
amt 63 (1) 2007 33

Damon L. Bahr
Brigham Young University, Utah, USA
<damon_bahr@byu.edu>

In recent times there has been considerable commentary regarding
the need to enhance mathematical assessment as evidenced by

Numeracy, A Priority for All: Challenges for Australian Schools (2000).
This emphasis on assessment is timely because although the math-
ematical reform movement has produced much-needed
improvements in both curriculum and instruction, changes in
assessment have not kept pace (Firestone & Schorr, 2004; Morgan,
1998). As Ridgway (1998, p. 2) states, “As an issue of policy, the
implementation of standards-based curricula should always be
accompanied by the implementation of standards-based assessment.
In fact, incremental change in assessment systems will foster
concurrent improvement in professional and curriculum develop-
ment.”

There is a need to assess a much wider range of mathematical
abilities than has been the case heretofore, including problem
solving and posing, representing, and understanding. This broad-
ened view of mathematical assessment is supported by curriculum
guides from numerous nations. For example, Australian frameworks
suggest that numeracy not only includes the ability to perform basic
calculations, but also a thorough, connected understanding of
number and operation (Leonelli & Schmitt, 2001). Traditional math-
ematics assessments tend to communicate that mathematics is an
endeavor that involves determining a quick answer using a pre-
existing, memorized method (Bell, 1995; Clarke, Clarke & Lovitt,
1990), thus failing to represent the true complexity of mathematics
(Galbraith, 1993). The measurement of decontextualized technical
skills should be replaced with measures that reflect what is known
about what it means to understand and do mathematics (AAMT,
2002; NCTM, 2000). Both the Assessment Standards for School
Mathematics (NCTM, 1995) and the Principles and Standards for
School Mathematics (NCTM, 2000) state that assessment tasks
communicate what type of mathematical knowledge and perfor-
mance are valued. Therefore, standards-based instruction is
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complemented by standards-based assessment (Dunbar & Witt,
1993).

Parallelling reform in mathematics curriculum and instruction
have been calls to authenticate student assessment in all subject
areas. Terms such as, “authentic assessment,” “alternative assess-
ment,” and “performance assessment” have become banners to rally
focussed efforts to change paradigms about the nature and purpose
of assessment. Mathematics educators have particularly focussed
upon the use of performance assessments as both a means to align
assessment with new reform curricula (Firestone & Schorr, 2004)
and to improve the links between teaching practice and assessment
(Pelegrino, Chubowsky & Glaser, 2001).

One of the challenges associated with performance assessments is
designing them in such a way so that they can be delivered on an
individual student’s level, i.e., developmental assessments (Pegg,
2003). In today’s classrooms, teachers are usually faced with the
responsibility of teaching children with a wide range of abilities. It is
quite conceivable that a well-designed performance assessment
could be administered and yet fail to provide useful data if the
assessment is delivered at a level that is either too difficult or too
easy for the student being assessed. The purpose of this article is to
suggest ways to create such assessments while honoring what is
known about the traits that characterize high quality performance
assessments in mathematics.

Creating a performance assessment

The content of number and operations forms the cornerstone of the
entire mathematics curriculum internationally (Hogan, Murcia, &
van Wyke, 2004; NCTM, 2000; Reys & Nohda, 1994), therefore I have
chosen to focus on this content in helping teachers begin to learn to
design performance-based assessments for their classrooms. This
section describes steps I use in teaching teachers to create perfor-
mance assessments; it reflects input from teachers involved in
professional development workshops over several years.

1. Choose a topic for your grade level, e.g., division of whole
numbers, about which a problem can be developed that leads to
the types of concepts you want to develop (e.g., Ma, 1999). 

2. Create the performance task. Write an engaging, real-life word
problem that incorporates the concepts you have chosen. Craft it
so that any size numbers would make sense in the wording, which
will allow for assessing multiple levels through one task. For
example, here is a fifth grade division task: 

I have _________ pieces of candy that I am going to put into bags
and each bag will contain ________ candies. How many bags will I
have?

Although this task, or problem, is simple in its construction, we
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have found it to be quite engaging, and children have created a
number of novel solution strategies in solving it. It also allows for
a great deal of reasoning and representing, particularly when
accompanied by the wise use of probing questions by the assessor
as discussed subsequently in step 6.
Note that numbers of varying numerical complexity can be
inserted in the blanks depending upon the child’s estimated level.
The term “level” possesses multiple definitions in mathematics
education, but in a number and operations context it often relates
to the complexity of the numbers involved in the problem a child
is asked to solve. Therefore, one of the ways the level of a problem
can be regulated is by regulating the complexity of the numbers in
the problem. The teachers with whom I have worked have helped
to develop a “hierarchy of numerical complexity” relative to
number and the four operations to guide them in determining the
level at which a child is capable of problem solving; they have
found it to be quite accurate and useful (see Table 1). 

