INTRODUCTION

Etymologically rooted in the Latin word *motive* (“to move”), motivation is perceived and valued—by scholars and practitioners alike—as one of the most powerful elements in mobilizing individuals to action.¹ Health education, in particular, relies heavily on human motivation to foster healthy behaviors, especially since most health education efforts depend on the voluntary commitment of individuals—as opposed to coerced participation—for behavioral change to occur.² Indeed, behavior change programs that target motivation as a mediating factor are not only successful in accomplishing at least some of their behavioral goals but also remain consistent with the principle of individual autonomy—a cornerstone value of health promotion practice.³⁵

Given the ubiquitous nature and crucial importance of the construct “motivation” both for understanding health behavior and for effecting behavior changes, it becomes imperative to examine the question of how current health promotion researchers have handled the construct. To the best of our knowledge, similar attempts at historically and empirically organizing this area of research have not been undertaken. To examine the issue, the authors conducted a systematic review of a decade of health promotion literature and, to sharpen its focus, couched the review within the context of the historical development of the construct.

Sarah Dunsmore, PhD, is assistant professor with the Department of Health & Nutrition Sciences, Idaho State University, Campus Box 8109, Pocatello, Idaho 83209; E-mail: dunsarah@isu.edu. Patricia Goodson, PhD, is an associate professor with the Department of Health & Kinesiology, Texas A&M University, 4243 TAMU, College Station, TX 77843-4243; E-mail: pgoodson@hlkn.tamu.edu.

Abstract

Authors reviewed the theoretical history of the “motivation” construct, and its utilization within past/current health behavior research. Textbooks and review articles functioned as sources for the theoretical history review. Research published within a 10-year period (1993–2002) in four health promotion journals (all with impact factors ≥ 1.0) comprised the systematically reviewed data. Only empirical studies containing the term “motivation” in the title/abstract were included. Studies were excluded if they did not examine motivation as a focal variable and/or assessed non-health behaviors. Data abstracted included the definition of motivation; theoretical framework; measurement tool(s) used; type of behavior being studied; and indicators measured. Abstracted data were coded and organized into a matrix. Data matrices were qualitatively assessed. Among reviewed studies, only four (9%) provided a definition of motivation. Only eleven studies specifically measured motivation despite all included studies having “motivation” in the title/abstract (25%). The most common indicator used to measure motivation was intention. While seventy-three percent of the studies (n=32) were theory-based, 21 different theories were used. Eleven of the studies (25%) focused on preventive behaviors (n=11). The studies reviewed varied in the conceptualization and measurement of motivation. Such variability may significantly affect the development and evaluation of motivation-focused interventions.

Sarah Dunsmore and Patricia Goodson

Motivation for Healthy Behavior: A Review of Health Promotion Research

Feature Articles
Objective

The purpose of this paper, therefore, is two-fold: First, to selectively trace the theoretical history of “motivation” as the construct was elaborated and applied within different theoretical perspectives; and second, to review a sample of health promotion literature to identify how motivation is being defined and measured within health behavior research. This assessment reviews the conceptual and operational definitions offered by researchers to explain and appraise motivation, the theoretical frameworks utilized to support the understanding of the concept, and the measurement tools researchers employed to test the concept and its theoretical relationships. Forty-four studies published in four major health promotion journals between January 1993 and December 2002 are reviewed.

Theoretical History

From its nearly simultaneous origins in the fields of Biology and Psychology, the construct of motivation has evolved through multiple iterations and various disciplines into its present-day form and function. Below is a brief, selective synopsis of this evolution, including its treatment by contemporary health behavior theories.

In the 1930s and 40s, drive theories—still influential in some scientific circles—understood motivation as physiological deficits or biological needs prompting behaviors that, when practiced, satisfy those deficits. Because these theories’ emphasis was mainly on biological factors, concepts such as instinct, arousal, drive and energy were its central foci, as were the physical aspects of behavior; cognitive factors, therefore, were largely considered to be irrelevant.

One of the drive theories of the 1940s, attributed to Clark Hull, proposed that people seek to maintain physiological stability, or “homeostasis” through their behavior. An internal tension to remain at this level of stability produces drive, or the incentive to lessen unpleasant disturbances to equilibrium. An example of drive is human hunger. Without food, an individual feels an internal tension signifying the need for food. In order to restore the desired state of equilibrium, the individual must attend to the hunger drive or motive that directs him/her to eat. Stability is regained with the reduction of this tension.

If drive theories emphasized a nearly direct and organic stimulus-response relationship between motivation and behavior, field theories (which more or less followed drive theories in the chronology of motivation studies) provided a cognitive model of motivation and behavior. Field theories deal primarily with voluntary, action-oriented decision making. Their primary assumption is that an individual attempts to enhance satisfaction and minimize discomfort through rational choices of opportunities that will facilitate satisfactory circumstances. It is within this category of theories that choice is first introduced as a factor influencing behavior change.

