e-Learning Indicators: a Multi-Dimensional Model for Planning and Evaluating e-Learning Software Solutions

Bekim Fetaji and Majlinda Fetaji
South East European University, Tetovo, Macedonia
b.fetaji@seeu.edu.mk
m.fetaji@seeu.edu.mk

Abstract: As a number of recent studies suggest applications of networked computers in education have very inconsistent results ranging from success stories to complete failures. Literally, thousands of e-learning projects have been carried out that greatly differ in their outcomes. Until now, however, there is no systematic or a standardized way of planning, comparing and evaluating e-learning projects, their outcomes, and their effectiveness. Therefore, the main objective of this research was an investigation of possible approaches to systematic planning, development and evaluation of e-learning initiatives and their corresponding e-learning projects. The result of this work is a multidimensional model of e-learning Indicators that are defined as the important concepts and factors that are used to communicate information about the level of e-learning and used to make management decisions when planning e-learning strategy. The lack of knowledge of the learner audience as well as of the factors influencing that audience and e-learning projects overall results in failing to provide satisfactory support in the decision making process. In order to address this issue, an approach dealing with e-learning indicators is proposed. Having a standardised guide of e-learning indicators accepted by the scientific community enables comparison and evaluation of different initiatives regarding e-learning in a standardised manner. The proposed E-learning Indicators Methodology enables successful planning, comparison and evaluation of different e-learning projects. It represents an empirical methodology that gives concrete results expressed through numbers that could be analysed and later used to compare and conclude its e-learning efficiency. A practical value of this approach was analyzed in the realized comparative analyses of two different institutions using different LMS tools: Angel and Moodle focusing on comparison and evaluation of e-learning indicators of these two e-learning projects. With the application of this methodology in e-learning projects it is more likely to achieve better results and higher efficiency as well as higher Return on Investment-ROI.

Keywords: e-learning indicators, evaluation of effectiveness, learning outcomes

1. Introduction

e-Learning indicators are defined as the important concepts and factors that are used to communicate information about the level of e-learning and used to make management decisions when planning e-learning strategy for an institution or University according to the study of Fetaji et al (2007). The purpose was to raise the awareness of the factors and concepts influencing e-learning in order to enhance learning and identify the nature of obstacles being faced by e-learners. What is proposed is this methodology approach to develop any e-learning initiative. Because there are too many factors, personalizations and specifics related to each situation and circumstances it is considered that would be wrong offering one size solution for all.

It is of great importance to have standardised guides of e-learning indicators accepted by the scientific community to be able to compare and to evaluate the different initiatives regarding e-learning in a standardised manner.

In order to define and assess the e-learning indicators the data have been gathered from interviews with e-learning specialists, 2 focus groups (one student and one instructors), web based survey of academic staff and students and literature review of similar previous research work found at (Brusilovski, 1996). The web based survey was realised through questionnaire that was developed in three cycles. In the first cycle the questions were developed based on the e-learning indicators. For most of the e-learning indicators there was just one question to cover it, while for some 2 questions. At the beginning developed were more questions but after thorough consultations with survey experts shortened and come up with 23 questions. In the second cycle the developed survey questionnaire was tested on a 2 different focus groups. One group consisted of students and the other group was from instructors. After analyses of the survey data they were presented to the focus groups and confronted them with how much they agreed and considered these results as realistic and accurate. The initial response was that although the survey captures in substantial level the real situation there were a lot of discussions especially on the student focus group regarding the appropriateness of the
survey questions. In discussion with both of the focus groups most of the questions were changed according to the discussions and proposals of the group. In the third cycle both of the focus groups had filled in the new survey and after the survey data were given to them both of the focus groups agreed that it really gave an accurate clear picture of the participants.

The survey was designed following the rule of thumb for all communications: Audience + Purpose = Design. This survey was divided into 18 (eighteen) sections to cover all the e-learning indicators previously defined and had 23 (twenty three) questions in total. It was communicated to the participants and provided as a link in the message board of the e-service system of the University.

As e-learning indicators they were defined as: (1) learner education background; (2) computing skills level (3) type of learners, (4) their learning style and multiple intelligence, (5) obstacles they face in e-learning (e-learning barriers), (6) attention, (7) content (suitability, format preferences), (8) instructional design, (9) organizational specifics, (10) preferences of e-learning logistics; (11) preferences of e-learning design; (12) technical capabilities available to respondents; (13) collaboration; (14) accessibility available to respondents; (15) motivation, (16) attitudes and interest; and (17) performance-self-efficacy (the learner sense their effectiveness in e-learning environment); (18) learning outcomes. Recommendations as to the defined e-learning indicators for starting points when developing e-learning initiatives and based on the measurements of these e-learning indicators to tailor the specifics of e-learning. Each e-learning initiative should measure the provided indicators and based on them to design and build their e-learning sustainability.

2. Research method

From the results of the secondary research based on the literature review a grounded theory was developed as a systematic methodology to formulate a theory, either substantive or formal, about improving and enhancing e-learning by addressing the deficiencies from the findings and in this manner to contribute in enhancing e-learning effectiveness. In order to achieve this, the following research objectives have tried to be addressed:

- Review key authoritative literature on e-learning trends, e-learning standards, technologies and e-learning systems provided as e-learning solutions, and evaluation of e-learning effectiveness in order to provide a thorough understanding of e-learning in general and associated knowledge dissemination.
- Discuss the advantages and disadvantages of different approaches to e-learning solutions.
- Analyses different e-learning environments and solutions
- Asses, measure and evaluate concepts and factors influencing e-learning defined as e-learning indicators
- Design, develop and conduct experiments in order to assess the best modelling approach to developing e-learning software solutions
- Connect e-learning indicators with each e-learning software solution approach and learning theory and design
- Analyse and discuss the data gathered from the experiments
- Conclude and deliver recommendations for enhanced learning and future improvements.