3. Design a quickly administered inventory to estimate level. This
inventory should call for the solving of simple exercises of varying
complexity in the operation associated with the grade and can be
administered to an entire class in written form prior to adminis-
tering the performance assessment. Exercises in a possible fifth
grade inventory might look like the ones that appear below.

1. 8 ÷ 2 =
2. 12 ÷ 2 =
3. 7 ÷ 3 =
4. 60 ÷ 2 =
5. 120 ÷ 4 =
6. 65 ÷ 2 =
7. 150 ÷ 7 =
8. 78 ÷ 3 =
9. 60 ÷ 20 =

Note that this inventory is quite procedural in nature. The
teachers with whom I have worked have found that procedural
performance can be used to find a quick, rough estimate of the
level at which the performance assessment should be adminis-
tered. However, if a child’s instructional experience has not
included the development of solid connections between concepts
and procedures, this estimate is likely to be too high. If the child’s
responses in the initial stages of the performance assessment
indicate that the level estimate obtained from the inventory is
inaccurate, the teacher makes an immediate adjustment by re-
administering the task with numbers of differing complexity.

4. Select criteria to serve as standards for judging the performance.
I have found seven criteria to be quite useful in gauging the
quality of a student’s mathematical performance: 5 analytical
criteria based upon the NCTM Process Standards (2000) in agree-
ment with the earlier suggestions of Dunbar and Witt (1993) and



amt 63 (1) 200736

Table 1

Level Number sense Addition Subtraction Multiplication Division
A Rote counting Joining sets Separating sets 1 digit × 1 digit 

= 1 digit
2 × 3 = 6

1 digit ÷ 1 digit 
= 1 digit
8 ÷ 2 = 4

B One-to-one
correspondence

Single digit
addends & sum
3 + 2 = 5

1 digit – 1 digit 
= 1 digit
5 – 3 = 2

1 digit × 1 digit 
= 2 digits
(composing) 
2 × 6 = 12

2 digit ÷ 1 digit 
= 1 digit
12 ÷ 2 = 6

C Single digit < 5 Single digit
addends & double
digit sum 
3 + 9 = 12

2 digits – 1 digit 
= 1 digit
(decomposing) 
13 – 5 = 8

10 × single digit
10 × 3 = 30

1 or 2 digits ÷ 1 digit
= 1 digit 
with remainder 
7 ÷ 3 = 2 r 1

D Single digit > 5 Multiple single digit
addends
3 + 2 + 4 = 9

2 digits – 1 digit 
= 2 digits 
(no decomposing) 
27 – 5 = 22

10 multiple × single
digit = 2 digits 
20 × 3 = 60

10 multiple ÷ 1 digit
= 10 multiple 
(no decomposing)
60 ÷ 2 = 30

E 2 digit >15 < 20 2 digits + 2 digits 
no composing
32 + 24 = 56

2 digits – 1 digit 
= 2 digits
(decomposing) 
27 – 9 = 18

10 multiple × single
digit = 3 digits
(composing) 
30 × 4 = 120

3 digit 10 multiple ÷
1 digit 
(no decomposing) 
120 ÷ 4 = 30

F 2 digit > 9 < 16 2 digits + 2 digits
with composing
32 + 29 = 61

2 digits – 2 digits 
= 2 digits 
(no decomposing)
36 – 24 = 12

2 digits × 1 digit 
(no composing)
13 × 2 = 26

2 or 3 digits ÷ 1 digit
= 2 digits 
(no decomposing)
65 ÷ 2 = 32 r1

G 2 digit > 20 3 2–digit addends
with composing
32 + 25 + 46 = 103

2 digits – 2 digits 
= 1 or 2 digits
(decomposing) 
32 – 18 = 14

2 digits × 1 digit
(composing)
14 × 3 = 42

2 or 3 digit 10
multiple ÷ 1 digit 
= 2 digits
(decomposing)
150 ÷ 7 = 21 r 3

H 3 digit 3 digits + 3 digits
varying 
composing 
391 + 467 = 858

3 digits – 2 or 3 digits
= 1, 2 or 3 digits
(decomposing
involving 1 zero)
406 – 178 = 228

