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The basic theory of Rasch measurement applies to situations where a person
has a certain level of a trait being investigated, and this level of ability is
what determines (to within a measurement error) how well the person does
on each item in a test. This paper responds to frequent suggestions from col-
leagues that the use of Rasch measurement would be profitable in analysing
a set of data on students’ understanding of decimal notation. We demon-
strate misfit to the Rasch model by showing that item difficulty estimates
show important variation by year level, that there is significant deviation
from expected score curves, and that success on certain splitter items does
not imply a student is more likely to score well on other items. The explana-
tion given is that conceptual learning may not always be able to be measured
on a scale, which is an essential feature of the Rasch approach. Instead, stu-
dents move between categories of interpretations, which do not necessarily
provide more correct answers even when they are based on an improved
understanding of fundamental principles. In this way, the paper serves to
highlight the assumptions built into the Rasch model and to discuss its appli-
cability to describing the progress of learning with various characteristics.

The basic theory of Rasch measurement has been developed to apply 
fundamental principles of physical measurement to human traits and abilities.
To weigh an apple, one finds out whether it is heavier or lighter than a range of
calibrated weights and this enables it to be placed appropriately on an agreed
numerical scale. Similarly, a Rasch model aims to measure the ability of a 
person in a domain by testing it against a set of items of calibrated difficulty, so
that the person’s ability can be placed appropriately on the scale. The basic
Rasch model specifies that a person has a certain level of the latent trait being
investigated, and that it is only this level of ability and the difficulty of the item
that determines (to within measurement error) how well the person performs on
an item. If these assumptions hold for an area of learning, it follows that as stu-
dents learn more, their ability in the area will increase and hence they will be
able to answer correctly items of increasing difficulty, whilst retaining the 
ability to answer the easier items. If students of lower ability answer an item 
correctly more often than students of higher ability, the item is regarded 
as suspect and for many committed to Rasch test construction such an item 
simply would be discarded from the test. To develop a scale, a person’s ability
and item difficulty need to be “unidimensional” variables. For complex 
abilities, such as a student’s ability in mathematics, the standard approach is to
subdivide into a number of unidimensional variables. For example, the OECD’s
PISA study of mathematical literacy around the world reports 
mathematical literacy in “four separate one-dimensional models” (OECD, 2005,
p. 191) of (i) space and shape, (ii) change and relationships, (iii) 
uncertainty and (iv) quantity, as well as providing an overall mathematics scale. 
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The aim of this paper is to provide an empirical examination of the 
assertions of many of our colleagues that a Rasch model would suit these
data. However, as will be shown, the underlying assumptions of the model
are not met. This case study provides an opportunity to consider 
fundamental questions about how learning proceeds. We propose that in this
case, and presumably in many other cases, the better fitting model is one of
mapping learning (i.e., recording students moving between categories of 
thinking) than of measuring learning (i.e., seeing how many questions they can
answer correctly).

In the next section, the data set will be briefly described and then the 
initial results of a Rasch analysis will be reported. The following sections will
demonstrate that the data contravene the fundamental requirements of the
Rasch model, and then will explain why this is the case. The conclusion 
considers the general lessons about learning that arise from this situation. 

The Data
The data to be analysed here were collected to study longitudinal and

cross-sectional aspects of students’ understanding of decimal notation. We
were concerned with whether students can interpret a decimal number such
as 0.456, for example, as 456 thousandths and as 4 tenths + 5 hundredths + 6
thousandths, and whether they know that it is slightly less than a half, more
than 0.4, etcetera. Many results of the project have been published (e.g.,
Stacey, 2005; Steinle, 2004; Steinle & Stacey, 1998, 2003). 

The data in this study are from a one page 30-item test designed to map
students’ understanding of the meaning of decimal notation. Every item on
the test is of the same form. The instruction at the top of the page is Circle the
larger number in each pair of decimals, and 30 pairs of decimals follow. As will be
discussed below, item 6, for example, presents the pair {4.8, 4.63}1 and students
should circle 4.8 to be correct. Decimal comparison tests of this nature have
been used extensively in mathematics education over many years, as well as
in various large-scale testing programs. For example, item B10 in the category
Fractions and Number Sense in TIMSS-R asked for the smallest number from this
list {0.625, 0.25, 0.375, 0.5, 0.125}. The international average facility for Grade 8
students was 46%. As discussed below, our research showed that this is an
over-estimate of the proportion of students able to order decimals because
some have chosen the correct answer of 0.125 for the wrong reason. 