The research method used was qualitative research and comparative analyses of factors influencing e-learning as well as an in-depth literature review of e-learning in general. The secondary research consisted of e-learning trends, e-learning technologies and solutions, e-learning standards, learning theories, concepts and factors that influence e-learning. Then grounded theory research was realised through exploratory research to determine the best research design and then constructive research was undertaken to build the software solution followed by empirical research to describe accurately the interaction between the learners and the system being observed. The data for this research was gathered from research interviews with e-learning specialists and participants, focus group and a web based survey as well as printed hard copy survey of academic staff and students.

Key variables and themes that have been studied are: students needs analyses, usage environment feasibility analyses, e-learning indicators, e-content and learning processes issues, feasibility analyses of authoring issues, assessment of e-learning effectiveness, and discussion of the purpose and evaluation of results of the research and proposed recommendations for e-content and e-learning
processes issues, applications specifics and requirements in correlation with the environment and situation of the Communication Sciences and Technologies Faculty at south East European University, accessibility and learning specifics based on learners needs, deployment, testing and evaluation of the solution.

Interviewed and realised direct observation of students as program implementation case study for the three subjects: Advanced Elective course “Object Oriented Programming in Java” and the two core courses “Software Engineering” and “Algorithms and Data Structures”. There implemented the solutions proposed under the part of the research study on e-content issues and e-learning processes.

What was developed was a novel e-learning indicators-(ELI) model to be used for developing information retrieval courseware’s by concentrating on previously assessed e-learning indicators. Secondly, the research conveyed the need for close correlation of software development and e-learning pedagogy. It is recommended that technology should adapt to theories of learning and e-learning indicators assessed earlier. This process modelling based on e-learning indicators should be used as guidelines in similar developments.

A pilot study was conducted on e-learning interactive courseware applying network analyses method in order to find the critical activities and assess the risks. The main focus and aim of research was set on software development proposed and based upon the e-learning indicators and the design of the courseware in compliance with theories of learning and didactical pedagogical approach. For the assessment of e-learning effectiveness proposed a methodology, called ELUAT (E-learning Usability Attributes Testing), for which developed an inspection technique the Predefined Evaluation Tasks (PET), which describe the activities to be performed during inspection in the form of a predefined tasks, measuring previously assessed usability attributes.

3. Data collection from the experiments

Depending on each of the Software Lifecycle used for the e-learning software solutions developed in particular for the given experiment used is the ELUAT methodology and PET testing as described thoroughly at Fetaji et al (2007). Questionnaires, surveys, focus groups, usability testing and other software testing groups were used. Groups of students filled out different surveys discussing e-learning indicators, barriers to distance education and usability surveys of e-learning software solutions modelled and developed. The return rate for the surveys for each experiment was different and the highest was for distance education with 64.89 %, (The distance education program at the moment has 81 undergraduate full time students, and 13 part time students, or in totals 94 students) while for the e-learning indicators the response rate was 9.7 % (There were in total 701 student surveys filled. The University at the moment of the research survey has 6.386 undergraduate and 188 postgraduate full time students, and 643 part time students, or in total 7217 students). The majority of the participants (63.8%) have used the e-learning software solutions discussed. Ten percent of the participants took fewer than all of the courses mentioned previously since Object Oriented Programming in Java was an elective subject. Large amounts of data was collected and used from the literature reviews and inputs from other related projects.

4. Data analysis

Several statistical procedures were conducted for data analysis. First, the zero-order correlations were computed among all variables. The aim of this operation was to have an initial test of whether there were relationships among the variables. The interaction of technology with teaching or social presence was considered if including those items would increase the power of the regression model substantially. The standard multiprogession procedures were conducted with course subjective satisfaction through the perceived learning outcome, learning engagement assessed through time to learn and time of performance as dependent variables. All assumptions of normality, usability, of residuals were checked in those regression analyses. In order to handle those data the triangulation technique from Dumas and Redish (1999) was used, were we look at all data at the same time to see how the different data supports each other.
5. e-Learning indicators

5.1 e-Learning indicators definition

E-learning indicators have been defined with help of different focus groups, realised literature review and a web based survey of academic staff and students in the framework of South East European University as well as revised closely with experts in the field during participation in several research projects.

5.2 e-Learning indicators analyses and specification

(1) Learner education background together with his cultural background is set as indicator since it is a direct factor that is associated and impacts e-learning. According to Gatling et al., (2005), students today come from a variety of cultural backgrounds and educational experiences outside of the traditional classroom. How do students construct meaning from prior knowledge and connect it with the new experiences? Based on this facts and interviews with e-learning specialist it was set it as important indicator.

(2) Computing skills level of the learner is set as indicator since it directly influences the way e-learning is conducted with the use of Information and communication technologies (ICT) and use of computers and the computing skills requirements are essential in learning. “As we move toward the 21st century, anyone who is not "computer literate" will find themselves at a disadvantage when competing in the job market." (Johnson, Gatling, Hill, 1997).

The indicator (3) type of learners they are depends primarily on the balance in the two dimensions of the Learning Style scale model formulated by Richard M. Felder and Linda K. Silverman of North Carolina State University according to Felder & Soloman (n.d) based on four dimensions (active/reflective, sensing/intuitive, visual/verbal, and sequential/global). According to Felder & Soloman (n.d) “students preferentially take in and process information in different ways: by seeing and hearing, reflecting and acting, reasoning logically and intuitively, analyzing and visualizing, steadily and in fits and starts. Teaching methods also vary. Some instructors lecture, others demonstrate or lead students to self-discovery; some focus on principles and others on applications; some emphasize memory and others understanding. Active learners tend to retain and understand information best by doing something active with it, discussing or applying it or explaining it to others. Reflective learners prefer to think about it quietly first. Sensing learners tend to like learning facts; intuitive learners often prefer discovering possibilities and relationships. Visual learners remember best what they see: pictures, diagrams, flow charts, time lines, films, and demonstrations. Verbal learners get more out of word, written and spoken explanations. Sequential learners tend to gain understanding in linear steps, with each step following logically from the previous one. Global learners tend to learn in large jumps, absorbing material almost randomly without seeing connections, and then suddenly getting it”. Therefore assessing and knowing the learning audience is crucial in order to know whom to support and there is an extensive need for this input data in order for the e-learning initiative to be successful and effective. Then after the measurements the learners are divided into groups so called “collectives” were personalisation is offered to the specifics of the collective majority (in Universities these are the departmental levels) primarily based on learning style categorization and type of learner they are according Felder-Silverman model for learning style categorization (Felder, 1993).

