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Gifted Today but Not Tomorrow?  
Longitudinal Changes in Ability  

and Achievement During Elementary School
David F. Lohman and Katrina A. Korb

the term gifted implies a permanent superiority. However, the majority of children 
who score in the top few percentiles on ability and achievement tests in 1 grade do not 
retain their status for more than a year or 2. the tendency of those with high scores 
on one occasion to obtain somewhat lower scores on a later occasion is one example of 
regression to the mean. We first summarize some of the basic facts about regression to 
the mean. We then discuss major causes of regression: errors of measurement, indi-
vidual differences in growth, changes in the content of the developmental score scale, 
and changes in the norming population across age or grade cohorts. We then show that 
year-to-year regression is substantial, even for highly reliable test scores. different ways 
of combining achievement and ability test scores to reduce regression effects are illus-
trated. implications for selection policies and research on giftedness are also discussed.

Longitudinal	 studies	 of	 intellectually	 exceptional	 students	 have	 pro-
duced	some	of	the	most	important	findings	in	the	field	of	gifted	educa-
tion	(Lubinski,	Webb,	Morelock,	&	Benbow,	2001;	Terman	&	Oden,	
1959).	However,	there	is	a	paradox	in	the	literature	on	the	relationship	
between	 estimates	 of	 ability	 in	 childhood	 and	 accomplishments	 in	
adulthood.	On	the	one	hand,	in	any	group	of	children,	the	child	who	
obtains	the	highest	score	on	a	measure	of	scholastic	aptitude	is	the	one	
who	is	most	 likely	 later	to	attain	the	highest	 level	of	academic	excel-
lence.	On	the	other	hand,	the	student	who	obtains	the	highest	score	is	
also	the	person	whose	test	score	at	some	later	date	is	most	likely	to	show	
the	greatest	amount	of	regression	to	the	mean.	How	is	this	possible?

Statistically,	 the	 paradox	 of	 high	 aptitude	 being	 associated	
both	with	high	accomplishment	and	large	regression	effects	merely	
restates	what	it	means	for	two	variables	to	be	imperfectly	correlated.	
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The	problem,	however,	is	that	the	sort	of	probabilistic	thinking	that	
is	captured	in	correlations	runs	counter	to	the	tendency	to	think	cat-
egorically	about	labeled	concepts.	We	speak	of	learning-disabled	or	
gifted	students	as	if	there	were	sharp	boundaries	separating	individuals	
in	the	categories	from	those	outside	of	them.	Even	those	who	under-
stand	that	the	boundaries	are	arbitrary	often	think	that	if	we	agreed	
on	the	location	of	the	category	cut	points	and	had	perfectly	reliable	
and	valid	measures,	then	category	membership	would	remain	con-
stant	over	time.	In	the	case	of	academically	advanced	children,	the	
expectation	is	that	if	we	could	measure	giftedness	well,	then	the	child	
who	is	considered	gifted	at	age	6	would	still	be	considered	gifted	at	
16.	If	retesting	the	child	at	age	8	or	10	suggested	a	lower	score,	the	
typical	 reaction	 would	 be	 to	 question	 either	 the	 dependability	 of	
scores	 (especially	 the	 latter,	 lower	 score)	or	 the	validity	of	 the	 test	
that	 produced	 them.	 Indeed,	 it	 is	 common	 practice	 to	 administer	
different	ability	tests	to	individuals	or	groups	in	the	hopes	of	iden-
tifying	additional	gifted	students.	The	assumption	is	that	any	high	
score	is	legitimate,	whereas	lower	scores	underestimate	ability.

Confusions	about	giftedness	thus	reflect	more	than	a	common	
fondness	for	typologies.	They	also	result	from	assumptions	about	the	
nature	 of	 intellectual	 development	 and	 the	 characteristics	 of	 tests	
used	 to	 measure	 that	 development.	 For	 example,	 the	 assumption	
that	the	child	whose	performance	is	unusual	at	one	point	in	time	will	
be	equally	unusual	at	another	point	in	time	assumes	(a)	that	errors	
of	measurement	do	not	substantially	affect	either	test	score,	(b)	that	
growth	from	Time	1	to	Time	2	is	constant	for	all	who	have	the	same	
initial	 score,	 (c)	 that	 tests	 measure	 the	 same	 mix	 of	 constructs	 at	
all	 points	 along	 the	 score	 scale	 that	 spans	 the	 developmental	 con-
tinuum,	and	(d)	that	the	population	of	test	takers	is	constant	across	
time.	To	the	extent	that	these	assumptions	are	not	true,	then	we	will	
see	a	regression	in	scores	from	Time	1	to	Time	2.

Regression to the Mean

Regression	to	the	mean	occurs	whenever	scores	are	not	perfectly	cor-
related.	 The	 amount	 of	 regression	 in	 standard	 scores	 can	 easily	 be	
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estimated	from	the	correlation	between	the	two	sets	of	scores.	The	
predicted	 score	 on	 Test	 2	 is	 simply	 ẑ z r2 1 12= × ,	 where	 ẑ2	 is	 the	
predicted	standard	score	on	Test	2,	 z1	is	the	standard	score	on	Test	
1,	and	 r12 	is	the	correlation	between	the	Tests	1	and	2.

The	expected	score	at	Time	2	will	equal	the	score	at	Time	1	only	
if	the	correlation	is	1.0	or	if	the	standard	score	at	Time	1	is	zero	(i.e.,	
the	 mean).	 The	 lower	 the	 correlation,	 the	 greater	 is	 the	 expected	
regression.	Indeed,	when	the	correlation	between	two	tests	is	zero,	
then	the	expected	test	score	at	Time	2	is	the	mean	(i.e.,	0)	for	all	test	
takers.	Although	there	is	no	regression	at	the	mean	(i.e.,	z1	=	z2	=	0),	
the	amount	of	regression	increases	as	scores	depart	from	the	mean.	
Students	who	receive	extremely	high	scores	on	Test	1	are	unlikely	to	
receive	similarly	high	scores	on	Test	2.

The	equation	for	 ẑ2	can	be	used	to	estimate	the	expected	regres-
sion	in	status	scores	such	as	IQs.	The	first	step	is	to	convert	the	IQ	to	
a	z	score	by	subtracting	the	mean	IQ	and	dividing	by	the	population	
Sd	 for	the	test.	For	example,	 if	the	mean	is	100	and	the	Sd is 15,	
then	an	IQ	of	130	converts	to	a	z	score	of	 130 100

15
− 	=	2.0.	If	the	correla-

tion	between	scores	at	Time	1	and	Time	2	is	r	=	.8,	then	the	expected	
z	score	at	Time	2	is	2.0	×	.8	=	1.6.	This	converts	to	an	IQ	of	(1.6	×	15)	+	
100	=	124.	The	expected	regression	is	6	IQ	points.	If	the	IQ	were	
145,	then	the	expected	regression	would	be	9	IQ	points.

The	standardized	scores	used	in	the	equation	for	 ẑ2	may	be	inap-
propriate	if	the	variance	of	scores	is	not	the	same	across	occasions.1	
This	often	occurs	when	using	attainment	scores	(such	as	mental	age	
or	 developmental	 scale	 scores)	 rather	 than	 status	 scores	 (such	 as	
percentile	rank	or	IQ).	Whether	the	variance	of	attainment	scores	
increases	or	decreases	over	time	depends	on	the	nature	of	the	abili-
ties	 that	 are	 measured,	 the	 dependent	 measures	 that	 are	 used,	 and	
how	 score	 scales	 are	 constructed.	 The	 variance	 of	 scores	 tends	 to	
decrease	with	practice	when	the	domain	is	closed	rather	than	open	
(Ackerman,	 1989).	 A	 closed	 skill	 set	 is	 one	 that	 is	 relatively	 small	
and	bounded.	For	example,	learning	to	count	to	10	is	a	closed	skill.	
Learning	mathematics	is	an	open	skill.	The	dependent	measure	also	
matters.	For	example,	as	 individuals	 learn	a	new	skill,	 the	variance	
of	accuracy	scores	often	declines.	However,	response	speed	or	other	
measures	of	learning	and	transfer	can	show	improvements	with	addi-
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tional	practice.	Such	scores	may	show	an	increase	 in	variance	with	
extended	practice.

How	tests	are	scaled	can	have	a	substantial	impact	on	whether	the	
variance	of	scores	increases	over	time.	For	example,	the	Iowa	Tests	of	
Basic	Skills,	Form	A	(ITBS;	Hoover,	Dunbar,	&	Frisbie,	2001)	and	
the	Cognitive	Abilities	Test,	Form	6	(CogAT;	Lohman	&	Hagen,	
2001)	 were	 jointly	 normed	 on	 the	 same	 national	 sample.	 ITBS	
scaled	 scores	 show	 considerable	 increase	 in	 variance	 across	 grades,	
whereas	 CogAT	 scaled	 scores	 do	 not.	 This	 is	 because	 the	 ITBS	 is	
scaled	using	a	growth	model	that	assumes	that	individual	differences	
in	achievement	increase	over	grades.	The	CogAT	is	scaled	using	the	
Rasch	(1960)	model	 that	makes	no	assumptions	about	changes	 in	
score	 variance	 across	 time.	 These	 differences	 in	 scaling	 procedures	
are	masked	when	status	scores	such	as	percentile	ranks	or	standard	
age	scores	are	reported.