Perhaps the most influential theory within this framework is that proposed by Kurt Lewin. Lewin suggested that motivation depends on the value that is placed upon a specific goal, as well as the probability of achieving that goal. The greater the value of the satisfactory circumstances resulting from the achievement of the goal, the stronger the level of motivation. For example, a high school student who understands that good grades will enable him/her to get into college and believes there is a high probability of him/her achieving good grades, will be more motivated to obtain a good grade on a calculus test than someone who does not value the goal of college admission.

In the latter half of the 1950s, John Atkinson introduced Achievement Theory. The theory focuses on the motivation of individuals toward achievement-related tasks varying in levels of difficulty. Within this framework, people are not motivated to achieve in order to obtain extrinsic rewards such as money or promotions. Instead, the motivation is simply to accomplish the specified goal. At least four types of motivation—each with their own corresponding theories—have been identified by achievement theorists: motivation to improve, motivation to demonstrate ability, motivation to either improve or demonstrate ability in order to improve one’s standing relative to others, and motivation to either improve or demonstrate ability in order to display a high standing relative to others.

As this line of thinking stressed achievement-related behaviors, its applicability was restricted. This limitation did not preclude, however, achievement motivation research from experiencing a resurgence in the late 1960s—when “…motivational research became almost synonymous with achievement motivation research”—nor did it preclude achievement motivation’s sustained prestige in areas such as physical education pedagogy, for instance.

But the limited applicability of constructs such as drive, energy, arousal, and goal achievements forced researchers to search for a more comprehensive approach to the study of motivation. The 1960s, therefore, saw the development of cognitive theories of motivation, which dominate the field to this day. Cognitive models explain the transformation of motivation into behavior as resulting from the influence of mental processes. Although both environmental and biological factors still influence behavior, cognitive theorists understand that influence to be indirect, mediated by factors such as beliefs, emotions, and self-efficacy. An increased emphasis on intra-personal cognitive variables, a heightened interest in individual-level processes such as perception, learning and memory, as well as a keen curiosity regarding inter-personal variability, set the stage for this shift in the focus of motivational studies.

Many of the health promotion theories currently in vogue are descendents of this same cognitive tradition, explaining health behaviors themselves as a function of mental (intra-personal) processes. But even as health behavior theories have also included elements of social interaction theories and, to a certain extent, of behaviorist theories (attempting to explain health behavior comprehensively as a function of multiple factors at the individual, social and...
biological levels), it is within the cognitive tradition that motivation and health behaviors converge. The understanding of specific health behaviors (such as undergoing preventive screening) is now greatly enhanced through the study of factors that shape individuals' motivation for healthy practices.

An example of a cognitive approach to health behavior, the Health Belief Model (HBM) is a psychosocial framework that attempts to explain individuals' engagement in preventive behavior as a function of, among other factors, motivation. Although not accepted as a well-developed theory within the field of psychology, HBM is widely used by health behavior researchers and practitioners, thus warranting inclusion in this review. The model's basic assumption is that once an individual is aware of a health risk, an assessment of costs and benefits motivates action. After assessing the behavior through the perspective of each of the six constructs—perceived susceptibility, perceived severity, perceived benefits, perceived barriers, cues-to-action, and health motivation—the individual finds him/herself motivated, or not, to act.

Although motivation is not proposed as a construct within the Transtheoretical Model (also known as the Stages of Change model), an individual's "readiness" to behave functions as an indicator of motivation in that model. "Readiness" is organized into stages within this framework, assessing the probability of actually changing an individual's current behavior. The level of readiness, or stage transition, is an indicator of the level of individual motivation.

The fundamental constructs of the TTM—pre-contemplation, contemplation, preparation, action, maintenance, and termination—represent temporal dimensions regarding one's decision to act, that facilitate understanding of an individual's level of intention, desire, or "motivation." Some researchers have titled the TTM phases as "motivational stages.

The focus of both the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB) is on "…theoretical constructs concerned with individual motivational factors as determinants of the likelihood of performing a specific behavior." Given that the TPB is, essentially, an expansion of the TRA, only the TPB will be described here.

Behavioral intention—which is the most important determinant of behavior according to these theories—is often equated with motivation and is understood within a value-expectancy framework. The value, or expectancy, placed on the outcome of a given behavior determines an individual's attitude, which in turn directly determines behavioral intention. If the behavior is valued and expected to produce favorable results, the individual is theorized to be more motivated to behave. This concept is similar to the value-expectancy and the costs-benefits analysis proposed by the Health Belief Model. If the benefit resulting from a particular action is perceived as greater than the cost necessary to obtain it, motivation for action occurs. While other factors also influence intention (perceived norms and perceived behavioral control), much of the empirical testing of this model has revealed that an individual's attitudes are the strongest predictors of intention/motivation.

According to Social Cognitive Theory, action is undertaken if a person feels he/she has control over the outcome, if few external barriers are present in the environment, and if the person has strong self-efficacy. According to Bandura, one's sense of efficacy (or confidence in the ability to perform the behavior) is the single, most necessary motivational element, moving individuals to action.