The importance of the type of learner and (4) their learning style and multiple intelligence is for the both sides: instructor and student. For instructors it is of importance since it reflects the preferences of Learning style in their teaching and delivery style to students. We advise to tend to use each learning style to teach also in a delivery type suited to other types of learners and trying to bring it closer and generalize to include all the types using visualization and verbal communications, as well as other communication tools. According to Tomas Armstrong (n.d.) Multiple Intelligences are eight different ways to demonstrate intellectual ability. 1) Linguistic intelligence (“word smart"); 2) Logical-mathematical intelligence (“number/reasoning smart”); 3) Spatial intelligence (“picture smart”); 4) Bodily-Kinesthetic intelligence (“body smart”); 5) Musical intelligence (“music smart”); 6) Interpersonal intelligence (“people smart”); 7) Intrapersonal intelligence (“self smart”); 8) Naturalist intelligence (“nature smart”). Again assessing the audience and having this input data is very important e-learning indicator in planning and developing e-learning initiative.
The indicator (5) obstacles they face in e-learning (e-learning barriers) is set as important based on interviews and speaking with e-learning specialists. Each e-learning project has different barriers and they are specified as learner input and depend from a situation.

Assessing what the learner audience faces as barrier is crucial in achieving effective e-learning. Indicator (6) attention is set as very important. Attention cues when the learners begin to feel some mental workload, Ueno, M. (2004).

(7) e-content (suitability, format preferences), e-learning content (e-content) considered as vehicle of the e-learning process and knowledge construction. The quality of the virtual learning environment is mainly depending on the quality of the presented e-learning content. Fetaji, B. (2006).

Indicator (8) Instructional design has gained significant prominence in e-learning for a number of compelling reasons. One of them is the possibility for instructional design to systematically address the need for creating and evaluating students' learning experience as well as learning outcome. The other is instructional design can help faculty to focus on using the appropriate format and tools for the appropriate learning objectives. Fetaji, B. (2006).

Indicator (9) organizational specifics - every institution has its specific business processes that influences and impacts e-learning, Galotta et. al. (2004)

(10) preferences of e-learning logistics - targeted at learners of different experience levels and organizational background/hierarchy, based on the ELA model-the European Logistics Association (ELA), (Zsifkovits, 2003). The following 7 (seven) variables have been set as priority in determining viable learning environment and its e-learning logistics: 1) Interoperability; 2) Pricing; 3) Performance; 4) Content development; 5) Communication tools; 6) Student Involvement Tools; 7) Evolving technology.

(11) indicator preferences of e-learning design; designing instruction that acknowledges that students differ in their learning preferences and abilities and that instruction needs to be flexible to address these differences, (Kumar 2006).

The next indicators (12) technical capabilities available to respondents (13) collaboration; (14) accessibility available to respondents, areas defined as important indicators in discussions with e-learning specialist and experts. They represent the essential influencing factors on e-learning mentioned in different studies such as (Coleman, B., Neuhauser, J. & Fisher, M. 2004).

(15) Motivation is essential to learning and performances, particularly in e-learning environments where learners must take an active role in their learning by being self directed (Lee, 2000).

(16) Attitudes and interest. A review of studies on attitudes toward learning and using information technology in education has revealed that most studies have shown that students’ attitudes toward technology are critical, (Liu, et. al. 2004);

(17) performance: self-efficacy (the learner sense their effectiveness in e-learning environment); Self-efficacy refers to people beliefs about their capabilities to perform a task successfully at designated levels, (Bandura, 1997).

(18) According to Jenkins, A. and (Unwin, 1996) learning outcomes are defined as statements of what is expected that a student will be able to do as a result of a learning activity. Learning outcomes are usually expressed as knowledge transfer, skills, or attitudes (Unwin, 1996). Therefore, it is a very important indicator in planning, designing and evaluating e-learning.

5.3 e-Learning indicators assessment, measurement and evaluation

In order to investigate e-learning indicators in planning e-learning projects and evaluating e-learning projects a comparison of two e-learning projects using the e-learning indicators methodology was realised. The two e-learning project realised were using two different Learning Management systems: Angel LMS and Moodle and were used in different institutions and had different participants. ANGEL LMS is the learning management system of CyberLearning Labs, today known as Angel Learning (www.angellearning.com). It evolved from research conducted in mid-1990s in the CyberLab of
Indiana University-Purdue University. Later the Indiana University Research and Technology Corporation (IURTC), an independent corporation affiliated with Indiana University, created the CyberLearning Labs today known as Angel company in mid-2000. This research was realized under the South East European University “E-Learning Framework” research project were the author of this research was also the initiator and principal investigator as well as project coordinator.

In order to investigate e-learning indicators in planning phase of e-learning projects a case study was initiated in order to asses, measure and evaluate e-learning indicators a web based survey has been used. The survey was designed following the rule of thumb for all communications: Audience + Purpose = Design. The survey was divided into 18 (eighteen) sections to cover all the e-learning indicators previously defined.

It was communicated to the participants and provided as survey in Angel LMS. It was offered to two different department from two different Universities. One using angel LMs as e-learning platform and the other using Moodle as learning platform.

For the first e-learning project there were in total 701 student surveys filled. The answer rate was 30.48%. There were 701 filled survey, and the total number of students in using Angel platform was 2300. The data was collected using Angel Learning Management System and further analyzed in Excel. The second e-learning project that is using Moodle as e-learning platform was focused on computer Science Faculty and in total 44 surveys were filled and the answer rate was 9.78%.

