 
check whether the graph is continuous. The 
dissimilarity is that in Rolle’s theorem f(a) = f(b) 
whereas in mean value theorem f(a) need not be equal 
to f(b).” 

Almost all of the thirty students had written that 
the Mean Value Theorem is different from Rolle’s 
Theorem. They had all given the reason that while 
Rolle’s Theorem has f(a) = f(b) as one of its 
constraints, it was not present in the Mean Value 
Theorem. Twenty students had also added that the 
similarity between the two theorems lies in the fact that 
the functions have to be continuous and differentiable 
for both theorems. 

We note that none of the students had said that the 
Mean Value Theorem was a generalization of Rolle’s 
Theorem. This prompts several questions: How do 
students view relationships among abstract statements? 
What are the relationships among abstract 
mathematical propositions, besides identity, that 
students in twelfth grade are aware of? At what stage 
in one's mathematical development do they perceive 
containment relationships among abstract 
mathematical statements? One should distinguish here 
between mathematical objects and propositions. For 
example, these students surely know and are aware that 
all right triangles are triangles and all squares are 
rectangles. Further research is needed to explore these 
questions.  

We note also that for some students, the focus 
seems to be what one should do: For Rolle's Theorem 
one should check f(a) = f(b), whereas it is not 
necessary to do so in the case of Mean Value Theorem. 
Perhaps it is due to excessive emphasis on an 

algorithmic approach to doing problems in lower 
grades. 

Second Task 

The second task is aimed at the following: (1) To 
explore whether the learner is able to apply Rolle's 
Theorem when the function is not explicitly specified 
by a formula. What does it mean, geometrically, to say 
f'(c) = 0? (2) To investigate whether students are able 
to identify a non-example of Rolle’s Theorem when it 
is presented to them in the form of a graph that is rich 
enough to suggest inferences that one can draw. (3) To 
see whether students are able to relate the given 
instantiation to the formal definition. 

 The second task consisted of the following 
questions: 

1. Verify Rolle’s Theorem for the function whose 
graph is given in Figure 3. 

 

 
Figure 3. Graph for first question. 
 
2. Is Rolle’s Theorem applicable to the function 

whose graph is given in Figure 4? Give reason. 
 

 
Figure 4. Graph for second question. 
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3. For the function whose graph is given in Figure 
5, show that f(c) = 0 for some c in (0, 6). 

 

 
Figure 5. Graph for third question. 
 
4. Consider the function whose graph is given in 

Figure 6. The graph has horizontal tangents when x = 0 
and x = 3. Show that there exists a point c ∈ (0, 3) such 
that f''(c) = 0. 

 

 
Figure 6. Graph for the fourth question. 
 
Student Responses to the Second Task. The 

performance on this task can be found in Table 1. 
 

Table 1 
Performance on Second Task 
Question Number 

of Correct 
Responses 

Percentage of 
Correct 

Responses 
1 19 63 
2 18 55 
3 4 13 
4 5 16 
  
In response to the second question, some students 

demonstrated a rich concept image of differentiable 
functions that includes the necessity of a unique 
tangent. Hence they were able to identify the non-
example of a differentiable function based on this 

criterion. Five students said that the function was 
discontinuous rather than saying it was not 
differentiable when giving reasons as to why Rolle's 
Theorem was not applicable for the given curve.  

 Compared to the performance on the first and 
second questions, the students’ performance on the 
third and fourth questions was relatively poor.  The 
third question involved an application of Rolle’s 
Theorem in contexts where its need is not explicitly 
apparent. Two students unsuccessfully attempted to use 
the Mean Value Theorem to prove f'(c) = 0 in response 
to the third question. The fourth question demanded a 
leap in their thinking by expecting them to apply 
Rolle's Theorem to f'(x). In other words, the students 
had to treat f'(x) as an object and perform an action on 
it (Dubinsky, 1991), which seemed a difficult process 
for most of the students.  

 The following are responses to question three 
by students with a rich concept image. 