Originally termed Social Learning Theory, this framework was based on Hull's mechanistic drive theories. While proposing that behavior is motivated by physiological drives, not cognitions, Hull nevertheless suggested that individuals who experience such drives learn to respond by observing others' responses to similar drives, hence the name Social Learning Theory. Hull also maintained that outside reinforcements influence an individual's drive or motivation to behave. He suggested that reinforcements connect certain behaviors to certain stimuli, making it more likely that a particular behavior will occur if the stimulus is present.

The notion of reinforcements for behavior made its way into Social Cognitive Theory, which distinguishes between intrinsic and extrinsic reinforcements. External or extrinsic reinforcement is the occurrence of an event that is known to reinforce an individual's expectation of that event. Internal or intrinsic reinforcement is a person's expectation that an event will have a certain important value. According to social cognitive theorists, individuals perform specific behaviors because they are positively reinforced, but much of the learning of new behavior occurs by observing reinforcements that others receive for their behavior.

While the concepts of extrinsic and intrinsic reinforcements are widely used within the motivational literature to describe social influences on behavior, they are, nonetheless, the center of strong controversy among socio-behavioral scientists.

Some scholars suggest that external reinforcement dampens natural internal motivation, while others claim that only internal rewards can foster sustainable motivation. The health promotion literature contains ample evidence to support both points-of-view. Many argue that "...any external constraint imposed on behavior may reduce the level of internal motivation." But not everyone views external reinforcements as detrimental to internal motivation. Eisenberger, Pierce, and Cameron, for instance, decry the detrimental effects of reinforcement on intrinsic motivation as a myth, and as occurring only in limited circumstances. While recognizing that certain types of rewards may reduce intrinsic motivation, they acknowledge that other types of extrinsic reinforcements may have none or even a positive effect upon intrinsic motives.

For Self-Determination Theory (SDT), individuals have certain basic psychologi-
cal needs; if these needs are fulfilled, the person is likely to be healthy and have a greater sense of well being. Attempts to meet the basic needs of relatedness, competence, and autonomy form the basis for motivation—identified, within this framework, as intrinsic, extrinsic, and amotivation. 14-40

Intrinsic motivation is what moves people to participate in activities for the sheer enjoyment the activities provide. 14 Conversely, extrinsic motivation leads to performance of a task in response to the attainment of an outcome separate from the activity. Extrinsic motivation still produces intentional behavior, but often results in varying levels of autonomy within the individual. 1 For instance, a female who exercises regularly because she understands the value that exercise has for her longevity and well being is extrinsically motivated. Yet another female who exercises only to comply with her husband’s controlling demands would also be extrinsically motivated. Although both are examples of extrinsic motivation (as opposed to, for instance, exercising for pure enjoyment) the former involves an autonomous regulation of the behavior, while the latter describes its external regulation. Given that autonomy constitutes a basic psychological need, extrinsic motivation is perceived by theorists as potentially detrimental to an individual’s sense of autonomy and should, therefore, be less favored than intrinsic motivation. Finally, amotivation is defined as unwillingness, lack of intention to behave. 14

While the historical synopsis above depicts a rich and complex evolution of the construct of motivation, the literature reviewed below documents a snapshot of the state-of-the-art regarding health promotion researchers’ contemporary use of the construct. The review examines—within a decade of publications—the conceptual and operational definitions offered to explain and assess motivation, the theoretical frameworks utilized to couch the understanding of the concept, and the measurement tools employed to test the concept and its theoretical relationships.

METHODS

Data Sources

In order to focus on the highest-quality research available to health promoters, only journals that had an impact factor (IF) of 1.0 or higher in 2002, and were available to the authors were selected for review. The impact factor—a proxy measure for journal quality and scholarly impact—reflects the number of citations a journal receives over time. 41 Although subject to debate, impact factors remain appropriate benchmarks of journal quality. 42 Four journals met these criteria: American Journal of Public Health (IF = 3.2), Health Psychology (IF = 3.0), Health Education and Behavior (formerly Health Education Quarterly – IF = 1.9), and the American Journal of Health Promotion (IF = 1.0).

Inclusion/Exclusion Criteria

Studies from these four journals were included if they satisfied three requirements: (1) had been published between January 1993 and December 2002; (2) they contained the term “motivation” in the title or abstract (suggesting that motivation might be among the study’s focal variables) and; (3) reported an empirical investigation. The 10-year time frame was chosen because the authors believed it would yield both a manageable set of studies while capturing temporal trends or variations.

Studies were excluded if they examined factors such as intention, volition, outcome-expectancies or self-direction, without relating or linking them to the concept of motivation and/or they assessed non-health behaviors. Non-empirical treatments such as theoretical or review articles also were excluded.

Between 1993 and 2002, a total of 4,676 articles were published in the four selected journals. Forty-four studies (N = 44) met the inclusion/exclusion criteria and comprised the sample for this review.

Data Extraction and Synthesis

Information from each included study was abstracted, coded and organized into a matrix that culminated in Table 1. 43 The lead author coded each of the studies. Ten percent of the studies were abstracted by both authors.