5.4 Survey analyses and results

5.4.1 Analyses of indicator: Self efficacy in e-learning

The survey questions are given in Appendix A.

Please rate your self efficacy in e-learning. How effective and efficient you are?

<table>
<thead>
<tr>
<th></th>
<th>Bad</th>
<th>Not so good</th>
<th>OK</th>
<th>Good</th>
<th>Very good</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

5.4.2 ANGEL LMS - Findings for indicator: Self efficacy in e-learning

Most of the respondents, 43.7% have rated them self’s as good their efficacy in e-learning. While 24.1 % have rated them self’s as very good.

On the other hand 1% of them were not satisfied with the e-learning environment and their efficacy and have rated them self’s as bad, 4.7 % not so good, and 26.5% rated them self’s as OK, meaning they are partially satisfied with the e-learning system and their effectiveness in it.

![Self Efficacy in e-learning](image)

Figure 1: Self efficacy in e-learning
5.4.3 Moodle LMS- Findings for indicator: Self efficacy in e-learning

Most of the respondents, 33.17%, have rated themselves as good their efficacy in e-learning. While 26.54% have rated themselves as very good.

On the other hand, 1.12% of them were not satisfied with the e-learning environment and their efficacy and have rated themselves as bad, 9.7% not so good, and 29.47% rated themselves as OK, meaning they are partially satisfied with the e-learning system and their effectiveness in it.

![Self Efficacy in e-learning](image)

Figure 2: Self efficacy in e-learning

5.4.4 Discussion of the findings for indicator: Self efficacy in e-learning

As Bandura (1997) defined it, self-efficacy refers to people beliefs about their capabilities whether or not they can perform successfully at designated levels using the e-learning environment. From the analyses of the findings it indicates that there is an increase in student’s achievement after their engagement in an e-learning environment. Overall 94.3% of the students in Angel and 89.18% of students in MOODLE are satisfied with their self-efficacy and have shown progress moving in the new e-learning environment from the traditional classroom. However, there are 5.7% of the students (ANGEL) and 10.82% (MOODLE) that are not satisfied with their achievement. The main reason among others for this result is identified in the usability issues of the two offered e-learning systems. Other reasons will be discussed in conclusions. However in general students rated their self efficacy as better in using ANGEL compared to MOODLE.

5.4.5 Analyses of indicator: Type of learner

What type of learner you are? (Please Circle one option: a) or b) for each row)

a) ACTIVE or **b) REFLECTIVE Learner**

(Explanations: Active learners tend to retain and understand information best by doing something active with it—discussing or applying it or explaining it to others. Reflective learners prefer to think about it quietly first.)

5.4.6 ANGEL LMS - Findings for indicator: Type of learner

![Active Learner, 72.61%](image)

Figure 3: Findings for indicator: Type of learner
On the whole, 72.61% of respondents rated themselves as Active learners while the others 29.24% as Reflective learners.

5.4.7 MOODLE - Findings for indicator: Type of learner

![Figure 4: Findings for indicator: Type of learner](image)

On the whole, 54.28% of respondents rated themselves as Active learners while the others 45.72% as Reflective learners.

5.4.8 Discussion of the findings for indicator: Type of learner

The indicator (3) type of learners they are depends primarily on the balance in the two dimensions of the Learning Style scale model formulated by Richard M. Felder and Linda K. Silverman according to Felder & Soloman (n.d). The findings indicate that students in using ANGEL are primarily of the Active type of learner 72.61% in comparison to 29.24% Reflective type of a learner. The students in using MOODLE are primarily of type reflective learners 54.28% in comparison to 45.72%. These findings indicate that the structure and curriculum of the studies should change and embrace this type of learner more by preferring and choosing a hands on approach in comparison to the theoretical approach for the learners using ANGEL and the opposite for the learners using MOODLE were learners should be provided more reading materials and solved examples so they can reflect this and learn by doing this.

5.4.9 Analyses of indicator: Type of learner

a) SENSING or b) INTUITIVE Learner

(Explanations: Sensing learners tend to like learning facts; intuitive learners often prefer discovering possibilities and relationships.)

5.4.10 ANGEL LMS - Findings for indicator: Type of learner

![Figure 5: Findings for indicator: Type of learner](image)
On the whole, 62.62% of respondents rated themselves as Sensing learners while the others 37.37% as Intuitive learners.

5.4.11 MOODLE - Findings for indicator: Type of learner

![Pie chart showing Sensing and Intuitive learners]

Figure 6: Findings for indicator: Type of learner

On the whole, 43.91% of respondents rated themselves as Sensing learners while the others 56.09% as Intuitive learners.

5.4.12 Discussion of the findings for indicator: Type of learner

The findings indicate that ANGEL LMS students are primarily of type sensing and they tend to learn by learning facts 62.62%. The minority group of the students are of type intuitive learners 37.37% and they prefer discovering possibilities and relationships for themselves. These finding suggests that the content created and used in the e-learning environment should be concentrated around facts and detailed descriptions rather than on living this to students to discover for themselves. MOODLE students are primarily of type Intuitive 56.09% compared to the sensing group with 56.09%. For the students of this type the recommendations are to provide more information and case studies for students in order to intuitively learn and find the answers.

5.4.13 Analyses of Indicator: Type of learner

a) VISUAL or b) VERBAL LEARNER

(Explanations: Visual learners remember best what they see--pictures, diagrams, flow charts, timelines, films, and demonstrations. Verbal learners get more out of words-written and spoken explanations.)

5.4.14 ANGEL LMS - Findings for indicator: Type of learner

![Pie chart showing Visual and Verbal learners]

Figure 7: Findings for indicator: Type of learner

On the whole, 59.34% of respondents rated themselves as Visual learners while the others 40.66% as Verbal learners.
5.4.15 MOODLE - Findings for indicator: Type of learner

![Type of Learner](image)

Figure 8: Findings for indicator: Type of learner

On the whole, 51.42% of respondents rated themselfs as Visual learners while the others 49.58% as Verbal learners.