•  (Swamy) “Now f(x) is continuous. It has 
traveled from y = 2 to y = 3, it then goes back to y = 0 
at x = 6. So, between these two points the function 
becomes 2. Also it is continuous and differentiable and 
hence applying Rolle’s Theorem, we have a root for 
f'(x) in (0, 6).” 

• (Ram) “Since the function is increasing and 
decreasing the slope of the tangent is zero at some 
point.” 

 Swamy and Ram imagine the y-coordinate to 
be moving from point to point. This is a particularly 
rich mental representation which makes the 
Intermediate Value Theorem self-evident. Lakoff and 
Núñez (2000) argue “motion schema” to be a rich 
source from which many mathematical concepts and 
truths originate. Swamy recognized that since y is 
changing from 3 to 0, it must become 2 somewhere. 
This is a crucial step before one can invoke Rolle’s 
Theorem. Ram observed that the function is increasing 
and then decreasing. Although he did not make it 
explicit, it appears that he realized that the slope of the 
tangent is positive when the function increases and is 
negative when the function decreases. We surmise that 
it is evident to him that the slope of the tangent must be 
zero somewhere. Based on the responses, we conclude 
that Swamy and Ram possess instantiations of 
differentiable functions which have richness and 
accuracy, and capture the content of formal definitions 
and properties relevant to Rolle’s Theorem. 

Interviews 

Before the interview, we prepared the following 
questions that would encourage students to reflect on 
the salient features of Rolle’s Theorem. Understanding 
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a theorem or a concept includes being aware of a good 
supply of examples–instantiations–as well as non-
examples. This level of understanding is indicated by 
the ability to apply the concept to specific problem 
situations. With this in mind, we began the interview 
with the following questions:  

(1) Give an example of a function (using a graph) 
to which Rolle’s Theorem is not applicable. 

(2) Consider the following function: f(x) = x3 if x ≤ 
0, -x3 if x < 0. Is f differentiable? Is there an element c 
∈ R such that f'(c) = 0?  

(3) If f(x) = x2 + 3x + 7 is defined on [-2, 2], show 
that f'(c) = 0 for some c in (-2, 2). Are the hypotheses 
of Rolle’s Theorem satisfied? Is there a contradiction? 
Is the converse of Rolle’s Theorem valid? 

Abhi’s response. In her response to Question 1, 
Abhi drew the graph of an absolute value function and 
then said: “In this graph it is possible for us to draw 
two tangents for one point and hence the slope will not 
be unique. For Rolle’s Theorem to be satisfied, the 
slope of a tangent at a point should be unique. Hence 
Rolle’s Theorem is not applicable.” 

For Question 2, Abhi stated: “f'(x) = 3x2 and f'(x) = 
-3x2. So not equal.” We observe that she had given 
the mathematically correct response to the second 
question in the second task, which involved identifying 
a non-differentiable function from its graph. But she 
seemed to have difficulty in checking the 
differentiability of the piecewise function f(x) = |x|3 
from its formula.   

Finally, when responding to Question 3, Abhi said: 
“f(x) = x2 + 3x + 7 is defined on [-2, 2]. f(-2) = -1 and 
f(2) = 17. So f(a) is not equal to f(b). Hence the 
hypothesis of Rolle’s Theorem is not satisfied. The 
contradiction here is f(a) is not equal to f(b)...: The 
converse of the theorem is valid. We can see it in any 
example.” 

To gain a better understanding of how Abhi was 
conceptualizing Rolle’s Theorem, we probed deeper 
into her understanding of Rolle’s Theorem: 

I: Can you state the converse of Rolle’s Theorem?  
Abhi: If f'(c) = 0 in a graph like this [She gestures 

towards the paper and draws the following], then the 
three conditions f(a) = f(b), the graph is continuous and 
the function is differentiable will be satisfied.  

I: Can you draw the graph of y = x3? 
[Abhi sketches the graph by plotting some values.] 
I: Are the conditions of Rolle’s Theorem satisfied? 
Abhi: (Thinks for some time.) Yes.......  but, no two 

values are same. 
I: So,.. 