The particular decimal comparison test used in this study is called DCT2.
It was developed by the present authors, and Steinle (2004) gives the most
complete account of its development and history and directions for its
improvement. 

DCT2 was completed by students from Year 5 to Year 10 (approximately
11 to 16 years of age) in 12 schools from a variety of socio-economic levels in
Melbourne, Australia. Testing was administered to whole classes at 
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approximately 6 monthly intervals and many students will have been tested
on multiple occasions, and their progress was tracked over time. The data set
for this paper consists of 3531 test papers2 of 30 dichotomous items. There
were five test papers with every item completed incorrectly (i.e., scored 0 out
of 30) and exactly 1200 test papers were completed with no errors (i.e., a score
of 30 out of 30). Since these 1205 test papers do not contribute to the Rasch
analyses, the effective size of the data set is 3531 – 1205 = 2326. Because many
students were tested more than once (e.g., in Year 7 and also Year 8), the units
of data are in fact the completed test papers, that is, students at given points
of time, rather than the students themselves. For ease of reading however,
and to align with the normal Rasch analysis language, we refer in this paper
to the unit of analysis as the student. 

Because the items all have exactly the same form and present the same
task just with different numbers, it is a priori likely that they can be used to
measure a developing unidimensional ability to order decimals. Simple 
evidence for this is that the percentage of students doing very well on DCT2
generally increases with year level, as shown in Table 1. The following 
sections will show, however, that the unidimensionality does not hold.

Table 1
Percentage of Students with High Scores (28, 29 or 30) by Year Level 

Year Level

5 6 7 8 9 10
Sample size 581 606 1254 457 350 283
High scores (28, 29) 10% 12% 13% 15% 14% 9%
Full marks (30) 9% 30% 42% 36% 44% 47%

Applying the Rasch model
Applying a simple logistic model (Rasch model) to the whole sample 

produced the estimates of item difficulty and fit statistics shown in Table 2
and the map of latent distributions and response model parameter estimates
shown in Figure 1 (produced by Quest software, Adams & Khoo, 1993). The
map in Figure 1 shows that the results are not ideal for Rasch analysis. Even
with 1200 cases of perfect 30/30 results removed from the analysis, too many
students find the items too easy (mainly above 0, a lot above 3), although
Table 1 shows mastery is low. The estimates of item difficulties are bunched
(mainly from -1 to +1 logit), with no items being identified as appropriately
difficult or appropriately easy. In Figure 1, the items have been grouped 
horizontally into “types”, which will be discussed later. At this stage it is 
sufficient to note that they are included in Table 2 and are sets of items which
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function similarly on decimal comparison tests.
Table 2 
Estimates of Item Difficulty and Fit Statistics using the Rasch Simple Logistic Model
on Whole Sample