Developmental	 psychologists	 recognize	 that	 regression	 to	 the	
mean	 is	 a	 pervasive	 phenomenon	 when	 retesting	 students	 (Marsh	
&	Hau,	2002;	Nesselroade,	Stigler,	&	Baltes,	1980;	Phillips,	Norris,	
Osmond,	&	Maynard,	2002).	Regression	to	the	mean	is	also	com-
monly	cited	as	a	problem	when	working	with	learning-disabled	stu-
dents	(e.g.,	Milich,	Roberts,	Loney,	&	Caputo,	1980).	However,	this	
statistical	 fact	 of	 life	 is	 less	 commonly	 applied	 to	 gifted	 students.2	
Many	who	recognize	the	problem	often	ascribe	it	entirely	to	errors	
of	 measurement	 (e.g.,	 Callahan,	 1992;	 Mills	 &	 Jackson,	 1990).	
However,	measurement	error	is	only	part	of	the	picture.

Any	 factor	 that	 reduces	 the	 correlation	 between	 two	 sets	 of	
scores	contributes	 to	regression	toward	the	mean.	We	discuss	five:	
errors	of	measurement,	conditional	errors	of	measurement,	differen-
tial	growth,	changes	in	the	content	of	the	developmental	scale,	and	
changes	in	the	norming	sample.

Errors of Measurement

Error	is	the	most	obvious	contributor	to	regression	toward	the	mean.	
Sources	of	error	that	might	lower	a	score	on	a	particular	occasion	are	
called	negative	error;	they	include	factors	such	as	temporary	inatten-
tion	or	distractions	when	taking	the	test.	Error	can	also	contribute	to	
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higher	scores.	Examples	of	positive	error	are	lucky	guessing	or	good	
fortune	 in	 having	 learned	 the	 solutions	 to	 particular	 items.	 These	
sorts	of	seemingly	random	fluctuations	in	behavior	across	situations	
are	what	most	people	understand	as	errors	of	measurement.

A	larger	source	of	measurement	error	for	most	examinees,	how-
ever,	is	the	particular	collection	of	tasks	and	items	that	are	presented.	
For	example,	the	estimate	one	obtains	of	a	student’s	reasoning	abili-
ties	depends	on	the	format	of	the	task	(e.g.,	matrices,	analogies,	or	
classification	problems)	and	the	particular	sample	of	items	presented	
in	each	of	these	tasks.	Factor	analyses	of	large	test	batteries	commonly	
show	that	the	loading	of	a	test	on	its	task-specific	factor	is	often	not	
much	smaller	than	its	loading	on	the	factor	that	it	helps	define.	This	
means	that	the	scores	on	the	test	are	as	 likely	to	reflect	something	
specific	 to	 the	 task	 and	 measurement	 occasion	 as	 something	 that	
would	be	shared	with	other	measures	of	the	same	construct.	For	this	
reason,	measurement	experts	have	long	advocated	estimating	ability	
using	tests	that	present	as	many	items	as	possible	in	many	different	
formats	as	possible.	However,	even	when	tests	contain	many	items	
in	multiple	formats,	one	is	almost	never	interested	in	the	student’s	
score	on	a	particular	form	of	a	test	that	is	administered	on	a	particu-
lar	occasion.	The	ideal	score	would	be	one	that	is	averaged	across	all	
acceptable	conditions	of	observation:	test	formats,	samples	of	items,	
test	occasions,	and	other	conditions	of	testing.

Several	of	these	factors	are	varied	when	scores	are	obtained	for	rep-
resentative	samples	of	students	on	different	individually	administered	
ability	tests.	Test	tasks,	test	occasions,	and	perhaps	even	examiners	or	
other	 conditions	 of	 testing	 vary.	 Correlations	 between	 individually	
administered	ability	tests	range	from	approximately	r	=	.7	to	.85.	For	
example,	Phelps	(in	McGrew	&	Woodcock,	2001)	reported	a	correla-
tion	of	r	=	.71	between	the	Woodcock-Johnson	III	General	Intellectual	
Ability	score	and	the	Full	Scale	IQ	on	the	WISC-III	for	a	sample	of	
150	randomly	chosen	students	from	grades	3	to	5.	Flanagan,	Kranzler,	
and	Keith	(in	McGrew	&	Woodcock,	2001)	reported	a	correlation	of	
r	=	.70	between	the	Woodcock-Johnson	III	Brief	Intellectual	Ability	
score	and	the	Full	Scale	Score	on	the	Cognitive	Assessment	System.	
Roid	(2003)	reported	a	correlation	of	r =	.84	between	the	Stanford-
Binet	V	and	the	WISC-III	(see	also	Daniel,	2000).	As	shown	later,	cor-
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relations	of	this	magnitude	will	result	in	substantial	regression	when	
students	who	receive	a	high	score	on	one	of	these	tests	are	adminis-
tered	a	different	test.	For	example,	given	a	correlation	of	r	=	.84,	only	
about	half	of	the	students	who	score	in	the	top	3%	of	the	distribution	
on	one	 test	will	 also	 score	 in	 the	 top	3%	of	 the	distribution	on	 the	
other	test	(see	Table	1).

Averaging	 can	 reduce	 the	 impact	 errors	 of	 measurement.	 For	
example,	 one	 could	 compute	 the	 average	 of	 a	 student’s	 reading	
achievement	 scale	 scores	or	ability	 test	 scores	across	2	years	 rather	
than	 using	 the	 score	 from	 a	 single	 testing.	 Averaged	 scores	 will	
regress	toward	the	mean,	and	so	the	average	of	two	test	scores	cannot	
be	interpreted	using	the	norms	that	are	derived	for	a	single	admin-
istration	of	the	test.	But,	even	norms	for	individual	test	scores	may	
be	misleading.	Norms	for	ability	tests—especially	nonverbal	tests—
have	 changed	 dramatically	 over	 the	 past	 40	 years	 (Flynn,	 1987,	
1999;	Thorndike,	1975).	Schools	 should	not	use	published	norms	
on	ability	tests	that	are	inadequate	(e.g.,	see	Tannenbaum,	1965,	on	
the	Culture	Fair	Intelligence	Test)	or	severely	out	of	date	(e.g.,	the	
Stanford-Binet	L-M).	When	it	is	impossible	to	administer	multiple	
tests	of	a	particular	construct,	one	should	endeavor	to	use	tests	that	
present	items	in	multiple	formats	rather	than	a	single	item	format.	
Such	tests	typically	have	higher	generalizability	than	those	that	use	
a	single	response	format	for	all	 items.	Finally,	as	 shown	later,	aver-
aging	scores	on	a	domain-specific	test	of	achievement	and	a	test	of	
reasoning	abilities	in	the	symbol	systems	used	to	communicate	new	
knowledge	 in	 that	domain	can	dramatically	 reduce	 the	amount	of	
regression	in	test	scores.

Conditional Errors of Measurement

Although	 many	 researchers	 understand	 that	 the	 concept	 of	 error	
includes	more	than	random	fluctuations	across	test	occasions,	fewer	
understand	that	the	amount	of	error	 in	test	scores	 is	generally	not	
uniform	across	the	score	scale.	Formulas	for	estimating	the	standard	
error	of	measurement	(SEM)	from	the	reliability	coefficient	gener-
ally	assume	that	the	variability	of	errors	is	constant	across	score	lev-
els.	This	is	a	reasonable	assumption	for	most	examinees.	It	 is	often	
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not	a	reasonable	assumption	for	those	who	obtain	very	high	or	very	
low	scores	on	the	test.

Conditional	errors	of	measurement	are	errors	that	depend	on	the	
location	of	a	score	on	the	score	scale.	The	typical	patterns	of	errors	
of	measurement	for	raw	and	scaled	scores	on	a	fixed-length	test	are	
shown	in	Figure	1.	As	Figure	1	shows,	the	patterns	are	opposite	for	
raw	 scores	 (i.e.,	 number	 correct)	 than	 for	 scaled	 scores	 and	 other	
normative	scores	based	on	scaled	scores	(e.g.,	IQ	scores).	Differences	
in	the	patterns	of	errors	for	raw	and	scaled	scores	are	caused	by	the	
way	 the	 scaling	 process	 expands	 the	 score	 scale	 at	 the	 extremes	 of	
the	distribution.	This	means	that	passing	or	failing	a	single	item	will	
have	a	much	 larger	effect	on	 scale	 scores	 for	 those	who	score	near	
the	ceiling	or	floor	of	a	test	than	for	those	who	score	near	the	mean.	
This	most	commonly	occurs	on	tests	in	which	all	students	in	a	grade	
are	administered	the	same	level	of	a	test.	The	level	of	the	test	that	is	
appropriate	for	the	majority	of	students	in	a	class	will	often	be	too	
easy	for	the	most	able	students.