5.4.16 Discussion of the findings for indicator: Type of learner

The findings indicate that ANGEL students are 59.34% while MOODLE 51.42% primarily of type Visual learners and they tend to learn by pictures, diagrams, flow charts, time lines, films, and demonstrations. The other group of the students is of type verbal learners Angel 40.66% and MOODLE 49.58% and they prefer to learn out of words, written and spoken. This findings suggests that the e-content created and used in the e-learning environment should contain more multimedia elements like pictures, diagrams, flow charts and demonstrations rather than just text explanations.

5.4.17 Analyses of indicator: Type of Learner

a) **SEQUENTIAL** or b) **GLOBAL LEARNER**

(Explanations: Sequential learners tend to gain understanding in linear steps, with each step following logically from the previous one. Global learners tend to learn in large jumps, absorbing material almost randomly without seeing connections, and then suddenly "getting it.")

5.4.18 ANGEL LMS - Findings for indicator

![Type of Learner](image)

Figure 9: Findings for indicator

On the whole, 61.63% of respondents rated themselfs as Sequential learners while the others 38.37% as Global learners.
5.4.19 MOODLE - Findings for indicator

![Type of Learner](image)

Figure 10: Findings for indicator

On the whole, 52.83% of respondents rated themselves as Sequential learners while the others 47.17% as Global learners.

5.4.20 Discussion of the findings

The findings indicate that 61.63% Angel students and 47.17% Moodle students are primarily of type Sequential learners and they tend to learn in linear steps, with each step following logically from the previous one. The other group of the students are of type Global learners 38.37% Angel students and 52.83% Moodle students and they prefer to learn in large jumps, absorbing material almost randomly without seeing connections, and then suddenly "getting it.". This findings suggests that the e-content created and used in the e-learning environment should present the subject sequentially and then progressing step by step to the global and general issues for Angel environment students while for the Moodle environment students the content provided should contain information that provides global picture of the content.

5.4.21 Analyses of indicator: Learning style and intelligence

1) Linguistic ("word smart", sensitivity and ability to spoken and written language):
2) Logical-mathematical ("number/reasoning smart", analyze problems logically, investigate issues scientifically)
3) Spatial ("picture smart", potential to recognize and use the patterns of wide space)
4) Bodily-Kinesthetic ("body smart", mental abilities to coordinate bodily movements)
5) Musical ("music smart", skill in the performance, composition, and appreciation of musical patterns)
6) Interpersonal ("people smart", capacity to understand the intentions, motivations and desires of other people)
7) Intrapersonal ("self smart", capacity to understand oneself, to appreciate one's feelings, fears and motivations)
8) Naturalist ("nature smart", recognize, categorize certain features of the environment)

5.4.22 ANGEL LMS - Findings for indicator

![Learning Style](image)

Figure 11: Findings for indicator
5.4.23 MOODLE - Findings for indicator

![Learning Style Pie Chart]

- Linguistic: 11.85%
- Logical-mathematical: 36.55%
- Spatial: 17.84%
- Bodily-Kinesthetic: 4.63%
- Musical: 2.42%
- Linguistic: 5.16%
- Naturalist: 5.80%
- Boddily-Kinesthetic: 15.75%
- Intrapersonal: 11.85%
- Interpersonal: 17.84%

Figure 12: Findings for indicator

5.4.24 Discussion of the findings

The findings indicate that Angel and Moodle students are more or less with a balanced and similar learning style and intelligence were slightly prevails the Logical-mathematical, and linguistic style and intelligence preferences.

5.4.25 Analyses of indicator: Obstacles - borders

Please define the obstacles you face in e-learning?

5.4.26 ANGEL LMS - Findings for indicator

![Obstacles Pie Chart]

- Computer skills: 10.50%
- Learning Style: 9.65%
- content suitability: 9.65%
- Computer access: 8.79%
- Internet connection: 13.29%
- instructional design: 12.86%
- Personal: 12.97%
- Organisational: 9.75%
- Location based: 10.40%

Figure 13: Findings for indicator

5.4.27 MOODLE - Findings for indicator

![Obstacles Pie Chart]

- Computer skills: 1.00%
- Learning Style: 24.85%
- content suitability: 14.49%
- Computer access: 6.83%
- Internet connection: 3.29%
- instructional design: 14.98%
- Personal: 22.92%
- Organisational: 9.04%
- Location based: 9.04%

Figure 14: Findings for indicator
5.4.28 Discussion of the findings

The findings indicate that there are a lot of obstacles and barriers to e-learning and they are rated as follows in percentage: Angel: Based on these findings the internet connection and e-content not suited to learners learning style are rated as the biggest obstacles and barriers to enhanced learning. Moodle: Based on the findings content suitability, personal issues and learning style are rated as the biggest obstacles to enhanced learning.

5.4.29 Analyses of indicator: Attention

What captures best your attention in ANGEL that helps you learn best?

5.4.30 ANGEL LMS - Findings for indicator

![Figure 15](https://www.ejel.org)

The findings indicate that e-learning attention is based on different factors and they are rated as follows in percentage: 39.31% rated that their attention on Lessons; 11.40% rated that their attention on Calendar; 13.43% rated that their attention on Forum; 5.85% rated that their attention on Chat; 6.00% rated that their attention on Surveys; 14.70% rated that their attention on email feature; 9.30% rated that their attention on other factors.

5.4.31 MOODLE - Findings for indicator

![Figure 16](https://www.ejel.org)

The findings indicate that e-learning attention is based on different factors and they are rated as follows in percentage: 89.31% rated that their attention on Lessons; 0.14% rated that their attention on Calendar7.37% rated that their attention on Forum; 0.62% rated that their attention on Chat; 0.23% rated that their attention on Surveys; 1.03% rated that their attention on email feature; 1.30% rated that their attention on other factors.