Methodological quality was assessed specifically as it pertained to the construct of interest: motivation. Data abstracted from each study included, among others, its definition of motivation and the source of the definition; the theoretical framework being applied in the study; the measurement tool(s) used; whether the data of the individual studies were tested for validity and reliability; and sample characteristics. Indicators of motivation were also identified (Table 1). Factors that were used interchangeably with, or in place of motivation were considered an indicator of motivation.

RESULTS

Figure 1 depicts the number of motivation studies published in each of the four selected journals while Figure 2 presents the fluctuations in the number of articles, over time. Twenty-three studies (52% of reviewed manuscripts) were published in Health Psychology. Eight studies (18%) were included in Health Education & Behavior. The American Journal of Public Health provided six studies (14%) on motivation, while seven (16%) came from The American Journal of Health Promotion. Although two surges in publication are noted in 1996 and 1998, the apparent trend is one of declining number of publications.

Although researchers have tested the theoretical relationship between motivation and many types of health behaviors, a plurality of reviewed studies examined motivation in relationship to preventive behaviors (n=11, 25%) such as sunscreen use, mammogram utilization, and participation in heart healthy activities. 46 The majority of these studies were published in Health Psychology (n = 7, 63%). Of the studies that focused on motivation and preventive behaviors, three studies specifically analyzed HIV/AIDS-related behaviors. 47-49 Studies focusing on drug use/cessation (n=9, 20%) and dietary change/adherence (n=8, 18%) were also prevalent. Albeit less frequently, motivation also was examined in conjunction with exercise (n=7, 16%),
condom use (n=4, 9%), and reduction of risk perception (n=4, 9%). Two studies were dedicated to the motivational implications of chronic pain on such behaviors as goal pursuit (n=2, 5%).50,51

Studies were included within this review only if motivation appeared to be a focal variable of the inquiry. It is curious, then, that the majority of the articles included did not provide a definition of motivation (n=40, 91%). The studies that did provide a definition of motivation (n=4, 9%), provided a conceptual definition but not an operational definition. Three of the four definitions provided related specifically to motivation to engage in AIDS preventive behavior3,47,49 and were all published by the same leading authors and in the same journal (Health Psychology). Only Senecal, Nouwen, and White52 provided a general definition of motivation: “Motivation [sic] encompasses self-regulatory processes involving the selection, activation, and sustained direction of behavior toward certain goals (e.g., Bandura, 1997) [sic].”

Most researchers within this sample (n=32, 73%) utilized a theoretical framework to guide both data collection and analysis. For the purposes of this review, a theoretical framework was a set of descriptive statements used to explain the concept of motivation and its logical association with other behavioral, cognitive or environmental/social factors. In all, 21 different theories were identified (Table 1). Among the theories that utilized a theoretical framework, Social Cognitive Theory (SCT), the Health Belief Model (HBM), and the Transtheoretical Model (TTM) were the theories/models used most frequently, each being used in seven studies, respectively.

While all reviewed studies included the term "motivation" in the title or abstract—suggesting that motivation might be among the study’s main factors—the majority did not specifically measure motivation. Of the 44 reviewed studies, only eleven (25%) actually measured motivation.17,27,53-61 The remaining 75% of reviewed studies often discussed motivation as a factor, but failed to include it in the methods section as a measured variable.

While many of these studies may have proposed to examine motivation and its relationship to specified behaviors, in practice they often treated motivation as a latent variable and attempted, therefore, to measure manifest variables, or indicators.62 This might explain, perhaps, why some studies appear not to measure motivation, despite having mentioned motivation as a focal variable. The most common indicators used to measure motivation within the studies were intention (n=19, 43%), and self-efficacy (n=18, 40%) (Table 1).

Among the eleven studies that did propose to measure motivation, only five utilized pre-tested and published measures. In the studies utilizing published measures, three of the five provided information on the validity and reliability of the data collected with these instruments. Measures cited included the Smoking Motives Scale63; the Self-Motivation Inventory64; the Exercise Motivational Stage Measure65; the Osteoporosis Health Belief Scale66; and the measure of motivation for eating low-fat foods67. The remaining six studies developed their own assessment tools consisting, mainly, of self-administered surveys and Likert-type scaled responses. None of the studies containing the self-developed tools provided any information on the validity and reliability of the data collected with these instruments.