Tests	that	are	scaled	using	Item	Response	Theory	such	as	the	Otis-
Lennon	School	Ability	Test	(Otis	&	Lennon,	2003)	and	the	CogAT	
(Lohman	&	Hagen,	2001)	typically	report	conditional	errors	of	mea-
surement	for	scale	scores.	Conditional	errors	of	measurement	can	be	

figure 1. conditional Standard Errors of Measurement for raw scores 
(dashed line) and scaled scores (solid line) on the cogat (form 6) 
Verbal Battery, level a.
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Figure 1.Conditional Standard Errors of Measurement for raw scores (dashed line) and scaled scores

(solid line) on the CogAT (Form 6)Verbal Battery, Level A.
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dramatically	reduced	by	administering	a	higher	level	of	the	test	to	more	
able	students.	For	example,	consider	the	student	who	receives	a	Verbal	
scale	score	of	221	on	CogAT.	Table	5.7	in	Lohman	and	Hagen	(2002)	
shows	that	the	error	of	measurement	at	this	score	is	14.8	on	Level	A	of	
the	test	but	only	7.4	at	Level	D.	Thus,	administering	the	higher	level	of	
the	test	halves	the	expected	error	of	measurement.

Differential Growth Rates

If	 errors	 of	 measurement	 were	 the	 only	 factor	 that	 contributed	 to	
regression	to	the	mean,	no	additional	regression	should	occur	after	
the	first	retest.	Suppose	that	only	students	who	obtain	high	scores	
on	the	initial	test	are	selected.	On	average,	scores	would	be	expected	
to	 decline	 when	 the	 students	 were	 retested.	 After	 this	 first	 retest,	
however,	scores	would	regress	to	the	mean	true	(or	universe)	score	
of	the	group—some	individuals	getting	higher	scores	on	subsequent	
retests,	 some	getting	 lower	 scores,	but	 the	mean	 true	 score	 staying	
the	 same.	 Put	 differently,	 the	 correlation	 between	 the	 initial	 test	
score	 and	 every	 subsequent	 retest	 would	 be	 the	 same.	 All	 of	 these	
correlations	would	estimate	the	reliability	of	the	test.	However,	lon-
gitudinal	 studies	 of	 ability	 do	 not	 show	 this	 pattern.	 Rather,	 the	
correlations	tend	to	decrease	as	the	 interval	between	test	adminis-
trations	 increases	 (Bayley,	 1949;	 Humphreys	 &	 Davey,	 1988).	 For	
example,	the	upper	diagonal	of	the	matrix	in	Table	2	shows	correla-
tions	among	Composite	scores	on	the	ITBS	for	6,321	students	who	
were	 tested	 every	 year	 from	 third	 grade	 to	 eighth	 grade	 (Martin,	
1985).	The	lower	diagonal	shows	correlations	among	IQ	scores	for	
the	same	intervals	estimated	from	Thorndike’s	(1933)	meta-analysis	
of	36	studies	 in	which	students	were	readministered	the	Stanford-
Binet	after	intervals	that	ranged	from	less	than	a	month	to	5	years.	
The	pattern	in	both	matrices	approximates	a	simplex:	High	correla-
tions	near	the	diagonal	of	the	matrix	decline	as	one	moves	away	from	
the	 diagonal.	 Correlations	 are	 higher	 for	 the	 longer	 and	 therefore	
more	reliable	achievement	test	(median	rxx'	=	.98)	than	for	the	Binet	
test	 (estimated	rxx'	=	 .89).	The	fact	 that	correlations	decline	as	 the	
interval	between	tests	increases	means	that	factors	other	than	error	
must	affect	retest	scores	on	both	ability	and	achievement	tests.
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One	possibility	is	differential	rates	of	growth.	A	simplex	pattern	
for	correlations	will	be	obtained	as	long	as	true-score	gains	are	not	
perfectly	correlated	with	the	true-score	base	(Humphreys	&	Davey,	
1988).	Put	differently,	year-to-year	gains	do	not	have	to	be	random,	
as	some	have	hypothesized	(Anderson,	1939).	Rather,	they	only	need	
to	vary	across	individuals.	There	is	in	fact	considerable	evidence	that	
students	show	different	patterns	of	growth	on	ability	tests.	For	exam-
ple,	McCall,	Appelbaum,	and	Hogarty	(1973)	investigated	changes	
in	Stanford-Binet	IQ	scores	for	80	middle-class	children	who	were	
given	the	same	test	17	times	between	ages	2½	and	17.	IQ	profiles	for	
67	of	the	80	children	could	be	classified	into	one	of	five	groups.	The	
largest	 group	 showed	 a	 slightly	 rising	 pattern	 of	 scores	 over	 child-
hood.	Other	groups	showed	patterns	of	sharp	declines	or	increases	
at	different	ages.	In	general,	major	shifts	occurred	most	frequently	at	
ages	6	and	10.	Note	that	changes	in	IQ	reflect	changes	in	rank	within	
successive	age	groups	rather	than	changes	in	ability	to	perform	tasks.	
IQ	scores	decline	even	if	ability	improves,	but	at	a	slower	rate	than	
age-mates	who	obtained	the	same	initial	IQ	score.

Students’	growth	on	both	ability	and	achievement	tests	from	year	
to	year	is	affected	by	maturation,	interest,	quality	of	instruction,	out-
of-school	experiences,	and	many	other	personal	and	social	 factors.	
For	example,	instruction	that	engages	and	appropriately	challenges	
a	student	can	result	in	cognitive	growth	that	is	larger	than	expected.	

Table 2 
Correlations Between ITBS Composite Scores   

and Binet IQ Scoresa

Grade 3 4 5 6 7 8
3 91 89 87 85 83
4 86 93 91 89 87
5 83 86 94 92 91
6 80 83 86 94 93
7 75 80 83 86 94
8 70 75 80 83 86

note. Decimals omitted. 
aAbove the diagonal, from Martin, 1985; below the diagonal, from Thorndike, 1933.
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However,	the	same	student	may	be	placed	in	a	classroom	with	many	
distractions	in	the	subsequent	year	and	thus	show	less	growth.3

Although	 growth	 rates	 vary	 across	 individuals,	 the	 stability	 of	
individual	differences	in	scores	that	average	across	tasks	and	domains	
is	 substantial.	 Indeed,	 Humphreys	 (1985)	 estimated	 that	 between	
the	ages	of	9	and	17,	true	scores	on	a	test	of	general	ability	would	
correlate	approximately	r	=	 .965	with	true	scores	on	the	same	test	
administered	1	year	later.	As	he	then	put	it:

It	becomes	easy	to	understand	the	belief	in	a	fixed	intelli-
gence	when	one	looks	only	at	the	small	difference	in	true	
score	stability	from	year	to	year	between	an	estimated	[cor-
relation	of	.965]	and	the	1.00	required	by	[the	assumption	
of ]	a	fixed	intelligence. (p.	200)

Humphreys	(1985)	also	showed	that	the	correlation	(r)	between	
true	scores	across	years	could	be	estimated	by	ry,	where	y	was	the	num-
ber	of	years	separating	the	two	test	administrations.	Thus,	the	esti-
mated	correlation	between	true	IQ	scores	at	ages	9	and	17	is	given	by	
.9658	=	.75.	This	means	that	about	60%	of	the	children	whose	true	
scores	fall	in	the	top	3%	of	the	distribution	at	age	9	would	not	fall	
above	that	cut	at	age	17.	Of	course,	error	in	both	tests	would	lower	
the	observed	correlation	and	thus	result	in	substantially	less	stabil-
ity	across	time.	We	never	know	true	scores,	only	error-encumbered	
observed	scores.	One-year	retest	correlations	typically	range	from	r	=	
.8	to	r	=	.9.	If	a	parallel	form	of	the	test	is	used,	then	the	correlation	
is	even	lower.

Changes in Score Scales

Both	 the	 magnitude	 and	 the	 interpretation	 of	 changes	 in	 scores	
are	influenced	by	the	psychological	and	statistical	properties	of	the	
score	 scale.	 Quite	 commonly,	 the	 content	 of	 ability	 and	 achieve-
ment	tests	differs	across	score	levels.	One	can	reduce	these	effects	by	
presenting	items	in	a	common	format	at	all	points	on	the	scale,	by	
checking	to	ensure	that	 individual	differences	 in	 items	conform	to	
a	unifactor	model,	and	by	using	scaling	procedures	that	attempt	to	
make	the	scale	properties	constant	throughout	its	range.	However,	
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none	of	these	controls	can	guarantee	that	the	units	of	the	scale	will	
indeed	be	uniform,	especially	at	the	extremes.	For	example,	the	fact	
that	all	items	are	presented	in	a	common	format	does	not	mean	that	
items	require	the	same	cognitive	processes.	Matrix	tests	use	a	com-
mon	 format.	 However,	 difficult	 items	 on	 the	 Progressive	 Matrices	
test	 require	 the	application	of	 rules	not	required	on	simpler	 items	
(Carpenter,	Just,	&	Shell,	1990).	Nor	does	the	fact	that	a	unidimen-
sional	 IRT	 scale	 can	 be	 fit	 to	 the	 data	 guarantee	 an	 equal-interval	
scale,	especially	when	the	full	scale	is	constructed	by	vertically	equat-
ing	overlapping	tests	that	are	administered	to	examinees	of	different	
ages	(see	Kolen	&	Brennan,	2004).