5.4.32 Analyses of indicator: Co Findings for indicator ntent format

If you could choose different formats for the same content which one do you think is best to convey knowledge and to learn from?
5.4.33 ANGEL LMS - Findings for indicator

![Pie chart showing content formats for ANGEL LMS]

Figure 17: Findings for indicator

5.4.34 MOODLE - Findings for indicator

![Pie chart showing content formats for MOODLE]

Figure 18: Findings for indicator

5.4.35 Discussion of the findings

Most of the respondents, in both of the environments prefer mostly a combination of all media in representing the course e-content. Then the preferences are for Text as their representation of learning e-content, then respondents prefer Video as their e-content, Graphics and animation representation of their learning e-content. This data highlights the importance of the e-learning content and its format of representation which should be provided in different formats and most desirably as combination of all the media. The structure and interactivity should also be embedded in the content as well and provide clear summary and outcomes for the e-content.

5.4.36 Analyses of indicator: Optimal course to learn

When is your optimal time to learn, what do you prefer?

- a self-paced e-learning course completed independently
- an e-learning course facilitated by an instructor who requires completed assignments and discussions with peers
- a real-time e-learning course conducted online with a facilitator and participants in different locations
5.4.37 ANGEL LMS - Findings for indicator: Optimal course to learn

Figure 19: Findings for indicator: Optimal course to learn

Most of the respondents, 53% prefer a real-time (synchronous) class conducted by a facilitator and participants in different locations. 12%, prefer an asynchronous e-learning course facilitated by an instructor who requires completed work and participation in discussions. Only 35% prefer a self-paced course. This data highlights the importance of a facilitator who can structure interaction and provide assistance and accountability.

5.4.38 MOODLE - Findings for Indicator: Optimal course to learn

Figure 20: Findings for indicator: Optimal course to learn

Most of the respondents 55% prefer a self-paced course. Then, 34% prefer a real-time (synchronous) class conducted by a facilitator and participants in different locations. 11%, prefer an asynchronous e-learning course facilitated by an instructor who requires completed work and participation in discussions. This data highlights the importance of having a self-paced course were the focus will be in the e-content since the content is the main vehicle into learning.

5.4.39 Analyses of indicator: Optimal time to learn

When is the best time for you for a real-time online classes or online discussion with your instructor or colleague student?
5.4.40 ANGEL LMS - Findings for indicator

![Optimal time to learn for ANGEL LMS](image)

Figure 21: Findings for indicator

5.4.41 MOODLE - Findings for indicator

![Optimal time to learn for MOODLE](image)

Figure 22: Findings for indicator

In Angel: Most of the respondents, 26%, prefer Evenings/nights for online classes or online discussion. 23% prefer Weekdays Monday to Friday, 22% prefer afternoons, 16% prefer Weekends Saturday and Sunday, and 13% prefer morning for online classes and online discussions. This data suggests that e-learning most preferred efficient time is during evenings in the weekdays, second option is at least to be in the afternoon and very few learners desire to learn during weekdays. In Moodle: Most of the students 43% prefer weekdays as optimal time to learn. Then afternoon is the second choice with 30% and morning with 17% while evenings/nights with 10%.

5.4.42 Analyses of indicator: Online positives

If you study at home or workplace, how much do you agree with the following statements?

5.4.43 ANGEL LMS - Findings for indicator

![E-Learning preferences for ANGEL LMS](image)

Figure 23: Findings for indicator
5.4.44 MOODLE - Findings for indicator

![E-Learning preferences chart]

Figure 24: Findings for indicator

5.4.45 Discussion of the findings

Angel: Most of the respondents, 26% prefer online learning because they can learn at their own peace. 21% prefer online working in groups, 15% need teachers/instructors to help, 14% prefer online because they can work at times suited to their schedule, 12% prefer things explained in sequence, 7% prefer online because they can repeat difficult bits, 5% prefer online because they have more time for reflection.

Moodle: Most of the respondents, 25% prefer online learning because they have more time for reflection. 23% because they can repeat difficult bits, 19% prefer learning in their own pace, 11% prefer working at times suited to their schedule, 09% prefer things explained in sequence, 4% prefer working in groups.

This data highlights the importance of the factors that drove the learners decision for choosing e-learning compared to traditional classroom. The most preferred positive option of e-learning for student learners are the facts that they can learn on their own peace, at times suited to their schedule, they can repeat difficult bias and they have more time for reflection.

5.4.46 Analyses of indicator: Learning preferences

Do you prefer to study ALONE or as part of a TEAM?

5.4.47 ANGEL LMS - Findings for indicator

![E-Learning preferences chart]

Figure 25: Findings for indicator
5.4.48 MOODLE - Findings for indicator

5.4.49 Discussion of the findings

In Angel: Most of the respondents, 50.92 % prefer working alone and learn at their own peace. 49.08 % prefer team work. The preferences of the student learners are almost divided the same in favor of working alone or in team. In Moodle: Most of the respondents 74.92% prefer working alone, while 26.08% prefer working in team. Based on the findings we concluded that this is not such an issue for them and it is not influencing the learning process substantially.

5.4.50 Analyses of indicator: Communication preferences

As Learner how do you usually work with fellow students on your course and share ideas with him/her? 1) Face to Face; 2) Telephone; 3) Email 4) chat room; 5) Moderated discussion forum

5.4.51 ANGEL LMS - Findings for indicator

5.4.52 MOODLE - Findings for indicator
5.4.53 Discussion of the findings

Most of the respondents, similarly in both cases angel and Moodle prefer Face to Face communication with their colleges. Then they prefer telephone communication to exchange ideas with their colleges, and then prefer email communication, afterwards prefer Discussion forum to communicate with their colleges, and at the end prefer chat rooms for communication.