Twenty-three studies reported measuring only reliability (n=13, 30%) or both reliability and validity (n=10, 23%) within their methods section. Of the twenty-three studies that reported testing reliability, the most common method was computation of
<table>
<thead>
<tr>
<th>Study</th>
<th>Behavior Examined / Population Studied</th>
<th>Motivation: Construct Definition</th>
<th>Theoretical Framework</th>
<th>Measurement / Indicators</th>
<th>Assessment of Data’s Validity & Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affleck et al., 1998</td>
<td>• Pursuit of health-fitness and social-interpersonal goals in the context of Fibromyalgia management</td>
<td>Not defined</td>
<td>• None</td>
<td>• Striving</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 50 females</td>
<td></td>
<td>• Personal-goal process</td>
<td></td>
<td>Reliability: No</td>
</tr>
<tr>
<td></td>
<td>• Mean age = 44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 92% Caucasian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altman et al., 1998</td>
<td>• Participation in community activities promoting heart health</td>
<td>Not defined</td>
<td>• Social Cognitive Theory</td>
<td>• Self-efficacy</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 2,609 participants</td>
<td></td>
<td>• Perceived control</td>
<td></td>
<td>Reliability: Cronbach alpha and test-retest</td>
</tr>
<tr>
<td></td>
<td>• Mean age = 15</td>
<td></td>
<td>• Perceived incentive value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 51% male</td>
<td></td>
<td>• Outcome expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 38% Latino; 30% Asian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blalock et al., 1996</td>
<td>• Calcium consumption</td>
<td>Not defined</td>
<td>• Precaution Adoption Process Model</td>
<td>• Health motivation</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• Weight bearing exercise</td>
<td></td>
<td>• Perceived severity</td>
<td></td>
<td>Reliability: No</td>
</tr>
<tr>
<td></td>
<td>• 452 females</td>
<td></td>
<td>• Barriers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mean age = 40</td>
<td></td>
<td>• Health concerns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 72% Caucasian</td>
<td></td>
<td>• Inconvenience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceived controllability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Subjective norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceived susceptibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanton and Gerrard, 1997</td>
<td>• Perceiving the risk of STD 40 undergraduate males</td>
<td>Not defined</td>
<td>• Dissonance Theory</td>
<td>• Attitude</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceptions</td>
<td></td>
<td>Reliability: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Estimated risk/Vulnerability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Motivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn et al., 1999</td>
<td>• Exercise</td>
<td>Not defined</td>
<td>• Transtheoretical Model</td>
<td>• Stage of change</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 709 participants</td>
<td></td>
<td>• Self-efficacy</td>
<td></td>
<td>Reliability: No</td>
</tr>
<tr>
<td></td>
<td>• Mean age = 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 65% female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carey et al., 2000</td>
<td>• HIV risk behavior</td>
<td>Not defined</td>
<td>• Information Motivation- Behavioral Skills Model</td>
<td>• Risk perception</td>
<td>Validity: factor analysis Reliability: Cronbach alpha</td>
</tr>
<tr>
<td></td>
<td>• 102 females</td>
<td></td>
<td>• Health Belief Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ages 17-46 (X=29.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 88% African American</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper et al., 1999</td>
<td>• Condom use</td>
<td>Not defined</td>
<td>• None</td>
<td>• Attitude regarding condoms</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 2,052 participants</td>
<td></td>
<td>• Self-efficacy</td>
<td></td>
<td>Reliability: Cronbach alpha</td>
</tr>
<tr>
<td></td>
<td>• Ages 13-19</td>
<td></td>
<td>• Reason for condom use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceived cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Vulnerability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeLamater et al., 2000</td>
<td>• Condom use</td>
<td>Not defined</td>
<td>• Self-Regulation Theory</td>
<td>• Self-Regulation</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 562 African American males</td>
<td></td>
<td>• Self-Efficacy Theory</td>
<td></td>
<td>Reliability: Cronbach alpha</td>
</tr>
<tr>
<td></td>
<td>• Ages 15-19</td>
<td></td>
<td>• Self-efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intention</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceived risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeFrancesco et al., 1998</td>
<td>• Participation in prevention programs</td>
<td>Not defined</td>
<td>• Health Belief Model</td>
<td>• Risk behavior</td>
<td>Validity: factor analysis Reliability: Cronbach alpha</td>
</tr>
<tr>
<td></td>
<td>• 134 participants</td>
<td></td>
<td>• Outcome expectancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ages 18-45 (X=33)</td>
<td></td>
<td>• Self-efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 50% female</td>
<td></td>
<td>• Perceived severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 54% Caucasian</td>
<td></td>
<td>• Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Perceived risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detweiler et al., 1999</td>
<td>• Sunscreen use</td>
<td>Not defined</td>
<td>• Prospect Theory</td>
<td>• Plan</td>
<td>Validity: No</td>
</tr>
<tr>
<td></td>
<td>• 217 participants</td>
<td></td>
<td>• Affective reaction</td>
<td></td>
<td>Reliability: Cronbach alpha</td>
</tr>
<tr>
<td></td>
<td>• Ages 18-79 (X=39)</td>
<td></td>
<td>• Perceived efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 76% female</td>
<td></td>
<td>• Anticipated effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intention</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Summary of Reviewed Motivation Studies Published between 1993 and 2002 (cont)