Changes in the Norming Population

Longitudinal	changes	in	status	are	easily	confounded	by	nonrandom	
loss	of	cases	over	time.	Although	developmental	psychologists	rec-
ognize	this	as	a	potential	confound	in	their	own	research,	many	who	
use	 test	 scores—particularly	 those	 normed	 on	 school	 children—
often	fail	to	take	into	account	the	fact	that	a	substantial	fraction	of	
low-scoring	students	drop	out	of	school.	Nationally,	only	about	one	
third	 of	 students	 complete	 high	 school	 (Barton,	 2005).	 Dropout	
rates	also	vary	across	ethnic	groups,	states,	and	grades.	Dropout	rates	
have	decreased	between	11th	and	12th	grade	and	increased	between	
9th	and	10th	grade	(Haney	et	al.,	2004).	The	upshot	 is	 that	rank-
within-grade	cohort	means	different	things	at	12th	grade	than	at	8th	
grade	or	at	4th	grade.	Because	less	able	students	tend	to	drop	out	at	
a	higher	rate	than	more	able	students,	a	percentile	rank	of	90	means	
better	performance	for	12th	graders	than	it	does	for	8th	graders.

Summary

For	 educational,	 psychological,	 and	 statistical	 reasons,	 test	 scores	
obtained	by	high-scoring	students	will	change	from	year	to	year.	This	
change	reflects	errors	of	measurement	 in	the	tests	 that	are	common	
to	all	and	errors	that	are	particularly	severe	for	extreme	scorers,	differ-
ential	growth	of	students	from	year	to	year,	changes	in	the	content	of	
score	scales	or	the	tests,	and	systematic	changes	in	the	representative-
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ness	of	samples	on	which	norms	are	derived.	How	large	would	these	
changes	be	as	the	result	of	the	combination	of	these	factors?	One	way	
to	 address	 this	 question	 is	 to	 set	 a	 criterion	 for	 giftedness	 and	 then	
either	estimate	(from	correlations)	or	count	(from	scores)	the	number	
of	students	at	later	grades	who	would	fail	to	meet	the	criterion.	This	
has	 important	 implications	 for	 policy,	 such	 as	 how	 best	 to	 identify	
those	students	who	will	continue	to	excel,	or	how	frequently	schools	
should	retest	to	determine	eligibility	for	TAG	services.

Estimating the Size of Regression Effects  
From Longitudinal Studies

One	of	the	most	important	limitations	of	most	longitudinal	studies	
in	the	field	of	gifted	education	is	that	they	follow	only	that	portion	
of	the	population	identified	as	gifted	at	one	point	 in	time.	A	better	
procedure,	of	course,	would	be	to	follow	the	entire	cohort	of	students.	
However,	longitudinal	studies	in	which	an	entire	cohort	of	students	
are	repeatedly	administered	ability	tests	are	rare,	generally	dated,	and	
more	 often	 than	 not,	 quite	 small.	 For	 example,	 the	 classic	 Berkeley	
Growth	Study	(Bayley,	1949)	had	only	40	children.	The	Fels	data	used	
by	McCall	et	al.	(1973)	had	80	subjects.	Correlations	computed	on	
such	small	samples	have	large	standard	errors.	For	40	cases,	the	95%	
confidence	interval	for	a	population	correlation	of	ρ	=	.65	is	r =	.43	
to	r	=	.90.	Further,	the	cases	are	often	not	representative	of	the	popu-
lation.	Even	when	samples	are	much	larger,	as	in	the	Wilson	(1983)	
study,	 differential	 dropout	 and	 variation	 in	 sample	 size	 across	 occa-
sions	at	best	complicates	and	at	worst	seriously	biases	the	analyses.4

Achievement	 tests,	 on	 the	 other	 hand,	 are	 often	 administered	
every	year	to	large	groups	of	students.	If	the	sample	is	large,	the	data	
can	be	reweighted	better	to	represent	the	population	distributions	of	
achievement.	This	can	in	significant	measure	control	for	nonrandom	
loss	of	cases	over	time.	Large	samples	also	mean	that	correlations	are	
quite	stable.	Correlations	among	achievement	test	scores	exhibit	the	
same	simplex	structure	that	is	observed	for	ability	tests.	This	should	be	
expected,	given	the	high	correlations	between	ability	and	achievement	
tests.	Indeed,	ability	tests	are	probably	best	understood	as	achievement	
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tests	 that	 sample	 general	 reasoning	 abilities	 developed	 in	 a	 culture,	
whereas	achievement	tests	sample	those	abilities	specifically	developed	
through	 formal	 schooling.	 The	 belief	 that	 ability	 and	 achievement	
tests	measure	(or	ought	to	measure)	qualitatively	different	constructs	
has	inhibited	the	interpretation	and	use	of	both	types	of	tests	since	the	
earliest	days	of	testing	(Lohman,	in	press-a).

Martin	(1985)	reported	a	 longitudinal	analysis	of	ITBS	scores	
for	6,321	students	who	were	tested	every	year	from	third	to	eighth	
grade.	Prior	 to	computing	the	correlations,	Martin	reweighted	the	
data	 to	 better	 approximate	 the	 distribution	 of	 grade	 5	 Composite	
achievement	for	Iowa	students.	We	used	his	correlations	to	estimate	
the	percent	of	students	who	fell	in	the	top	3%	of	the	Reading	Total,	
Language	Total,	Mathematics	Total,	and	Composite	score	distribu-
tions	 at	 grade	 3	 who	 were	 also	 in	 the	 top	 3%	 on	 each	 subsequent	
retest.	(See	Table	2	for	Composite	score	correlations.)	The	estimates	
assume	 a	 bivariate	 normal	 distribution	 of	 each	 pair	 of	 test	 scores.5	
The	results	are	shown	graphically	in	Figure	2.

The	greatest	regression—which	is	largely	due	to	errors	of	mea-
surement—occurs	from	Year	1	to	Year	2.	Only	about	40%	of	the	stu-
dents	who	had	composite	scores	 in	the	top	3%	in	third	grade	also	
scored	in	the	top	3%	in	fourth	grade.	Note	that	this	occurs	in	spite	
of	the	fact	that	Composite	ITBS	scores	are	highly	reliable	(K-R	20	rxx'	=	
.98)	and	show	substantial	stability	across	years	(r	=	.91	for	grade	3	
to	 grade	 4).	 As	 would	 be	 expected,	 regression	 effects	 were	 greater	
for	the	Reading,	Language,	and	Mathematics	subtest	scores	than	for	
the	Composite	score	that	combines	them.	For	each	of	these	content	
scores,	 the	 fallout	 was	 approximately	 50%	 in	 the	 first	 year.	 As	 the	
figure	 shows,	 however,	 regression	 continues	 at	 a	 slower	 rate	 across	
grades.	 This	 means	 that	 regression	 effects	 reflect	 more	 than	 errors	
of	measurement.	By	eighth	grade,	the	correlations	indicate	that	only	
35–40%	of	those	who	scored	 in	the	top	3%	at	grade	3	would	still	
score	in	that	range.

The	 procedures	 that	 many	 schools	 use	 to	 identify	 exceptional	
students	 were	 not	 designed	 to	 cope	 with	 regression	 effects	 of	 this	
magnitude.	 Indeed,	 some	 use	 procedures	 that	 exacerbate	 these	
effects.	 Others,	 however,	 use	 procedures	 that,	 wittingly	 or	 unwit-
tingly,	reduce	regression	effects.
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Regression and Common Identification Procedures

Schools	use	nominations,	rating	scales,	and	test	scores	in	many	differ-
ent	ways	when	selecting	students	for	participation	in	special	classes	
for	 the	gifted.	 In	this	 section,	we	examine	some	of	 the	more	com-
mon	rules.	The	first	policy	is	to	require	a	high	score	on	two	or	more	
tests.	We	call	this	the	“and”	rule.	The	second	possibility	is	to	accept	a	
high	score	on	either	of	two	or	more	tests.	We	call	this	the	“or”	rule.	
Although	 rarely	 employed,	 another	 possibility	 is	 to	 average	 scores	
across	 two	 or	 more	 measures.	 We	 call	 this	 the	 “average”	 rule.	 The	
three	rules	are	illustrated	in	Figure	3.

The “And” Rule

Many	TAG	programs	set	up	a	series	of	hurdles	and	admit	only	those	
students	who	surmount	all	of	them.	For	example,	the	potential	pool	
of	applicants	is	first	restricted	to	those	students	who	are	nominated	
by	a	teacher	or	who	score	above	a	certain	score	on	a	screening	test.	

figure 2. Percent of cases in the top 3% of the grade 3 distribution also 
in the top 3% of the score distributions at grades 4 through 8 for itBS 
reading, language, Mathematics, and composite total scores

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 vs 3 3 vs 4 3 vs 5 3 vs 6 3 vs 7 3 vs 8

Grades Compared

P
e
rc

e
n

t
s
ti

ll
in

to
p

3
%

Reading Tot

LangTot

MathTot

Composite
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These	students	are	then	administered	a	second	test.	Only	those	who	
exceed	some	score	on	the	second	test	are	admitted	to	the	program.