Item number and Item Estimate Weighted Fit Unweighted Fit

comparison item Typea of item Error (Infit) (outfit)
difficulty

MNSQ t-values MNSQ t-values

1   0.4/0.457  Sb 0.50 0.05 1.10 5.17 1.35 7.09

2   0.86/1.3  Sb -1.27 0.07 1.23 4.65 3.85 15.63

3   0.3/0.4  5 -0.64 0.06 0.81 -6.49 0.91 -1.18

4   1.85/1.84  5 -0.82 0.06 0.78 -6.74 0.65 -4.59

5   3.71/3.76  5 -0.77 0.06 0.77 -7.17 0.79 -2.67

6   4.8/4.63  1 0.38 0.05 1.15 7.67 1.05 1.06

7   0.5/0.36  1 0.54 0.05 1.20 10.44 1.14 3.16

8   0.75/0.8  1 0.57 0.05 1.17 8.85 1.07 1.57

9   0.37/0.216  1 0.81 0.05 1.30 15.04 1.33 7.32

10   3.92/3.4813  1 0.63 0.05 1.26 13.29 1.25 5.34

11   1.06/1.053  Sb 0.51 0.05 1.22 11.22 1.14 2.93

12   4.08/4.7  3 -0.14 0.05 1.14 5.90 1.11 1.76

13   3.72/3.073  3 0.11 0.05 1.16 7.61 1.03 0.50

14   2.621/2.0687986 3 0.09 0.05 1.20 8.86 1.05 0.96

15   8.052573/8.514 3 0.01 0.05 1.16 6.96 0.96 -0.67

16   5.62/5.736  2 0.02 0.05 0.83 -8.70 0.83 -3.10

17   0.5/0.75  2 -0.04 0.05 0.83 -7.94 0.81 -3.51

18   0.426/0.3  2 0.05 0.05 0.80 -10.39 0.70 -6.18

19   2.516/2.8325 2 0.02 0.05 0.77 -11.79 0.66 -6.83

20   7.942/7.63  2 -0.03 0.05 0.76 -11.74 0.62 -7.85

21   4.4502/4.45 4 0.58 0.05 0.99 -0.72 0.99 -0.33

22   17.353/17.35 4 0.42 0.05 0.92 -4.32 0.87 -3.04

23   8.245/8.24563 4 0.55 0.05 0.98 -1.39 0.98 -0.47

24   3.2618/3.26 4 0.51 0.05 0.96 -2.02 0.93 -1.51

25   3.741/3.746 Sb -0.52 0.06 0.74 -9.73 0.72 -4.17

26   0.35/0.42  6 -0.62 0.06 0.75 -8.99 0.54 -7.20

27   2.186/2.954 6 -0.52 0.06 0.71 -11.14 0.51 -8.10

28   0.872/0.813 6 -0.51 0.06 0.71 -11.23 0.51 -8.23

29   0.038/0.04  Sb 0.71 0.05 1.31 15.83 1.48 9.96

30   0.006/0.53  Sb -1.12 0.07 1.06 1.36 1.64 5.32

Note. aItem type is discussed later in the paper. bSome items do not belong to an
item type and are referred to as Supplementary. MNSQ = Mean–square.
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Item Estimates (Thresholds)                                      
all on all (N =3531 L = 30 Probability Level = .50)                   

————————————————————————————
Each X represents 15 students

Figure 1. Map of estimates of individual ability and item difficulty .



Other Rasch indicators show that these data do not fit the model. Only a
few of the 2 x 30 t-values for infit or outfit lie within the desirable range of 
(-2, 2). Given that many of the mean squares fit indicators are acceptable, one
might conclude the misfitting t results are a consequence of the large sample
size. Nevertheless, a less thoughtful approach to test construction than is ours
would involve discarding items outside the desirable range, in this case 
leaving only 3 items in DCT2. A more sophisticated approach would examine
the misfitting items carefully, to uncover the reasons behind the misfit. A
helpful reviewer reminded us that Ben Wright often remarks that Rasch
researchers take out stones from the soup and then study the stones: they do
not just throw them away. In this case though, there are so few items with 
statistics within the desirable ranges, that all of the data from the modelling
is suspect. The few items that supposedly ‘fit’ the model may not be good
soup ingredients and the many items that do not fit may not be stones. Our
conclusion in this paper will be that we are not making soup. 

Differential Item Functioning by Year Level
Closer analysis reveals more deviations from the patterns expected for

Rasch data. Figures 2 and 3 provide a plot of scores (vertical axis) against 
ability (horizontal axis) for Years 5, 7, and 9 for items 6 (4.8/4.63) and 16
(5.62/5.736), respectively, from Conquest software3 (Wu, Adams, & Wilson,
1997). These two items have been selected as illustrative of other items in
DCT2, as have the year levels 5, 7, and 9. The expected score curves, shown
as a solid line, illustrate how the probability of being correct on an item is
expected to increase as a logistic function of the ability of the students. Some
plots, such as that for item 16 in Figure 3, show over-fit to the expected score
curve. This item could be regarded as over discriminating: at all year levels
good students do (slightly) better than expected, while low scoring students
(below 0 logits) perform worse than expected on this item. Furthermore, 
middle scoring (0 - 1 logit) Year 5 students score better than expected on the
item and better than older students of the same ability. 

Figure 2 shows the actual score plots for years 5, 7, and 9 on item 6
(4.8/4.63), revealing a different pattern, which is exhibited by other items on
DCT2 as well. At nearly all year levels (illustrated by Years 5 and 7 in Figure
2), the plots show that students of very low ability (e.g., less than 0 logits)
have higher actual scores than students of medium ability (about 1 logit). This
again indicates poor fit of the DCT2 data to the Rasch model. 
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Figure 2. Actual score plots for Years 5, 7, and 9 and the expected score curve
for item 6 (4.8/4.63). 