<table>
<thead>
<tr>
<th>Study</th>
<th>Behavior Examined / Population Studied</th>
<th>Motivation: Construct Definition</th>
<th>Theoretical Framework</th>
<th>Measurement / Indicators</th>
<th>Assessment of Data's Validity & Reliability</th>
</tr>
</thead>
</table>
| Lijkstra et al., 1998 | Smoking cessation
752 participants
60% female
Mean age = 39 | Not defined | None | Stage transition
Intention
Quitting behavior
Expected outcome
Self-efficacy | Validity: No
Reliability: Cronbach alpha |
| Fisher et al., 1994 | AIDS preventive behavior
Study 1 = 126 gay males
Study 2 = 259 (53% female) | "In effect, motivation to practice an AIDS-preventive act is assumed to be a function of one's attitudes toward the AIDS-preventive act (Aact), and of relevant subjective norms regarding the AIDS-preventive act (AN)" (p. 241). | Social Cognitive Theory
Theory of Reasoned Action
Health Belief Model
AIDS-Risk Reduction Model
Information-Motivation-Behavioral Skills Model | Attitude
Subjective norm
Intention | Validity: No
Reliability: Cronbach alpha |
| Fisher et al., 1996 | AIDS risk behavior
Mean age = 20
88% Caucasian | Motivation to engage in AIDS-preventive behavior – which is a function of attitudes toward performance of AIDS preventive acts, social norms regarding performance of such acts & perceptions of personal vulnerability to HIV [...] (p.114) | Information-Motivation-Behavioral Skills Model
Health Belief Model | Attitude
Norms
Intention | Validity: No
Reliability: Cronbach alpha |
| Fisher et al., 2002 | HIV preventative behavior
1,577 inner city high school students
63% female
61% African American | | Information-Motivation-Behavioral Skills Model | Attitude
Norms
Intention | Validity: No
Reliability: Cronbach alpha |
| Frame et al., 2001 | Fruit and vegetable consumption
226 participants | Not defined | Transtheoretical Model | Stage of change
Readiness | Validity: No
Reliability: No |
| Glanz et al., 1994 | Adoption of healthy diets
17,121 participants | Not defined | Transtheoretical Model | Self-rated health
Self-efficacy
Motivation (personalized importance)
Intention
Readiness | Validity: No
Reliability: No |
| Karrly and Rechman, 1996 | Goal pursuit
227 participants
Mean age = 40
56% male
84% Caucasian | Not defined | Social Cognitive Theory | Goal assessment
Goal cognition
Goal conflict
Depression
Self-efficacy
Goal-related value
Anxiety
Intention
Self-regulation | Validity: No
Reliability: No |
| Leslie et al., 1999 | Exercise
2,229 participants
Ages 16-72 (X=25)
58% female | Not defined | Transtheoretical Model | Self-rated health
Self-efficacy
Motivation | Validity: No
Reliability: No |
| McInerney et al., 1999 | Relapse smoking after pregnancy
Primarily Caucasian pregnant women | Not defined | Transtheoretical Model | Type of motivation
Level of motivation | Validity: No
Reliability: No |
| Manfreda et al., 1998 | Smoking cessation
248 African American females
Ages 18-39 | Not defined | Health Belief Model
Theory of Reasoned Action | Desire
Plans
Health beliefs/concern
Normative perception
Smoking habit
Perceived use of smoking
Education
Perceived benefit/cost
Intention | Validity: No
Reliability: No |
| Marcus et al., 1998 | Exercise
1,559 participants | Not defined | Transtheoretical Model | Self-efficacy
Motivational stage
Decisional balance | Validity: No
Reliability: No
Concurrent
Reliability: test-retest & kappa |
Table 1. Summary of Reviewed Motivation Studies Published between 1993 and 2002 (cont)

<table>
<thead>
<tr>
<th>Study</th>
<th>Behavior Examined / Population Studied</th>
<th>Motivation: Construct Definition</th>
<th>Theoretical Framework</th>
<th>Measurement / Indicators</th>
<th>Assessment of Data’s Validity & Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metzner et al., 1996</td>
<td>Hearing protection device use</td>
<td>Not defined</td>
<td>Protection Motivation Theory</td>
<td>Perceived susceptibility, Perceived severity, Perceived effectiveness, Perceived barrier, Self-efficacy, Intention</td>
<td>Validity: Cohen’s kappa Reliability: Cronbach alpha</td>
</tr>
<tr>
<td>Miller et al., 2000</td>
<td>Alcohol/drug use</td>
<td>Not defined</td>
<td>Self-Regulation Theory</td>
<td>Alcohol pattern</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>O’Neal et al., 2000</td>
<td>Smoking cessation</td>
<td>Not defined</td>
<td>Transtheoretical Model</td>
<td>Stage of change</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Ogden, 1994</td>
<td>Food intake</td>
<td>Not defined</td>
<td>Biological</td>
<td>Motivational state</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Resnicow et al., 2001</td>
<td>Fruit and vegetable consumption</td>
<td>Not defined</td>
<td>… “an amalgamation of several theoretical paradigms” [pg. 1687]</td>
<td>Outcome expectations, Self-efficacy, Knowledge</td>
<td>Validity: correlation Reliability: Cronbach alpha</td>
</tr>
<tr>
<td>Rose et al., 1996</td>
<td>Smoking cessation</td>
<td>Not defined</td>
<td>None</td>
<td>Motive, Attributinal belief, Reason, Social role occupancy</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Rothman et al., 1993</td>
<td>Mammogram utilization</td>
<td>Not defined</td>
<td>Attribution theories</td>
<td>Attitude, Reaction, Knowledge, Intention, Atributions</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Royce et al., 1993</td>
<td>Smoking cessation</td>
<td>Not defined</td>
<td>None</td>
<td>Motivation (measures want/desire), Norms and values (social acceptability, attitudes, perceptions of society, and self-control behavior)</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Sears and Stanton, 2001</td>
<td>Exercise adherence</td>
<td>Not defined</td>
<td>Expectancy value theories</td>
<td>Expectancy value, Self-efficacy, Intention</td>
<td>Validity: No Reliability: Cronbach alpha</td>
</tr>
<tr>
<td>Sejic et al., 2000</td>
<td>Diet adherence</td>
<td>Not defined</td>
<td>Social Cognitive Theory, Self-Determination Theory</td>
<td>Self-regulation, Self-efficacy</td>
<td>Validity: factor analysis Reliability: Cronbach alpha</td>
</tr>
<tr>
<td>Shannon et al., 1997</td>
<td>Making dietary changes</td>
<td>Not defined</td>
<td>Social Cognitive Theory, Self-efficacy theory</td>
<td>Self-efficacy, Social desirability</td>
<td>Validity: construct & factor analysis Reliability: Cronbach alpha</td>
</tr>
<tr>
<td>Smith et al., 1996</td>
<td>Practice of universal precautions to prevent bloodborne pathogen exposure</td>
<td>Not defined</td>
<td>Protection Motivation Theory</td>
<td>Behavioral intention, Negative and positive affect, Cognition</td>
<td>Validity: No Reliability: No</td>
</tr>
<tr>
<td>Skinner et al., 1994</td>
<td>Mammogram utilization</td>
<td>Not defined</td>
<td>Health Belief Model</td>
<td>Mammography stage of change</td>
<td>Validity: No Reliability: No</td>
</tr>
</tbody>
</table>
Table 1. Summary of Reviewed Motivation Studies Published between 1993 and 2002 (cont)