There	are	both	advantages	and	disadvantages	to	this	procedure.	
The	primary	advantage	is	that	it	reduces	the	number	of	students	who	
must	be	administered	the	second	test.	This	can	be	important	when	
the	second	test	must	be	individually	administered	by	a	trained	exam-
iner.	The	second	advantage	of	the	multiple	hurdles	procedure	is	that	
it	decreases	the	amount	of	regression	that	will	be	observed	on	future	
occasions	when	compared	to	a	selection	rule	that	uses	only	one	test	
or	takes	the	highest	score	on	any	of	several	tests.	However,	as	will	be	
shown,	this	effect	is	only	observed	if	both	tests	are	used	to	validate	
student	classifications	on	the	second	occasion.

The	primary	disadvantage	of	the	“and”	rule	is	that	the	procedure	
assumes	 that	 the	 two	 tests	 are	 exchangeable	 measures	 of	 the	 same	
construct.	 If	 the	 tests	 are	 not	 exchangeable,	 then	 the	 sample	 will	
be	biased	unless	a	very	liberal	cut	score	is	used	for	the	first	test.	For	
example,	suppose	that	the	first	“test”	is	a	teacher	nomination	scale.	
Students	who	do	not	conform	to	the	teacher’s	model	of	giftedness	
but	who	would	have	exceeded	the	cut	score	on	the	second	test	will	
not	be	considered	for	the	program.	This	was	one	of	the	limitations	of	
the	Terman	study	(Terman	&	Oden,	1959).	A	second	disadvantage	

figure 3. Plots of the conjunctive “and” rule (left panel), the disjunc-
tive “or” rule (center panel), and the statistically optimal “average” rule 
(right panel).
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is	that	the	selection	rule	is	noncompensatory.	A	very	high	score	on	
one	test	cannot	compensate	for	a	score	on	the	second	test	that	is	just	
below	the	cut.	Therefore,	requiring	students	to	score	above	a	particu-
lar	cut	score	on	Test	1	and	Test	2	restricts	the	number	of	students	
who	are	identified	compared	to	a	rule	that	admits	on	the	basis	of	a	
high	score	on	either	test.	But,	by	how	much?

Table	1	shows	the	amount	of	regression	to	expect	with	various	
common	cut	scores	for	two	selection	tests	that	are	correlated	to	dif-
ferent	 degrees.	 The	 table	 shows	 the	 proportion	 of	 students	 above	
a	common	cut	 score	on	both	 tests	 as	 the	correlation	between	 two	
tests	varies	from	r	=	.5	to	r	=	.975.	For	example,	consider	the	case	in	
which	the	common	cut	score	is	set	at	the	top	3%	and	the	correlation	
between	the	tests	is	r	=	.80.	Table	1	shows	that	45%	of	the	students	
in	the	population	who	score	in	the	top	3%	on	Test	1	are	expected	to	
score	in	the	top	3%	on	Test	2.	This	means	that	45%	of	the	3%	who	
met	 the	 criterion	 on	 Test	 1	 or	 1.35%	 of	 the	 total	 student	 popula-
tion	will	be	admitted	when	a	score	in	the	top	3%	is	required	on	both	
tests.

If	 a	 more	 lenient	 cut	 score	 is	 used	 for	 the	 initial	 nomination	
procedure	and	the	same	cut	score	is	used	for	the	final	admissions	
test	 (top	 3%),	 then	 the	 effects	 are	 much	 smaller.	 Table	 1	 cannot	
be	 used	 to	 estimate	 these	 effects,	 because	 it	 assumes	 a	 common	
cut	 score.6	 For	 example,	 once	 again	 assume	 that	 the	 correlation	
between	Test	1	and	Test	2	is	r =	.80.	Suppose	that	we	take	the	top	
10%	of	the	cases	on	Test	1.	The	top	10%	on	the	first	test	includes	
79%	of	the	cases	in	the	top	3%	on	the	second	test.	An	even	more	
lenient	criterion	of	the	top	20%	on	Test	1	gets	93%	of	those	who	
score	in	the	top	3%	on	Test	2.

The	 policy	 implications	 are	 clear.	 If	 the	 goal	 is	 to	 reduce	 the	
number	of	students	who	must	be	administered	the	second	test	but	
to	 exclude	 as	 few	 of	 those	 who	 would	 obtain	 high	 scores	 on	 the	
second	test,	then	one	must	use	a	lenient	criterion	on	the	screening	
test.	 This	 is	 increasingly	 important	 as	 the	 correlation	 between	 the	
two	tests	declines.	If,	however,	both	tests	are	equally	reliable	and	are	
assumed	to	measure	the	same	construct,	then	similar	criteria	can	be	
used	 on	 both.	 Nevertheless,	 the	 proportion	 of	 students	 who	 clear	
both	hurdles	will	be	considerably	smaller	than	the	proportion	who	
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clear	either	hurdle.	The	lower	the	correlation	between	the	tests,	the	
smaller	 this	 proportion	 will	 be.	 Finally,	 if	 the	 two	 tests	 are	 in	 fact	
exchangeable,	then	a	compensatory	model	such	as	the	“average”	rule	
is	more	defensible.

The “Or” Rule

The	disjunctive	“or”	rule	has	quite	different	effects.	Table	1	allows	
one	to	estimate	the	effects	of	this	rule,	as	well.	As	before,	assume	a	
correlation	of	r	=	.80	and	a	common	cut	score	of	the	top	3%.	Test	
1	admits	3%	of	the	population.	Test	2	also	admits	3%,	but	45%	of	
these	students	(as	Table	1	shows)	were	already	admitted	by	Test	1.	
The	remaining	55%	will	be	new.	Therefore,	3%	+	(.55)(3%)	=	4.65%	
of	 the	 student	 population	 would	 be	 admitted.	 Changing	 the	 rule	
from	“and”	to	“or”	more	than	triples	the	number	of	students	admit-
ted	from	1.35%	to	4.65%.

The	disjunctive	“or”	rule	is	most	defensible	if	the	two	tests	mea-
sure	different	constructs	such	as	language	arts	or	mathematics.	If	pro-
grams	(or	acceleration	options)	are	available	in	both	domains,	then	
one	should	seek	to	identify	students	who	excel	in	either	domain,	not	
just	 those	who	excel	 in	both	domains.	However,	 as	 is	 shown	 later,	
multiple	 measures	 of	 aptitude	 for	 each	 domain	 are	 preferred	 to	 a	
single	measure.

The	“or”	is	not	defensible,	however,	when	both	tests	are	assumed	
to	 measure	 the	 same	 construct.	 For	 example,	 the	 test	 scores	 may	
represent	multiple	administrations	of	 the	 same	ability	 test	or	con-
secutive	 administrations	 of	 several	 different	 ability	 tests.	 Error of 
measurement	 is	 defined	 as	 the	 difference	 between	 a	 particular	 test	
score	for	an	individual	and	the	hypothetical	mean	test	score	for	that	
individual	that	would	be	obtained	if	many	parallel	forms	of	the	test	
could	be	administered.	The	highest	score	in	a	set	of	presumably	par-
allel	scores	is	actually	the	most	error-encumbered	score	in	that	set.	
Therefore,	unless	one	has	a	good	reason	for	discounting	a	particular	
score	as	invalid,	taking	the	highest	of	two	or	more	presumably	par-
allel	test	scores	will	lead	to	even	more	regression	to	the	mean	than	
would	be	observed	by	using	just	one	score.
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The “Average” Rule

If	both	tests	measure	the	same	construct,	however,	 the	statistically	
optimal	rule	is	neither	“or”	nor	“and”	but	rather	“average.”	The	“aver-
age”	rule	will	admit	more	students	than	the	restrictive	“and”	rule	but	
fewer	students	than	the	liberal	“or”	rule.	It	allows	for	more	compen-
sation	than	the	“and”	rule	but	less	compensation	than	the	“or”	rule.	
The	student	who	has	a	high	score	on	one	test	but	a	score	that	is	just	
below	the	cut	on	the	other	test	will	be	admitted.	Essentially,	students	
are	ranked	on	the	basis	of	where	they	fall	on	the	45º	diagonal	in	the	
plot	 of	 scores	 on	 Test	 1	 versus	 scores	 on	 Test	 2	 rather	 than	 either	
the	X-axis	or	the	Y-axis.	However,	because	the	average	of	two	scores	
will	 immediately	 regress	 to	 the	 mean,	 fewer	 students	 will	 meet	 an	
arbitrary	cut	score	than	will	meet	it	if	just	one	test	is	administered.	
With	a	correlation	of	r =	.8,	for	example,	2.4%	of	the	students	would	
be	expected	to	have	an	average	score	that	exceeded	the	cut	score	that	
admitted	3%	on	either	test	alone.6

Regression Effects on Subsequent Retest

One	of	the	most	important	considerations	for	any	selection	rule	is	the	
extent	to	which	it	effects	a	reasonable	compromise	between	obtain-
ing	the	most	stable	scores	and	the	most	valid	scores.	The	most	stable	
scores	will	generally	be	obtained	by	combining	scores	across	different	
tests	and	occasions,	with	each	weighted	by	its	reliability.	However,	a	
score	that	averages	across	several	domains	will	generally	be	less	valid	
as	a	measure	of	aptitude	for	a	specific	domain	than	scores	that	cap-
ture	the	general	and	specific	aptitudes	needed	to	attain	excellence	in	
that	domain.	We	discuss	both	of	these	issues	but	first	focus	on	the	
stability	of	scores	in	the	common	scenario	in	which	students	must	be	
nominated	before	they	are	tested.	Do	the	admission	test	scores	for	
these	students	exhibit	greater	stability	than	would	be	observed	if	no	
screening	 test	had	been	administered?	 Intuitively,	 it	 seems	reason-
able	to	expect	less	regression	to	the	mean	over	time,	say,	in	IQ	scores	
for	a	group	of	students	who	were	first	nominated	by	their	teachers	as	
the	most	able	students	in	their	class	than	for	a	group	identified	solely	
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on	the	basis	of	their	IQ	scores.	As	we	shall	see,	however,	intuitions	
can	be	wrong.