Figure 3. Actual score plots for Years 5, 7, and 9 and the expected score curve
for item 16 (5.62/5.736).
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To show this result more clearly, the estimates for item difficulty for each
item type were averaged for each year level. These averages are presented
graphically in Figure 4. This figure demonstrates that some item types are
easier (i.e., have lower difficulty estimates) for Year 5 students than for Year 9
students, where classroom teachers might predict that younger students
would be less able and hence not find items easier. Note that Year 7 is 
intermediate between Year 5 and Year 9 behaviour. Estimates of Year 6 are not
graphed, as they are similar to those of Year 5; similarly, the estimates for
Years 8 and 10 are like Year 9 values.

Figure 4. Estimates of item difficulty by year level averaged 
for each item type.

Differential Item Functioning Revealed Using Two Splitter Items

A second indicator of the poor fit of these data to the Rasch Model is
obtained by splitting the sample on items 6 (4.8/4.63) and 16 (5.62/5.736).
These items are of similar difficulty, with 64% of the non-perfect students 
correct on item 6 and 71% correct on item 16. Figure 5 shows the estimates of
item difficulty obtained by Rasch analysis of the 29 remaining items (omitting
item 6) and calculated on two samples – those getting item 6 correct and those
with item 6 incorrect. Figure 6 shows similar information split on item 16. If
the DCT2 data fitted the Rasch model’s requirements for measurement, the
set of students getting an item correct should have higher ability than the set of
students getting the item incorrect, leading to the thicker line being 
consistently below the thinner line on both Figures 5 and 6. Inspection of
these figures reveals that this is not the case with these data. 

Furthermore, the estimates of item difficulty should be ordered similarly
(allowing for error) for both sets, yet Figures 5 and 6 show that this is not the
case. For example, consider the students who got item 16 correct (thick line in
Figure 6). These students  found items 17 to 28 easier than items 6 to 15. For
the students getting item 16 incorrect, however, the reverse is the case; they
found items 17 to 28 harder than items 6 to 15. Figure 5 shows a similar swap
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of estimates of difficulty. 
A comparison of Figures 5 and 6 is also revealing. Items 6 and 16 are of

medium difficulty; the item difficulties of 0.38 (err: .05) and 0.20 (err: .05)
(from Table 2) indicate that while item 6 is a marginally harder item, for our
practical purposes they can be considered to be of equal difficulty. As such,
the students who are correct on item 6 should be of equal ability to the students
who were correct on item 16. A comparison of the plots for items 21 to 24 in
Figures 5 and 6 reveal unexpected results. For students with item 6 correct,
these items have a difficulty of approximately +1 logit compared with
approximately -1 logits for the students with item 16 correct. In other words,
the sub-sample with item 6 correct finds these items more difficult than the
does the sub-sample with item 16 correct, even though we could infer them
to be of equal ability overall. These differences show that there is not a 
uni-dimensional scale of difficulty underlying these items.4

Figure 5. Item difficulty estimates, calculated on two samples having item 6
(4.8/4.63) correct and incorrect.

Figure 6. Item difficulty estimates, calculated on two samples having item 16
(5.62/5.736) correct and incorrect.
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Why the DCT2 Test Framework is Inappropriate 
for Rasch Modelling

This section explains why the fit of these DCT2 data to the Rasch model
is poor. The 30 items in DCT2 have been carefully selected to diagnose the
way in which a student is interpreting or mis-interpreting decimal notation.
As listed in Table 2, the 30 items have been classified on the basis of students’
responses and mathematical analysis into 6 ‘item types’ (with 6 unclassified
supplementary items). A student’s interpretation of decimal notation is 
diagnosed from their answers to the sets of items of each type. The item types
are groups of items which all students are likely to regard as being equivalent
questions. These types were constructed carefully, from an extensive 
knowledge of how students think about decimals. For each item type, the test
designers aimed to select pairs of decimals which a given student would
either get all correct or all incorrect, regardless of their ideas about decimal
notation. Type 1, for example, consists of the five items 6 to 10. All of these
items have equal whole number parts, decimal parts of unequal length, and
no zeros in the decimal part, but the major feature is that the longer decimal
is the smaller number. Items in type 2 are similarly defined, but the longer
decimal is the larger number. Items in type 3 have one number with 0 in 
the tenths place, as well as meeting other criteria. If the type has been 
sufficiently well defined, any particular student’s own interpretation of 
decimal notation applied consistently will result in that student getting all
items in the type right or all wrong. An item type in our diagnostic test is
therefore both a mathematical and psychological construction, and the 
definition of types depends on our knowledge of students’ conceptions and
misconceptions. This is in sharp contrast to the practice of those using Rasch
measurement in achievement testing who attempt to choose or develop items
in a hierarchy of difficulty to represent a single underlying ability dimension.