<table>
<thead>
<tr>
<th>Study</th>
<th>Behavior Examined / Population Studied</th>
<th>Motivation: Construct Definition</th>
<th>Theoretical Framework</th>
<th>Measurement / Indicators</th>
<th>Assessment of Data's Validity & Reliability</th>
</tr>
</thead>
</table>
| Smith et al., 1997 | • Interpretation of information about personal vulnerability to health risks
• Study 1 = 125 females (mean age= 19)
• Study 2 = 273 females (mean age= 19) | Not defined | • None | • Perceived vulnerability
• Perceived efficacy
• Attitude
• Risk behavior | Validity: No
Reliability: No |
| Sorensen et al, 1999 | • Fruit and vegetable consumption | Not defined | • None | • Condition in the workplace | Validity: No
Reliability: Cronbach alpha |
| Sturges and Rogers, 1996 | • Tobacco use
• Group 1=112 9-10 year olds
• Group 2=67 14-16 year olds
• Group 3=93 young adults
• 83% Caucasian | Not defined | • Protection Motivation Theory | • Intention
• Self-efficacy
• Attitude
• Behavior change | Validity: cluster analysis
Reliability: Cronbach alpha |
| Sutton et al., 1999 | • Condom use
• 949 participants
• 59% female
• Ages 16-24 | Not defined | • Theory of Reasoned Action
• Theory of Planned Behavior | • Belief
• Outcome evaluation
• Attitude
• Normative belief
• Subjective norm
• Perceived control
• Perceived risk
• Intention
• Condom use
• Motivation
• Self-efficacy | Validity: No
Reliability: No |
| Troped and Saunders, 1998 | • Exercise
• 764 participants
• Mean age = 40
• 76% female | Not defined | • None | • Normative belief
• Motivation to comply | Validity: No
Reliability: No |
| Unger and Johnson, 1995 | • Exercise
• 200 participants
• Ages 21-79 (X=39)
• 52% male
• 86% Caucasian | Not defined | • None | • Intention
• Frequency of exercise
• Satisfaction
• Social variables | Validity: No
Reliability: test-retest |
| Wilcox and Storandt, 1996 | • Exercise
• 121 females
• Ages 20-85
• 83% Caucasian | Not defined | • None | • SelfMotivation
• Self-efficacy
• Attitude | Validity: No
Reliability: Cronbach alpha |
| Williams et al., 2002 | • Smoking cessation
• 239 participants | Not defined | • Self-Determination Theory | • Perceived competence
• Self-regulation | Validity: No
Reliability: No |
| Wite et al., 1998 | • Condom use
• 219 females
• Ages 17-22
• 79% Caucasian | Not defined | • Extended Parallel Process Model | • Danger control response
(attitude, intention, behavior)
• Fear control response (defense avoidance, issue derogation, and perceived manipulation) | Validity: No
Reliability: Cronbach alpha |
the Cronbach alpha (n=20, 87%). Other methods included test-retest reliability and computation of a kappa index. Five of the ten studies that reported measuring the validity of their scores utilized factor analysis (50%). Additional reported methods of measuring validity were criterion, concurrent, and construct.