5.4.54 Analyses of indicator: Technology usage extending learning

To what extent have your skills and learning improved by your personal use of technology outside the University?

5.4.55 ANGEL LMS - Findings for indicator:

![Figure 29: Findings for indicator](image)

5.4.56 MOODLE - Findings for indicator

![Figure 30: Findings for indicator](image)

5.4.57 Discussion of the findings

Most of the respondents, for both Angel and Moodle feel that they have improved their skills using technology and they have classified this as good. Most of the respondents classified their improvement as OK, then fewer respondents classified their improvement as Very Good, while on the other side although few there are some respondents that classified their improvement as Not so good, while fewer as Not at all. This data highlights the importance of technology usage in improving student learner's skills and learning. The learning system usage influenced and improved student learning.

5.4.58 Analyses of indicator: Access to e-learning material

Describe your access to e-learning material?
5.4.59 ANGEL LMS - Findings for indicator: Access to e-learning material

![Figure 31: Findings for indicator: Access to e-learning material](image)

5.4.60 MOODLE - Findings for indicator: Access to e-learning material

![Figure 32: Findings for indicator: Access to e-learning material](image)

5.4.61 Discussion of the findings for indicator

Most of the respondents, for both Angel and Moodle prefer using their own home connection to internet, then the largest group have no home connection and use the University facility for connecting online, then use their home connection around 2/3 of the time and 1/3 the University facilities to connect to internet, then few of the respondents use their home connection around 1/3 of the time and 2/3 of the time they use the University facility, and smallest group although do have home connection they always use the University facility to connect to internet.

This data highlights the importance of the factors that drove the learner's decision for choosing e-learning compared to traditional classroom. The most preferred positive option of e-learning for student learners are the facts that they can learn on their own peace, at times suited to their schedule, they can repeat difficult bias and they have more time for reflection.

5.4.62 Analyses of indicator: Online positives

How often do you visit course contents on ANGEL??
5.4.63 ANGEL LMS - Findings for indicator: Online positives

![Pie chart showing E-Learning preferences]

Figure 33: Findings for indicator: Online positives

5.4.64 MOODLE - Findings for indicator: Online positives - Question 22

![Pie chart showing E-Learning preferences]

Figure 34: Findings for indicator: Online positives - Question 22

5.4.65 Discussion of the findings

Most of the respondents, in Angel (65%), Moodle (71.09%) access content in LMS on Daily basis, Angel (20.35%), Moodle (18.63%) of the respondents access the content each 2 or 3 days, Angel 5.71%, Moodle 4.71% of the respondents access the content on Weekly basis, while on the other hand Angel 5.85%; Moodle 5.39% of the respondents access the content Rarely, Angel 1.31%; Moodle 0.21% access it hardly ever, and Angel 1.31%; Moodle 0% never access content in LMS.

5.4.66 Analyses of indicator: Learning outcomes

What is the impact of this e-learning system regarding learning outcomes?

9) Knowledge transfer and understanding; 2) Intellectual (thinking) skills; 3) Practical skills; 4) Transferable skills
5.4.67 ANGEL Findings for indicator:

- **Knowledge Transfer**: 44%
- **Intellectual (thinking) skills**: 31%
- **Practical skills**: 24%
- **Transferable skills**: 11%

![Figure 35: Findings for indicator](image)

5.4.68 Moodle Findings for indicator

- **Knowledge Transfer**: 39%
- **Intellectual (thinking) skills**: 38%
- **Practical skills**: 25%
- **Transferable skills**: 8%

![Figure 36: Findings for indicator](image)

5.4.69 Discussion of the findings

Most of the respondents, Angel 44 % and Moodle 39 % declared that knowledge transfer was the most important outcome, 31 % in Angel and 38% in Moodle the respondents declared that intellectual thinking skills were the most important outcome, Angel 24 % and Moodle 25% of the respondents think that practical skills were the most important outcome, while only 11 % in Angel and 8% in Moodle the respondents declared most important the transferable skills.

It is a conclusion that both e-learning projects using Angel and Moodle have been rated very similarly regarding the learning outcomes.

6. Discussion and conclusion on e-learning Indicators

Many current e-learning initiatives follow the “one-size-fits-all” approach just offering some type of LMS to learners. Typically, this approach is related to lack of knowledge of the learner audience or factors influencing that audience and e-learning project overall and therefore fail to provide satisfactory support in the decision making process.

In order to address this issue, an approach dealing with e-learning indicators is proposed, assessed, measured and evaluated. The proposed e-learning Indicators Methodology enables successful planning, comparison and evaluation of different e-learning projects. Above is given a comparative analysis of two different institutions using Angel and Moodle and focusing on comparison and evaluation of e-learning indicators of these two e-learning projects. e-Learning indicators methodology represents an empirical methodology that gives concrete results expressed through numbers that can be analysed and later used to compare and compare e-learning efficiency. With the application of this methodology in e-learning projects it is more likely to achieve better results and higher efficiency as well as higher Return on Investment ROI.
We recommend using the defined e-learning indicators as the starting point when developing e-learning initiatives and tailor the specifics of e-learning based on the measurements of these e-learning indicators. Each e-learning initiative is unique and involves specifics that can not be taken under consideration in general in the form of one solution suits all. On the contrary each e-learning initiative should measure the provided indicators to design and build their own e-learning based on them.

All available evidence points toward growing enrolments and provision albeit from a low starting point. The opinion is that future quality development in e-learning has to be oriented at the learner’s needs and the specific situation that needs to be measured and evaluated using e-learning indicators.

Regarding the comparative analysis of two distinct e-learning projects: Angel and Moodle the fact is that after analyzing both of the systems, some main problems that these two systems contain, and some suggestions how these problems could be solved or recovered are given below:

It can be concluded from the data described above, that Moodle really has a large number of options that it offers and when these tools come involved into the course they attract the student’s attention from his aim. This problem is not faced in ANGEL system, which has a cleaner interface with high usability. As a solution for such a problem, our recommendation is to simplify course pages in the Moodle system, and in this way make it more aesthetic, efficient and attractive. Of course, some necessary tools would have a proper place in a smaller and well readable format.