10 multiple × 10
multiple = 3 digits
(composing) 
20 × 20 = 400

2 or 3 digits ÷ 1 digit
= 2 digits
(decomposing) 
78 ÷ 3 = 26

I 3 digit, zeroes in
ones or tens
places

3 3-digit addends
with composing
323 + 257 + 469 

3 or 4 digits – 2 or 3
digits (1
decomposing)
1469 – 635

2 digits × 2 digits
(no composing)
13 × 12

3 digits ÷ 1 digit 
= 3 digits
432 ÷ 2 = 216

J 4 digit 3 4–digit addends
with composing
3235 + 2579 + 4696

4 or 5 digits – 4 or 5
digits (2 alternating
decomposes)
4628 – 1809 

2 digits × 2 digits
(one composing on
first row) 23 × 14

3 digits ÷ 1 digit 
= 3 digits 
(zero in quotient) 
412 ÷ 2 = 206

K 5 digit 4 digits + 4 digits
varying composing
4625 + 1856

Variable digit
number (2
consecutive
decomposes) 
631 – 253

2 digits × 2 digits
(one composing on
second row) 
43 × 24

2 or 3 digits ÷ 10
multiple
60 ÷ 20 = 3

L 6 digit Variable digit
number (3
consecutive
decomposes)
54363 – 14581

2 digits × 2 digits
(two composes) 
23 × 65

M 6 digit, zeroes Variable digit
number
(decomposing
involving 2 or more
zeroes) 4001 – 1376 

2 digits × 2 digits
(larger digits)
67 × 98 

N 7 digit
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two holistic criteria as suggested by the Learning Principle, also
part of the Principles and Standards document. The 5 analytical
criteria are: 
a. problem solving — accurately solving a worthwhile task using

multiple strategies;
b. communicating — explaining problem solving strategies clearly;
c. reasoning — justifying those strategies in a mathematically

sound manner;
d. representing — showing or modelling mathematical ideas in

multiple ways;
e. connecting — explaining the connections between strategies

and/or representations.
The two holistic criteria are:
f. conceptual — demonstrating an overall understanding of the

mathematics involved with solving the task;
g. procedural — demonstrating knowledge of the rules or algo-

rithms involved with solving the task.

5. Design a rubric using those criteria. One way to go about
designing this rubric is to create a scoring hierarchy based upon
the degree of assessor prompting required in order for a student
to experience success in the assessment (see Table 2). In other
words, the more assistance a child requires, the lower the rubric
score. The incorporation of prompting as a factor in distinguishing
rubric levels results in a blurring of the line between instruction
and assessment in harmony with current assessment philosophy
(McMillan, 2004). 

6. Create questions or prompts to probe student thinking.
Appropriate questions insure that opportunities are provided for
students to express themselves verbally as well as in written form
(Dunbar & Witt, 1993; Glaser, Raghavan & Baxter, 1992) and
insure that students were invited to display behaviour that
addresses all analytical criteria, i.e., the Process Standards
(Mewborn & Huberty, 1999). In this way you can be confident that
important mathematical knowledge is assessed (NCTM, 2000;
Morgan, 1998; Dunbar & Witt, 1993) and that the interpretations
associated with the assessment possess construct validity
(Messick, 1989), particularly in terms of assessing deep,
connected conceptual understanding.  Some possible prompts
and questions for a fifth grade division assessment appear below:
a. Which operation would you use to find the answer? (problem

solving)
b. Explain how you solved the problem. (communicating)
c. Solve the problem in a different way. Explain or show me.

(problem solving)
d. What would happen to the numbers in the question if you

multiplied them? (If student multiplied, ask what would happen
to the numbers if they divided them.) (reasoning)

e. Show this problem as a fraction. (representing)
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f. Solve this problem using pictures, manipulatives, etc.
(connecting)

7. Create a form for students to record their work and a teacher
recording form.

Performance Assessment
Teacher Recording Form

Name _____________________  Grade ____

March date ________________

Operation /Algorithmic Sense

____ Level (Number Complexity)        

____ Problems Solving (multiple ways)
____ Communicating (explaining)
____ Reasoning (justifying)
____ Representing (show multiple ways)
____ Connecting (representations, explanations)
____ Procedural understanding
____ Conceptual understanding

Anecdotal notes:

Mathematics Performance Assessment
Student Recording Form

Name _____________________  Grade ____  Date _________

There are _____________ pieces of candy. We need to put them
into _________________bags. How many pieces of candy will be
in each bag?

Working:

Conclusion

By following a few simple guidelines, very useful performance
assessments in mathematics can be designed and administered.
These assessments will allow you to determine the level at which
students comprehend and perform important mathematics. The data
derived therefrom will inform your instruction and send a clear,
consistent message to your students about what it means to know
and to do mathematics.
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I can calculate the motion
of the heavenly bodies but
not the madness of crowds.
Isaac Newton, 
19th century mathematician
and astronomer

Medicine makes people ill,mathematics make them sad and theology makes them sinful.Martin Luther, 16th century religious reformerOn two
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