The item types were defined to elicit uniform responses from all students
who had any of the 12 main misconceptions about decimal numbers that
were known when DCT2 was created in 1997.5 Their definitions depend on
theoretical and empirical investigations of links between items by manual
cross-tabs procedures (e.g., Stacey & Steinle, 1998) and by minimum message
length cluster analysis (Nicholson et al., 2001). The clustering by type of the
items in Table 2 and Figure 1 is further evidence that this has been quite 
successful. Careful analysis of the pattern of students’ responses to each item
type enables a high percentage of students to be classified according to the
conceptions or misconceptions that they hold about decimal understanding.
Details are presented in Steinle and Stacey (2003) and Steinle (2004), which
also show how the proportion of students with each misconception varies
with year level. 

Stacey & Steinle86

5 More recent versions of the decimal comparison test, which diagnose further mis-
conceptions especially for older students, are available from the authors.



Steinle and Stacey (1998) give a description of the 12 main 
misconceptions. Generally, younger students (e.g., in Year 5) bring their
knowledge of whole numbers to their interpretation of decimals. Hence, they
are likely to make errors on item 6 (4.8/4.63) and other Type 1 items, thinking
that since 8 < 63 then 4.8 < 4.63. We label this, and several other variations, L
behaviour (indicating longer decimals are likely to be judged to be larger
numbers). This same thinking leads students to choose the answer correctly
to item 16 (5.62/5.736) and other Type 2 items, but they are making correct
choices for the wrong reasons. Thus, L students are incorrect on Type 1 items and
correct on Type 2 items and their scores on the other types discriminate
between varieties of L thinking6. 

A higher percentage of older students (e.g., in Year 9) tend to make the
opposite choices, that is, a higher percentage of older students consistently
select the decimals with fewer digits to be larger numbers, throughout the
test. We label this as S behaviour (indicating shorter decimals are likely to be
judged to be larger numbers). Some varieties of S behaviour are related to
drawing false analogies with fractions or negative numbers, where larger
whole numbers are associated with smaller numbers (e.g., 3 < 4, but 1/3 > 1/4
and -3 > -4). As with L behaviour, there are a variety of reasons for S 
behaviour, which can be tracked through item by item analysis and again,
consistent thinking leads to some item types being answered correctly and
some item types answered incorrectly. One group of S students considers all
decimals with three places (i.e., thousandths) to be smaller than decimals
with two places (i.e., hundredths), which are, similarly, smaller than decimals
with one place (i.e., tenths). This group orders decimals of the same length as
they would for whole numbers. Consistently applying this thinking leads 
students to be correct on item B10 in the category, Fractions and Number Sense,
in TIMSS-R, which asked for the smallest number from this list {0.625, 0.25,
0.375, 0.5, 0.125}, but they would have been correct for the wrong reason.
(They believe 0.5 and 0.25 are the largest two on the list.) Being correct on an
item for the wrong reason characterises DCT2. It is one of the reasons why the
DCT2 data do not fit the Rasch model, because these items break with the
normal assumption that correctness on an item indicates an advance in
knowledge (or ability) that will not be ‘lost’ as the student further advances. 

What is evident from this discussion is that an individual decimal 
comparison item (or a group of comparison items of the same type) cannot be
used to measure anything worthwhile. When students are correct on one item
or on a set of items of the same type, it may be for the right reason or the wrong
reason, or they may have guessed. Instead, it is the pattern of choices on all
items (i.e. a student’s responses to the test as a whole) that can be used to 
categorise a student’s thinking reliably. As Bond and Fox (2001) commented
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(p. 197), “before we examine the fit of test items to the Rasch model, we should
first examine the fit of the Rasch model to the test framework.” 