DISCUSSION

The portrait of how contemporary health promotion scholars are handling the concept of motivation in their research depicts a complex image of theoretical engagement but waning enthusiasm. Despite the relatively small number of motivation-related publications in the last decade, and much to the credit of contemporary scholars however, the majority of empirical investigations reviewed in this study were theory-based. Since many areas of inquiry in health promotion have been identified as dangerously a-theoretical, it is heartening to find that studies involving motivation as a focal variable don’t seem to suffer from this problem.

If encouraging on the one hand, the theory-related picture that emerges from these reviewed studies is, nonetheless, problematic even if not unique. Echoing our finding of 21 different theories in 32 studies, Gottham identified 51 theories applied within 116 theory-based articles studying motivation. Portrayed by Bandura as a “spawn(ing) of cafeteria style research” such proliferation of frameworks is characterized by the selection of constructs and traits from various theories and their placement within new frameworks, leading to redundancy, less predictability, and overall disconnectedness with the theory of origin.

The use of such a large number of theories to explain a single construct suggests an absence of theoretical consensus regarding both the definition of motivation and its measurement. But what may this phenomenon mean and what are its implications? Is such absence of consensus indicating that scholars are truly dealing with an inherently complex, dynamic and multi-dimensional construct that does not easily lend itself to agreement regarding its key facets? Or does it signal territoriality issues among scholars who, in attempts to develop novel explanatory models for the construct, employ variable nomenclature and explanatory schemes for characteristics, dimensions, and traits that are essentially similar across theories? And what are the implications of such absence of theoretical consensus for practitioners: if scholars define one indicator of motivation as intention in one theory, for example, but define it as desire in another theory, what are practitioners to do? Should their interventions emphasize individuals’ plans for action, or should they try to make the task more “likeable”, so the individual will desire to do it?

The lack of theoretical consensus regarding theory and conceptual definitions of motivation is also reflected in issues of measurement. In this review, a limited number of studies used psychometrically sound measures and, of those, no two employed the same tool. Moreover, researchers frequently failed to provide assessments of the data’s validity and reliability, weakening even further the possibility of ascertaining the quality of their measurement tools. Because validity and reliability are sample specific, they must be re-measured and reported with each data collection. Given the importance of valid and reliable data both for scholarly research and for evaluating program interventions, an accurate and psychometrically sound measurement of motivation is essential for understanding whether intervention/educational efforts are actually affecting motivation and, in turn, behavior change.

As this review organized a decade of researchers’ dealings with the concept of motivation within the health promotion/education literature, it was embedded, nonetheless, in important limitations. The small number of journals selected, for instance, as well as the decade chosen for study (1992–2002) may have skewed findings in an uncertain and non-representative direction. Not summarizing the specific hypotheses and findings of the reviewed studies may also have limited our analysis. Given that the majority of studies document a positive association between motivation (or its indicators) and health behaviors, reporting their findings would have lacked variability and would have resembled a “constant.” While this constant would add little information regarding how researchers are approaching and manipulating the construct of motivation in their research, it might have, nonetheless, yielded important information regarding the potentially different relationships between various articulations of motivation and the many types of health behaviors studied (exercise, dietary management, smoking cessation, etc.). The construct of motivation has deep roots and a rich history which may extend beyond the scope of this paper. The theoretical and historical discussion, therefore, is a selective synopsis of motivation within the health behavior literature. Further examinations into how motivation is being handled theoretically within health behavior research are recommended. Limiting our selection criteria only to studies that contained the term “motivation” in the title or abstract may have inadvertently caused us to exclude studies that address motivation, without naming the construct as such. As is evident from this review, motivation is so broadly defined that it would have been problematic to not set such exclusions. In recognition that this review is not all encompassing, it should be made clear that this is an attempt to organize this body of literature. The question of whether our results can be generalized to the entire population of motivation-related health research can only be answered through the support of continued reviews.

As the authors attempted to summarize the historical evolution of the motivation construct and its present-day application into empirical health promotion research, the main strengths of this attempt are found in the manner in which it (a) provides a synopsis of how a sample of published health promotion literature within the last decade is conceptualizing and discussing motivation; (b) distinguishes the definition, theoretical framework, and measurement of
the concept within this body of literature; and (c) discusses weaknesses and potential pitfalls contained in the research which are imperative to consider in future inquiry and program development. Based on this review’s findings the authors recommend that other, similar summaries of the state-of-the-art regarding research on motivational factors be conducted and disseminated; that researchers examining motivation as a focal variable become aware of the potential drawbacks of theory proliferation and seek to promote theoretical consensus surrounding motivation; and that researchers become equally concerned with measurement issues related to the construct. Improvements in any of these aspects of the motivation research can only benefit the field of health promotion in both its research/theory-building efforts and its practice.

REFERENCES

37. Miller NE, Dollard J. *Social Learning and Imitation.* New Haven, Conn: Yale University Press; 1941.

Ogden J. Effects of smoking cessation, restrained eating, and motivational states on food intake in the laboratory. Health Psychol. 1994;13(2):114–121.

Sears SR, Stanton AL. Expectance-value constructs and expectancy violation as predictors of exercise adherence in previously sedentary