To Nominate or Not to Nominate

Simulations	 provide	 a	 useful	 method	 for	 investigating	 the	 regres-
sion	effects	of	different	decision	rules	when	more	than	two	variables	
must	 be	 considered.	 Here,	 we	 investigated	 the	 typical	 scenario	 in	
which	only	those	students	who	are	nominated	by	a	teacher	take	an	
intelligence	test.	As	already	demonstrated,	the	number	of	students	
admitted	depends	on	the	cut	scores	established	for	the	nomination	
procedure	 and	 the	 correlation	 between	 scores	 on	 the	 nomination	
rating	scale	and	the	admissions	test.	To	simplify	matters,	we	assume	
that	10%	of	students	with	the	highest	scores	on	the	nomination	scale	
are	administered	the	intelligence	test.	The	cut	score	for	the	intelli-
gence	test	is	set	so	that	in	an	unselected	population,	3%	of	the	stu-
dents	would	be	admitted.	For	an	intelligence	test	with	Sd	of	15,	this	
would	be	an	IQ	>	128.

Nomination	procedures	vary	in	the	extent	to	which	they	mea-
sure	the	same	characteristics	as	the	intelligence	test.	In	this	simula-
tion,	we	started	with	a	population	of	10,000	students.	We	varied	the	
correlation	between	the	nomination	scale	and	the	 intelligence	test	
from	r	=	.1	to	r	=	.9.	A	high	correlation	such	as	r	=	.9	simulates	the	
case	in	which	the	nomination	procedure	is	highly	effective	in	iden-
tifying	those	who	will	obtain	the	highest	scores	on	the	intelligence	
test.	The	critical	question	is	whether	the	nomination	process	reduces	
the	amount	of	regression	that	will	be	seen	a	year	later	when	the	intelli-
gence	test	is	readministered.	We	assumed	that	the	correlation	between	
these	two	administrations	of	the	intelligence	test	was	r	=	.8.	Table	3	
shows	the	results.

The	first	column	of	the	table	shows	the	correlation	between	the	
nomination	rating	scale	and	the	intelligence	test.	The	second	column	
of	the	table	shows	the	number	of	students	in	a	population	of	10,000	
students	who	scored	 in	 the	 top	10%	on	the	nomination	 scale	and	
then	obtained	an	IQ	>	128	on	the	intelligence	test.	These	are	the	stu-
dents	who	would	be	admitted	to	the	program.	When	the	correlation	
between	the	nomination	scale	and	the	 intelligence	test	was	r	=	1.0,	
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then	300	students	(i.e.,	3%	of	10,000)	would	be	admitted.	This	simu-
lates	the	case	in	which	the	nomination	procedure	was	not	used	and	
all	 students	 took	 the	 intelligence	 test.	 As	 the	 correlation	 between	
the	 nomination	 scale	 and	 the	 admissions	 test	 declines,	 many	 stu-
dents	who	would	have	obtained	IQs	greater	than	128	on	the	admis-
sions	 test	were	excluded	because	 they	were	not	nominated.	When	
the	correlation	is	high,	however,	one	might	argue	that	many	of	the	
excluded	students	did	not	belong	in	the	group	in	the	first	place	and	
would	be	the	students	least	likely	to	score	above	an	IQ	of	128	when	
the	intelligence	test	was	readministered	1	year	 later.	The	third	and	
fourth	columns	of	the	table	show	that	this	is	not	the	case.	Although	
the	 nomination	 procedure	 reduced	 the	 number	 of	 students	 who	
were	admitted,	it	did	not	significantly	reduce	the	regression	effects	
observed	when	the	intelligence	test	was	readministered	1	year	later.

Table 3 
Effects of Nomination on Subsequent Regression  

to the Mean of IQ Scores

Correlation	
between	nomina-

tion	scale	and	intel-
ligence	test

Number	of	students	
nominated	with		

IQ	>	128a

Number	of	admit-
ted	students	with	

IQ	score	>	128		
1	year	laterb

Percent	of	admitted	
students	with		

IQ	>	128		
1	year	laterc

1.0d 300 126 42

0.9 274 122 45

0.7 202 101 50

0.5 137 65 47

0.3 84 37 44

0.1 41 20 49

aNumber of students from a population of 10,000 scoring in the top 10% on the nomination 
scale and the top 3% on the admissions test. bNumber admitted scoring in top 3% on retesting; 
correlation between the two administrations of the admissions test was r = .8. c(Column 3/ 
Column 2) × 100. dA correlation of r = 1.0 simulates the case in which the nomination step is 
omitted and all students are administered the intelligence test.
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Note	the	important	difference	between	this	procedure	and	the	
case	 in	 which	 scores	 on	 the	 screening	 test	 (or	 nomination	 rating	
scale)	 and	 the	 admissions	 test	 are	 first	 combined	 and	 students	 are	
selected	on	the	basis	of	their	scores	on	the	resulting	composite.	One	
of	the	easiest	ways	to	combine	scores	is	simply	to	sum	them	or	aver-
age	them,	after	first	putting	all	scores	on	the	same	scale.7

Combining Ability and Achievement Test Scores

The	 identification	 of	 academically	 talented	 students	 ultimately	
resolves	to	the	estimation	of	aptitude	for	rapid	or	advanced	learning	
in	the	particular	educational	programs	that	can	be	offered.	Aptitude	
is	a	multidimensional	concept.	It	has	cognitive,	affective,	and	cona-
tive	dimensions.	The	primary	cognitive	aptitudes	for	academic	learn-
ing	are	current	knowledge	and	skills	in	a	domain	and	the	ability	to	
reason	in	the	symbol	systems	used	to	communicate	new	knowledge	
in	 that	 domain.	 The	 primary	 affective	 aptitude	 is	 interest	 in	 the	
domain.	 The	 primary	 conative	 aptitude	 is	 the	 ability	 to	 persist	 in	
one’s	pursuit	of	excellence.	Different	instructional	programs	require	
or	afford	the	use	of	different	aptitudes.	One	of	the	most	important	
goals	for	research	should	be	to	better	understand	the	relationships	
between	 those	 aptitude	 characteristics	 that	 can	 be	 measured	 prior	
to	identification	and	that	contribute	to	the	prediction	of	success	in	
different	kinds	of	programs.

There	is	much	research,	however,	on	the	critical	importance	of	
the	 two	 primary	 aspects	 of	 cognitive	 aptitude	 for	 learning—prior	
achievement	 and	 reasoning	 abilities.	 The	 best	 way	 to	 do	 this	 is	 to	
combine	 scores	 so	 that	 they	 best	 predict	 subsequent	 achievement.	
When	done	well,	both	immediate	and	long-term	regression	effects	
will	be	minimized.	In	this	section	we	explore	some	basic	options	for	
achieving	this	goal.	To	do	this,	we	need	a	longitudinal	data	set	that	
has	 both	 achievement	 and	 ability	 scores	 for	 a	 large	 sample	 of	 stu-
dents.

Gustafson	(2002)	collected	ability	and	achievement	test	scores	
for	 2,362	 students	 in	 a	 large	 Midwestern	 school	 district	 who	
were	 tested	first	 in	grade	4,	 then	 in	grade	6,	and	again	 in	grade	9.	
The	 ability	 test	 was	 CogAT	 Form	 5	 (Thorndike	 &	 Hagen,	 1993)	
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and	 the	 achievement	 test	 was	 the	 ITBS	 Form	 K	 Survey	 Battery	
(Hoover,	Hieronymus,	Frisbie,	&	Dunbar,	1993).	In	order	to	illus-
trate	how	different	selection	models	perform	over	time,	we	looked	
at	 high	 achievers	 in	 two	 domains:	 reading	 (Reading	 Vocabulary	
plus	 Reading	 Comprehension)	 and	 Mathematics	 (Mathematics	
Concepts,	Mathematical	Problem	Solving,	and	Math	Computation)	
at	fourth	grade.