Another problem of Moodle is that it has a difficult file management. The solution to this problem is allowing managing files and according to the latest news, the professional team of Moodle is currently working on this issue.

ANGEL is not considered to have any problems with the templates and design, but it does not contain a glossary which the Moodle has, and it operates perfectly. I would necessarily put such an item in order to increase its functionality and effectiveness since Moodle is evidence how much it is useful for the learners. Another problem that ANGEL faces is that it does not target a UNIX based system.

All of the above mentioned important issues and problems are the most important and essential ones that student, instructors and other roles mostly care about. That is why their improvements are important as much as their existence. All of the other tools such as surveys, quizzes, language supports and different options are very functional and efficient in both systems and these items are definitely the ones that I would not change in any of them.

7. Appendix A

☑ SURVEY

1. What Faculty and department you are coming from? (Please write below)

2. Are you an undergraduate or a graduate student?
 ☐ undergraduate student
 ☐ graduate student

3. Please select the year of studies you are?
 ☐ I (first)
 ☐ II (second)
 ☐ III (third)
 ☐ IV (fourth)
4. Are you a full time student or part time student?
 - Full Time student
 - Part Time student

5. Please define your computer skills?
 - Inexperienced
 - Beginner
 - Ok
 - Good
 - Expert

6. Please rate your self efficacy in e-learning. How effective and efficient you are?
 - Bad
 - Not so good
 - OK
 - Good
 - Very good

7. What type of learner you are? (Explanations: Active learners tend to retain and understand information best by doing something active with it--discussing or applying it or explaining it to others. Reflective learners prefer to think about it quietly first.)
 - ACTIVE
 - REFLECTIVE LEARNER

8. What type of learner you are? (Explanations: Sensing learners tend to like learning facts; Intuitive learners often prefer discovering possibilities and relationships.)
 - SENSING
 - INTUITIVE LEARNER

9. What type of learner you are? (Explanations: Visual learners remember best what they see--pictures, diagrams, flow charts, time lines, films, and demonstrations. Verbal learners get more out of words--written and spoken explanations. Everyone learns more when information is presented both visually and verbally.)
 - VISUAL
 - VERBAL LEARNER

10. What type of learner you are? (Explanations: Sequential learners tend to gain understanding in linear steps, with each step following logically from the previous one. Global learners tend to learn in large jumps, absorbing material almost randomly without seeing connections, and then
Bekim Fetaji and Majlinda Fetaji

suddenly "getting it.")

☐ SEQUENTIAL Learner

☐ GLOBAL Learner

11. Please select your learning style below. (You may select more than one)

☐ 1) Linguistic ("word smart", sensitivity and ability to spoken and written language):

☐ 2) Logical-mathematical ("number/reasoning smart", analyze problems logically, investigate issues scientifically)

☐ 3) Spatial ("picture smart", potential to recognize and use the patterns of wide space)

☐ 4) Bodily-Kinesthetic ("body smart", mental abilities to coordinate bodily movements)

☐ 5) Musical ("music smart", skill in the performance, composition, and appreciation of musical patterns)

☐ 6) Interpersonal ("people smart", capacity to understand the intentions, motivations and desires of other people)

☐ 7) Intrapersonal ("self smart", capacity to understand oneself, to appreciate one's feelings, fears and motivations)

☐ 8) Naturalist ("nature smart", recognize, categorize certain features of the environment)

12. Please define the obstacles you face in e-learning?

☐ Computer skills

☐ Learning Style

☐ Content suitability

☐ Computer access

☐ Internet connection

☐ Instructional design (material)

☐ personal

☐ organizational

☐ location based

13. What captures best your attention in ANGEL that helps you learn best? (you can select one or more options)

☐ Lessons

☐ Calendar

☐ Forum

☐ Chat

☐ Surveys

☐ email feature
14. If you could choose different formats for the same content which one do you think is best to convey knowledge and to learn from?

- Text
- Animation
- Graphic
- Video
- combination of all

15. When is your optimal time to learn, what do you prefer?

- a self-paced e-learning course completed independently
- an e-learning course facilitated by an instructor who requires
- a real-time e-learning course conducted online with a facilitator

16. When is the best time for you for a real-time online classes or online discussion with your instructor or college student?

- (Morning)
- (Afternoon)
- (evenings/night)
- (Weekdays: Monday - Friday)
- (Weekends: Saturday - Sunday)

17. If you study at home or workplace, how much do you agree with the following statements?

- More able to learn at own pace than in class
- Able to work at times suited to me
- Can repeat difficult bits
- Allows more time for reflection
- Like to have teacher to help me
- Like to have things explained in sequence
- Prefer working in groups

18. Do you prefer to study ALONE or as part of a TEAM?

- Alone
- as part of the team

19. As Learner how do you usually work with fellow students on your course and share ideas with
him/her?

☐ Face to Face
☐ Telephone
☐ Email
☐ chat room
☐ Moderated discussion forum

20. To what extent have your skills improved by your personal use of technology outside the University?

☐ Not at all
☐ Not so good
☐ Ok
☐ Good
☐ Very Good

21. Describe your access to e-learning material?

☐ I nearly always use my home connection
☐ I use my home connection about 2/3rds of the time and University facility about 1/3rd of the time
☐ Use home connection 2/3rd of the time and University facility about 2/3rds of the time
☐ I have no home connection to internet, always use University facilities
☐ I do have home connection to internet but always use University facilities

22. How often do you visit course contents on ANGEL?

☐ Daily:
☐ Every 2/3 days
☐ Weekly
☐ Rarely
☐ Hardly ever
☐ Never

23. Please write your comment how to help you improve learning by using ANGEL? THANK YOU FOR PARTICIPATING

[Blank text box]
Thank you for participating in this survey.

References