Abhi: (Thinks for some time.) Yeah, ...the first 
condition is not met. 

 I: What about the derivative at x = 0? 
Abhi (Pauses.) Yeah, got it. The derivative exists. 

The converse is not true! 
 Abhi believed that even when the hypothesis 

was not satisfied, the statement of the theorem was 
false and hence she perceived a contradiction. At the 
end of the interview, she was convinced about the fact 
that the converse of Rolle’s Theorem is not true. 

Sweta’s response. In her response to Question 1, 
Sweta drew the graph of the sign function and stated 
“This is not continuous.” 

For Question 2, Sweta said: “f(x) is not 
differentiable. y = |x3| and that is because it does not 
have a unique slope. No, there is no point such that 
f'(x) = 0. Let me check...[She sketches the graph of y = 
x3 and y=-x3] The graph is like that of modulus 
function. I know that modulus function [the absolute 
value function] is not differentiable. So this is also not 
differentiable. f'(x) = 3x2 f'(x) = -3x2. So not equal.” 
She was not able to proceed further because the 
moment she sees the function f(x) = |x3| she connects it 
to her pre-existing knowledge of the modulus function 
not being differentiable.  

Finally, in her response to Question 3, Sweta said 
“Rolle’s Theorem is not satisfied. f(a) is not equal to 
f(b). Hence a contradiction.” When asked if the 
converse of Rolle’s Theorem was valid, Sweta thought 
for a minute, and then responded “I think it is true.” 

Sweta also had difficulty with what constitutes a 
contradiction to Rolle’s Theorem. Both Abhi and 
Sweta seemed to instantiate a non-differentiable 
function to be that of an absolute function. Both Abhi 
and Sweta demonstrated difficulty in writing the 
converse of Rolle’s Theorem. This is probably due to 
the fact that the theorem has multiple hypotheses. Also 
they had trouble with what would, or would not, 
contradict Rolle’s Theorem. However, the writing 
tasks and the follow-up interviews seem to have 
enriched their understanding of Rolle’s Theorem. 

The teachers who used this message design logic 
also expressed a genuine desire to encourage student 
learning. They talked about saying what needed to be 
said in order to accomplish specific learning goals. The 
teachers, not the students, defined the direction of 
classroom discussion and activity. These teachers 
assumed that they knew what the students needed to 
hear to move students closer to the desired outcome. 

Conclusion 

We aimed to study students’ understanding of 
Rolle’s Theorem by setting up specific tasks which 
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involved stating the theorem, relating it to the Mean 
Value Theorem, and using it to solve problems 
involving graphs. Two students, Abhi and Sweta, 
participated in interviews during which further 
problems and questions were put forth to help us gain 
deeper insight into their understanding of Rolle’s 
Theorem. 

 In response to the first task, which asked them 
to state Rolle’s Theorem, nine students stated the 
converse. Although there were syntactic errors in 
stating the converse, it did not seriously affect their 
ability to solve simple problems as they know what to 
do to arrive at the desired solutions. Recall from Table 
1, that 63% of the students answered the first question 
of the second task correctly. 

The instantiations in the context of Rolle’s 
Theorem seem to involve, in most cases, familiar 
functions or graphs such as the parabola. For some 
students (e.g. Sweta), this leads to a misunderstanding 
or misinterpretation of the hypothesis or conclusion of 
the theorem. Their instantiations are too specialized: 
they lack richness and accuracy.  

We note that none of the students mentioned, in 
response to Question 2 of Task-I, that Mean Value 
Theorem is a generalization of Rolle’s Theorem.  Also, 
these students believe that f(a) should not equal f(b) in 
order for the Mean Value Theorem to be applicable. 
Again, this could be attributed to viewing theorems as 
tools for solving problems rather than as mathematical 
entities which can subsume one another.  

Many students had difficulty with the last two 
questions of Task-II (only 13% and 16% gave correct 
responses). This was because Rolle’s Theorem could 
not be directly applied to the function given as in 
Question 3.  This particular example first required 
invoking the Intermediate Value Theorem. In Question 
4, the theorem had to be applied to the derivative of the 
function whose graph was given.  Both of these 
questions required linking Rolle’s Theorem to other 
calculus concepts.  