Table	 4	 shows	 the	 correlations	 across	 the	 three	 grades	 for	 the	
three	batteries	of	the	ITBS	and	the	three	batteries	of	CogAT.	In	all	
cases,	the	correlation	between	grades	4	and	9	was	smaller	than	the	
correlation	between	grades	4	and	6	or	between	grades	6	and	9.

The	solid	line	in	the	left	panel	of	Figure	4	shows	the	percentage	
of	 high-achieving	 students	 identified	 on	 the	 fourth-grade	 reading	
test	who	also	met	the	same	percentile-rank	cut	score	in	sixth	and	in	
ninth	grade.	We	could	not	use	a	criterion	of	the	top	3%	because	of	a	
ceiling	effect	on	the	grade	9	tests.8	Therefore,	we	selected	the	7%	of	
students	with	the	highest	scores	at	grade	4.	As	in	the	analyses	of	the	
Martin	(1985)	data,	Figure	4	shows	a	dramatic	decline	in	the	percent	
of	students	identified	at	grade	4	who	continued	to	score	at	or	above	
the	93rd	percentile	between	the	first	test	(grade	4)	and	the	second	
test	(grade	6),	and	then	a	smaller	decline	between	grades	6	and	9.	
The	right	panel	of	Figure	4	shows	similar	effects	for	Mathematics.

Table 4 
Correlations Across Grades for ITBS (Form K)  

and CogAT (Form 5) Scores (N = 2,363)

Test
Grades

4	with	6 6	with	9 4	with	9
ITBS

Reading 0.76 0.77 0.73
Language 0.77 0.72 0.67
Mathematics 0.74 0.73 0.67
Composite 0.86 0.84 0.79

CogAT
Verbal 0.81 0.80 0.75
Quantitative 0.75 0.77 0.71
Nonverbal 0.72 0.74 0.68
Composite 0.85 0.87 0.82

note. Data from Gustafson (2002).
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Although	 current	 achievement	 is	 a	 critical	 aspect	 of	 academic	
talent,	it	is	also	important	to	consider	other	characteristics	that	indi-
cate	readiness	to	continue	to	achieve	at	a	high	level	such	as	reasoning	
abilities	in	the	major	symbol	systems	used	in	that	domain,	interest	
in	the	domain,	and	persistence.	We	did	not	have	measures	of	inter-
est	or	persistence,	but	did	have	CogAT	reasoning	scores	 in	verbal,	
quantitative,	and	figural	domains.	Therefore,	we	also	looked	at	the	
linear	combination	of	 the	three	CogAT	reasoning	scores	 that	best	
predicted	ninth-grade	reading.9	The	percentage	of	top	readers	that	
would	be	identified	using	this	estimate	from	CogAT	scores	is	shown	
by	the	dashed	line	in	Figure	4.	Clearly,	using	predicted	rather	than	
observed	 reading	 achievement	 at	 grade	 4	 missed	 many	 of	 the	 best	
readers	at	grade	4.	However,	the	figure	shows	that	most	of	those	who	
were	missed	did	not	fall	in	the	top	7%	of	the	reading	distribution	at	
grade	6.	And	by	grade	9,	grade	4	Reading	and	grade	4	CogAT	scores	
both	identified	the	same	proportion	of	students	who	were	still	in	the	
top	7%	of	the	reading	distribution.	For	mathematics	(right	panel	of	
Figure	4),	grade	4	Mathematics	and	grade	4	CogAT	identified	the	
same	proportion	of	students	still	in	the	top	7%	at	grade	6.	By	grade	
9,	the	regression	estimate	based	on	grade	4	CogAT	scores	identified	
more	of	those	who	were	in	the	top	7%	of	the	Math	distribution	than	
did	grade	4	ITBS	mathematics	scores.

Because	both	prior	achievement	and	reasoning	abilities	function	
as	 aptitudes	 for	 learning,	 a	 more	 effective	 selection	 model	 would	
combine	 current	 achievement	 and	 reasoning	 abilities	 in	 the	 sym-
bol	 systems	 used	 to	 communicate	 new	 knowledge	 in	 the	 domain.	
Estimating	achievement	at	grade	4	is	straightforward.	We	used	the	
child’s	 ITBS	 Reading	 Total	 and	 Mathematics	 Total	 scaled	 scores.	
But,	which	of	the	three	reasoning	scores	from	CogAT	should	we	use?	
In	previous	analyses	of	this	data,	we	estimated	the	optimal	weights	
to	 apply	 to	 ITBS	 and	 CogAT	 scaled	 scores	 at	 grade	 4	 to	 predict	
achievement	in	reading	and	mathematics	at	grade	9	(see	Tables	2	and	
3	 in	Lohman,	2005).	These	analyses	 showed	that	grade	9	Reading	
was	best	predicted	by	the	grade	4	CogAT	Verbal	score,	with	minor	
contributions	from	the	CogAT	Quantitative	and	Nonverbal	scores.	
Similarly,	 grade	 9	 Mathematics	 was	 best	 predicted	 by	 the	 grade	 4	
Quantitative	score,	although	both	the	Nonverbal	and	Verbal	batter-
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ies	contributed	significantly,	as	well.	Although	we	used	the	optimal	
weights,	one	can	do	about	as	well	by	using	only	the	CogAT	Verbal	
score	to	predict	reading	and	the	sum	of	all	three	CogAT	scores	(i.e.,	
the	Composite)	to	predict	mathematics.	This	gave	us	two	aptitude	
scores	 for	each	child	 in	each	domain:	current	achievement	 in	 that	
domain	and	a	composite	CogAT	reasoning	score	for	that	domain.

Next,	we	combined	observed	achievement	in	fourth	grade	with	
our	 estimate	 of	 predicted	 achievement	 (in	 reading	 or	 in	 math)	 in	
ninth	 grade.	 Observed	 fourth-grade	 achievement	 and	 predicted	
ninth-grade	achievement	in	reading	or	math	were	converted	to	stan-
dard	or	z	scores	and	then	summed.	This	ensured	that	both	scores	con-
tributed	equally	to	the	composite.	We	weighted	each	equally	because	
our	previous	analyses	showed	that	prior	achievement	and	reasoning	
abilities	made	approximately	equal	contributions	to	the	prediction	
of	achievement	at	grade	9.	For	detailed	instructions	on	how	to	cre-
ate	and	combine	standard	scores	in	a	Microsoft	Excel	worksheet,	see	
Lohman	(in	press-b).

The	 dotted	 lines	 in	 Figure	 4	 show	 how	 this	 selection	 variable	
performed.	The	largest	effect	was	at	grade	4.	Although	the	compos-
ite	score	did	not	identify	all	the	high	scorers	at	grade	4,	it	did	iden-
tify	about	70%	in	reading	and	about	80%	in	math.	At	grade	6,	the	
composite	performed	as	well	as	grade	4	reading	achievement	alone	
and	 significantly	 better	 for	 math	 than	 grade	 4	 math	 achievement.	
By	grade	9,	the	composite	achievement-ability	measure	was	the	best	
predictor	for	reading	and	was	about	as	good	as	CogAT	scores	alone	
for	math.

As	Figure	4	shows,	there	is	a	tradeoff	between	measurement	of	
current	achievement	and	aptitude	for	future	achievement.	Measures	
of	 domain-specific	 achievement	 best	 identify	 high	 performers	 at	 a	
particular	 point	 in	 time.	 However,	 many	 of	 these	 students	 do	 not	
continue	to	perform	at	the	same	stellar	 levels	of	achievement	even	
after	1	year	(see	also	Figure	2).	On	the	other	hand,	although	reason-
ing	abilities	do	not	identify	all	of	the	high	achievers	at	a	grade,	those	
that	 they	do	 identify	are	 those	who	are	most	 likely	 to	continue	as	
high	achievers	in	subsequent	years.	Indeed,	in	mathematics	at	least,	
by	grade	9	those	with	the	highest	predicted	achievement	based	on	
grade	 4	 CogAT	 scores	 were	 even	 more	 likely	 to	 still	 be	 identified	
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as	high	achievers	than	those	who	were	identified	on	grade	4	ITBS	
Math	 alone.	 The	 final	 set	 of	 analyses	 using	 both	 achievement	 and	
ability	test	scores	suggests	that	a	sensible	policy	for	identifying	tal-
ented	and	gifted	students	would	combine	both	current	achievement	
in	 particular	 domains	 and	 that	 combination	 of	 reasoning	 abilities	
that	best	predicts	later	achievement	in	those	domains.

Policy Implications

The	 stability	 of	 test	 scores	 has	 important	 implications	 for	 educa-
tional	policy.	First,	multiple	 scores	 should	always	be	used	to	make	
educational	decisions	about	gifted	students.	There	are	two	ways	that	
this	could	be	done.	Each	student’s	previous	test	scores	could	be	taken	
into	account	when	making	educational	decisions,	such	as	considering	
achievement	test	scores	over	the	course	of	a	few	years.	For	example,	
one	could	look	at	the	average	of	scaled	scores	on	the	two	most	recent	
assessments.10	However,	when	scores	are	averaged,	the	cut	score	must	
be	lowered:	The	more	reliable	average	score	will	show	some	regres-
sion	to	the	mean.