The deviations from expectations of the Rasch model demonstrated 
in Figures 2, 3 and 4 can be explained by knowledge of the major 
misconceptions about decimal notation that are most commonly held by 
students at different stages of schooling. Table 3 shows the distribution of L
and S students from Year 5 and Year 9 (calculated by excluding the students
with perfect or zero scores because they do not contribute to the Rasch 
estimates). Nearly half of the Year 5 students were classified as L, answering
incorrectly on Type 1 and often on Type 3, and correctly on Type 2 and 
often also correctly on Types 4, 5 and 6 (depending on the variety of L
misconception). This group was much less prevalent in Year 9, where a much
larger contribution is made by the students classified as S (answering 
correctly on Type 1 and incorrectly on Type 2). Thus the item difficulty 
estimates by year level reflect the varying proportions of students holding the
different misconceptions. Type 1 items are apparently harder for younger 
students (compared with older students), as they are more likely to hold an L
misconception and therefore get these items wrong (see Figures 2 and 4). The
exact opposite holds for Type 2 items (see Figures 3 and 4), which are judged
easier for younger students (compared with older students). On this data set,
the Rasch estimates of difficulty are lower for the items that are selected 
correctly by popular ways of thinking (correct or incorrect) at a given 
year level.

A finer grain analysis considering other item types can explain more of
the detail of the Rasch estimates including many of the deviations from the
expected score curves in Figures 3 and 4, but the picture remains the same. As
students progress through school, learning more (e.g., learning about 
negative numbers), their ideas about decimal numbers change, and this may
or may not result in more correct choices on this test. Again this is a break
with the assumptions on which Rasch modelling is based. A student’s total
score on this test might increase or decrease depending on the particular 
misconception and the mix of items in the test. This does not fit the property
of Rasch scaling stated in Swaminathan (1999), that “the number right score
contains all the information regarding an examinee’s proficiency level, that is,
two examinees who have the same number correct score have the same 
proficiency level” (p. 49). Neither the total score approach of the classroom
teacher, nor Rasch measurement estimates provides a felicitous summary of
student performance on the decimal comparison items of the DCT2 test.

Table 3
Percent of Students without Perfect or Zero Scores classified as L or S, from Years 5, 7 & 9

Year Sample size L S
5 531 46% 17%
7 731 23% 21%
9 197 11% 18%
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Strong supporters of Rasch measurement might have several suggestions
on how to make the data fit the model, overcoming the misfits that we have
highlighted. For example, the differential item functioning revealed by the
two splitter items might be overcome by using a two-dimensional model, so
that competence in DCT2 is regarded as the outcome of two separate abilities.
Splitting by items of other types is likely to reveal that further dimensions are
required, and so a multi-dimensional model could be built. The differential
behaviour of students by year level further suggests that different models for
different year levels may be required. Eventually, the data might be made to
fit the Rasch model quite well. However, our claim is not that Rasch model-
ling cannot be imposed on data about decimal conceptions, but rather that
there is nothing to gain in following that approach in this and other cases. As
the final section discusses, learning as revealed by answers to test items is not
always of the type that is best regarded as ‘measurable’, but instead learning
may be better mapped across a landscape of conceptions and misconceptions. 

Mapping rather than Measuring Conceptual Change 
This paper has been written as a response to the repeated suggestions

made by colleagues over the years, which implied that we had been remiss in
not using this Rasch analysis with our data. Surely we should take the 
opportunity to track growth by creating a measure of decimal understanding
based on a proper scientific footing, as offered by Rasch analysis. This paper
has demonstrated that these data do not fit the Rasch model. Nevertheless,
while the test and the Rasch model are incompatible for very good reasons,
our Rasch analysis of these DCT2 data provides very compelling empirical
evidence based on our colleagues’ own chosen analytical terms, that a 
measurement approach is not suited to the purposes of our diagnostic testing.
Standard responses such as “eliminate items that do not fit the model” are
inappropriate. Instead the lack of fit highlights some general lessons about
the items, as has been discussed above, but also about learning and students’
conceptual development. We set out to build a diagnostic device to detect
particular misunderstandings about the decimal notation system, not to build
a test of achievement. If teachers were to provide learning experiences more
appropriate to children according to DCT2 diagnoses, we conclude that those
children would fare better on the Rasch modelled tests so favoured by our
colleagues in mathematics education.