Because many students confused the statement of 
Rolle’s Theorem with its converse in response to 
Question 1 in Task-I, we asked questions related to the 
converse of Rolle’s Theorem during the interviews. 
Abhi and Sweta’s response to these questions led us to 
some interesting observations. We believe that their 
responses are representative of the other students who 
participated.  

Both Abhi and Sweta had difficulty stating the 
converse of Rolle’s Theorem. The converse of “If P1, 
P2, P3, then Q” is indeed “If Q, then P1, P2, P3”. 
However, mathematically, the statement of Rolle’s 

Theorem is to be reworded in the form “Assume P1, P2 
hold. If P3, then Q.” In the converse statement, one 
assumes that the function f is continuous in [a, b] and 
is differentiable in (a, b). The assertion, then, is: “If 
f'(c) = 0 for some c ∈ (a, b), then f(a) = f(b)”, or more 
generally, a mathematician would state the converse as 
follows: “If f'(c) = 0, in any interval containing c in 
which f is continuous and differentiable, there exist a, b 
such that f(a) = f(b).” Of course, as Sweta stated 
correctly, f'(c) = 0 does not imply the function is 
continuous.  She offered suggested the sign function as 
a counterexample.  However, the mathematical 
subtlety has been missed when one places equal 
importance on all the hypotheses of a statement. Since 
the general context for these theorems is differentiable 
functions, P1 and P2 are taken for granted, and the 
main point is the equality f(a) = f(b).    

Some common misconceptions arose for both Abhi 
and Sweta. They both perceived a contradiction in a 
statement if the hypothesis is not valid. In addition, 
they incorrectly viewed the converse to be valid until 
we suggested a specific counterexample.  They also 
thought that f(x) = |x|3 cannot be differentiable based 
on a comparison with the absolute value function, 
which is not differentiable at the origin. Although there 
is no significant difference in their performance levels, 
it appears that there are some qualitative differences in 
their ways of thinking about concepts related to Rolle’s 
Theorem. While Abhi expresses the statement of 
Rolle’s theorem in terms of slope of tangents, Sweta 
seems to have misunderstood the hypothesis f(a) = f(b) 
as saying that the point D (in Figure 1) divides the 
curve into two equal parts. It appears that Abhi prefers 
to think more geometrically and relates to examples 
and non-examples, i.e. instantiations, whereas Sweta 
seems to view each problem as an independent task.   

To summarize, our experiment reveals possible 
difficulties students have in understanding Rolle’s 
Theorem, which involves making sense of it, relating 
to other concepts such as the Mean Value Theorem and 
intermediate value theorem, as well as the ability to use 
it in situations when the function is not explicitly 
given.   

The notion of ‘container schema’ elucidated by 
Lakoff and Núñez (2000) underpins one of the 
important ways mathematical relationships are 
understood. Perhaps, the students in our sample have 
yet to realize that just as one object can be contained in 
another, a mathematical statement can also be 
‘contained’ in another. For example one student wrote: 
“Now f(x) is continuous. It has travelled from y = 2 to 
y = 3, it then goes back to y = 0 at x = 6. So, between 
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these two points the function becomes 2.” This is an 
instance of the student possessing the “Source-Path-
Goal schema.” In such a schema, we imagine an object 
to be moving from a source location to a target 
location, along a specific trajectory.  Lakoff and Núñez 
(2000) argue that these schemas are present 
everywhere in mathematical thinking. They cite the 
example of functions in the Cartesian plane, which are 
conceptualized as that of motion along a path, 
evidenced by such phrases as “going up” or “reaching 
a maximum” are used to describe them as an instance 
of the motion schema. From our study, we observe that 
students who possess these schemas have rich concept 
images, which aid them in their reasoning tasks. In 
other words the ability to transfer everyday thinking to 
abstract mathematical notions guides them to possess 
versatile concept images.   
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