Multiple	scores	can	also	be	used	by	combining	both	achievement	
and	 ability	 test	 scores	 that	 are	 administered	 at	 roughly	 the	 same	
time.	Figure	4	shows	that	the	average	of	ITBS	achievement	and	the	
combination	of	CogAT	scores	that	best	predicted	later	achievement	
performed	 better	 than	 either	 measure	 alone	 in	 identifying	 those	
students	who	continued	to	exhibit	academic	excellence	in	particu-
lar	domains.	Schools	should	also	investigate	the	use	of	measures	of	
interest	 and	 persistence,	 although	 these	 measures	 should	 surely	 be	
given	much	less	weight	than	measures	of	achievement	and	ability.11	
Combining	scores	that	estimate	different	aptitudes	needed	for	the	
development	 of	 future	 competence	 is	 the	 best	 way	 to	 identify	 tal-
ented	students.	However,	 judgments	about	aptitude	are	best	made	
by	 comparing	 a	 student’s	 scores	 on	 the	 relevant	 aptitude	 variables	
to	 those	 of	 other	 students	 who	 have	 had	 similar	 opportunities	 to	
develop	the	knowledge,	skills,	interests,	or	other	attributes	sampled	
by	the	assessment	(see	Lohman,	in	press-b).
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Another	 important	 policy	 issue	 is	 the	 amount	 of	 time	 that	
should	 be	 allowed	 before	 students	 are	 retested	 for	 continued	 par-
ticipation	in	gifted	programs.	Applying	the	entries	in	Table	1	to	the	
correlations	reported	 in	Table	2	suggests	 that	3	years	 is	an	outside	
limit	(2	would	be	better),	especially	if	the	first	test	is	administered	
during	the	early	primary	grades	(K–2).	Finally,	because	test	scores	are	
especially	unstable	for	those	students	with	extreme	scores,	students	
who	would	qualify	as	gifted	based	on	one	test	will	not	necessarily	
qualify	as	gifted	when	retested	even	1	year	later.	Therefore,	instead	of	
using	terms	that	imply	fixed	categories,	such	as	gifted,	perhaps	educa-
tors	should	use	words	that	focus	less	on	a	fixed	state	and	instead	on	
current	accomplishment,	such	as	superior achievement	or	high accom-
plishment.

Conclusions

Our	first	goal	in	this	paper	was	to	summarize	some	of	the	basic	facts	
about	regression	to	the	mean	for	researchers	and	practitioners	in	the	
field	of	gifted	education.	We	hoped	to	dispel	notions	that	regression	
to	the	mean	is	attributable	solely	to	errors	of	measurement.	Rather,	
regression	 is	 determined	 by	 the	 correlation	 between	 two	 sets	 of	
scores.	Anything	that	lowers	the	correlation	increases	regression	to	
the	mean.	The	data	that	we	presented	show	that,	even	for	highly	reli-
able	test	scores,	approximately	half	of	the	students	who	score	in	the	
top	3%	of	the	score	distribution	in	1	year	will	not	fall	in	the	top	3%	
of	the	distribution	in	the	next	year.	This	has	important	implications	
for	both	research	and	practice.

The	research	implication	is	that	we	need	more	longitudinal	inves-
tigations	of	 individual	differences	 in	abilities	of	all	sorts.	Retesting	
those	who	are	identified	as	gifted	at	one	point	in	time	provides	use-
ful	information.	However,	as	shown	here,	this	will	commonly	miss	
many—or	even	most—of	those	who	attain	high	scores	on	the	attri-
bute	at	some	later	point	in	time.	Therefore,	much	more	information	
about	 the	 origin	 and	 development	 of	 academic	 excellence	 (rather	
than	precocity)	could	be	obtained	from	studies	in	which	the	entire	
population	of	learners	was	followed	over	time.
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The	primary	implication	for	practice	is	that	one	can	substantially	
reduce	the	amount	of	regression	by	combining	the	information	from	
multiple	assessments.	However,	different	ways	of	combining	scores	
have	dramatically	different	effects	on	the	number	of	 students	who	
are	admitted	and	the	amount	of	regression	seen	in	their	test	scores.	
In	 general,	 the	 statistically	 optimal	 method	 of	 combining	 similar	
scores	is	to	average	them.

In	the	end,	 in	addition	to	multiple	measures,	 local	norms	pro-
vide	a	better	way	 to	 identify	 students	 for	 inclusion	 in	 special	pro-
grams	that	are	based	in	the	school.	Understanding	that	all	abilities	
are	developed	and	that	schools	play	a	critical	role	in	that	process	can	
lead	to	policies	in	which	children’s	reasoning	abilities	are	assessed	if	
not	as	regularly	as	their	achievement,	then	at	least	at	several	points	
in	their	academic	careers.	Lacking	such	understanding,	both	selec-
tion	policies	and	research	on	the	gifted	will	continue	to	give	mute	
testimony	to	the	robustness	of	regression	to	the	mean.
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End Notes

	 1	The	more	general	equation	for	predicting	regression	effects	when	
the	assumption	of	equal	variance	is	inappropriate	can	be	expressed	in	
several	ways.	A	useful	equation	is	 Ŷ Y b X Xp y x p= −( )+ ,	where	
Ŷp is	the	predicted	Y	score	for	person	p, Y 	is	the	mean	Y score,	 by x
is	the	unstandardized	coefficient	for	the	regression	of	Y	on	X,	 X p 	is	
the	X	score	for	person	p,	and	 X 	is	the	mean	X	score.
	 2	Noteworthy	exceptions	are	the	dissertation	by	Tibbetts	(2004)	
and	Wainer’s	(1999)	discussion	of	the	same	data.	Also	see	the	paper	
by	Willerman	and	Fiedler	(1977)	for	an	example	of	regression	in	IQ	
scores	for	gifted	4-year-olds.
	 3	In	a	recent	study,	Spangler	and	Sabatino	(1995)	did	not	observe	
changes	 in	mean	retest	IQs	for	66	gifted	children	in	a	southern	
Appalachian	school	district.	However,	children	were	excluded	from	
the	study	if	they	“experienced	remarkable	sensory,	physical,	health-
related,	social,	personal	or	family	problems”	(p.	208).	Further,	the	
initial	 test	 scores	may	have	been	depressed	by	poor	educational	
opportunities	for	some	of	the	children.	The	fact	that	the	Sd	of	
WISC-R	IQ	scores	more	than	doubled	on	retest	supports	this	con-
jecture.
	 4	Recent	improvements	in	statistical	methods	for	making	infer-
ences	from	sparsely	populated	data	matrices	offer	another	avenue	
(see,	e.g.,	Schafer	&	Graham,	2002).
	 5	Estimates	were	derived	using	a	program	called	StaTable,	which	
is	available	as	a	free	download	at	http://www.cytel.com/statable.	
For	bivariate	normal	distributions,	StaTable	asks	for	the	z	scores	that	
restrict	the	distribution	(1.8808	for	the	top	3%),	as	well	as	the	corre-
lation	between	the	two	measures.	The	proportion	of	scores	falling	in	
the	restricted	range	is	then	given	by	StaTable.	To	determine	the	per-
centage	of	students	falling	in	the	top	3%	upon	the	second	measure,	
the	proportion	given	by	StaTable	was	divided	by	.03,	the	proportion	
falling	in	the	top	3%	at	the	first	measure.
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	 6	Tables	illustrating	the	effects	of	averaging	test	scores	and	of	using	
different	cut	scores	for	one	test	than	another	had	to	be	deleted	from	
the	manuscript	to	save	space.	These	are	available	from	the	authors	on	
request.
	 7	Averaging	or	summing	standard	scores	effectively	weights	each	
the	same.	Regression	procedures	allow	estimation	of	more	nearly	
optimal	weights.	However,	the	unit	weights	implied	by	summing	
scores	generally	function	about	as	well	as	optimal	weights	on	cross-
validation	as	long	as	each	score	makes	a	reasonable	contribution	to	
the	prediction.
	 8	Missing	one	more	item	thus	resulted	in	a	substantial	shift	in	
percentile	rank	(PR).	We	moved	down	the	distribution	until	this	was	
no	longer	a	problem.
	 9	We	used	grade	9	rather	than	grade	4	or	6	because	we	were	inter-
ested	in	predicting	success	over	the	long	haul.	However,	using	the	
regression	weights	that	best	predicted	grade	4	or	grade	6	reading	
would	not	make	much	difference.
	 10	Note	that	an	average	of	two	assessments	is	recommended	rather	
than	a	policy	of	requiring	that	the	student	meet	the	cut	score	on	two	
successive	assessments.	The	latter	rule—whether	applied	to	the	same	
assessment	administered	in	different	years	or	to	different	assessments	
(e.g.,	achievement	and	ability)	administered	in	a	given	year—misses	
many	capable	students.
	 11	For	a	summary	of	research	on	the	contribution	of	measures	of	
motivation	to	the	prediction	of	academic	success,	see	the	excellent	
literature	review	in	Gagné	and	St	Père	(2001).	However,	the	Gagné	
and	St	Père	study	itself	probably	underestimates	the	contribution	
of	motivation	because	the	major	motivation	variable	was	difference	
score.