Instead of testing a gradual accumulation of facts and skills, students
who make errors on DCT2 reveal their conceptual understanding of 
decimals.7 Understanding decimal notation may appear a very limited task,
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but full understanding requires mastery of a complex web of relationships
between fundamental ideas. As students progress through school, they bring
to bear different aspects of this complex web on their interpretation of 
decimals, and so the progress of learning in this domain by a large proportion
of students can be characterised as movement between conceptions (and 
misconceptions), rather than steady progress “upwards” towards expertise.
These misconceptions are of varying sophistication (e.g., some incorporate
more complex place value ideas than others) but they are not ordered 
linearly from bad to good, as required by the Rasch model, with students 
getting more DCT2 items correct as they improve. Steinle (2004) investigated
the possibility of establishing a hierarchy of misconceptions and came to the
conclusion that it was best based on “readiness to move to expertise”. In
Steinle’s sense, a better misconception to have is defined as one with a 
higher probability of becoming an expert the next time the test is 
administered. This hierarchy does not show up in the total scores on the test
or the Rasch ability estimates for students. Instead a student’s score on DCT2
and the Rasch ability estimate is an artefact of two things: (i) the relative 
proportion of items from each item type on the test (because students who are
correct on the more frequently occurring item types get higher scores); and
(ii) the relative proportion of students with given ways of thinking about 
decimals in the sample. This latter factor is in turn affected by underlying
progress that students make, but also sample characteristics including the 
age profile. 

Had the data been described well by the Rasch model, it would have
implied that students begin by understanding some ‘simple’ decimals and
hence develop the ability to compare them, and then gradually learn about
decimals of more complex types and develop the ability to compare those too.
A paradox is that although this is not a reasonable description of students’
thinking and its development, it does seem a reasonable description of the
teaching process. Students begin to learn about decimal numbers with one
place (e.g., 0.3 and 0.4), and learn to interpret them as 3 tenths and 4 tenths so
that they can see that 0.3 < 0.4, and so forth, and to add and subtract them.
Next they learn about decimals with two decimal places, then three and more,
and also learn the ‘reunitising’ that links decimals with different numbers of
decimal places (e.g., that 0.3 = 0.30), which is needed for addition and 
subtraction of ragged decimals, and so on. Later, they learn about longer 
decimals and more complex operations. In this sense they gradually build up
knowledge. Items that tested a wide range of such facts and skills would very
likely be able to form an acceptable uni-dimensional Rasch scale—but it
would be a far different test. 

As students change their ideas about decimals, they make different 
choices on the DCT2 items. Sometimes these later choices are correct on items
that were previously incorrect, and sometimes these later choices are 
incorrect on items that were previously correct. We propose that changes in
students’ ideas are best thought of as movement between categories (with
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more students having reached the goal as they get older) rather than as 
movement up a scale. The best model of learning in this case is as ‘around a
landscape’ rather than ‘up a ladder’. 

A teacher looking at the results of some of her students on DCT2 
commented to us that they had “just a few more little things to learn.” In fact
her students had very little idea about place value: they thought that the whole
number indicates the number of dollars and the first two decimal places 
indicates the whole number of cents. This interpretation happens to produce
correct answers on most item types on DCT2. It appeared to the teacher that
there was only one item type these students needed to learn about (Type 4 in
Table 2 e.g. 4.4502/4.45), but in reality they needed a major change in their
understanding. Their conception incorporated no understanding of place
value beyond isolated information that the decimal point separated two whole
numbers (the number of dollars from the number of cents) and the later digits
did not matter. To the teacher, thinking of learning as ‘accumulating facts’ and
impressed by the score on DCT2, the students knew a lot and were well on the
way to mastery, but from the point of view of learning principles and making
connections between ideas, these students had hardly begun. 

This paper is not intended to imply that the Rasch model cannot describe
progress in learning in many situations very well. It is very well suited to
descriptions of students’ learning in domains of knowledge which are viewed
from a reasonable distance, so that some overall progress of ‘learning 
more’ is evident, perhaps over some years of schooling or with tasks clearly
increasing in scope and complexity. We have provided evidence, however,
that not all learning is well described like this. By setting out the assumptions
behind the construction of a scale for measurement, Rasch theory has helped
us see that that different aspects of learning need to be tracked with 
fundamentally different tools. There will surely be many other examples
beyond the case of decimals, where aspects of learning need to be mapped
rather than measured. 
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