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Creativity in mathematics is often looked at as the 
exclusive domain of professional mathematicians. 
The word creativity is “fuzzy” and lends itself to 

a variety of interpretations. What does creativity mean 
in mathematics? Is it purely the discovery of an original 
result? If so, then creativity is indeed the exclusive domain 
of professional mathematicians. Does student discovery 
of a hitherto known result or an innovative mathemati-
cal strategy also constitute creativity? Eminent mathema-
ticians like Jacques Hadamard (1945) and George Polya 
(1954) have said that the only difference between the 
work of a mathematician and a student is that of degree. 
In other words, each operates at their respective levels, and 
we should recognize that students are also capable of being 
creative. Such a view is especially relevant to teachers of 
mathematically gifted students, who would expect gifted 
students to display creative traits. Does being mathemati-
cally gifted predispose a student to being creative? In other 
words, if a student has been identified as being mathemati-
cally gifted, then is he or she also creative in his or her 

approach to mathematics? Does mathematical giftedness 
imply mathematical creativity? 

Kajander (1990) has stated that even among the 
mathematically gifted who displayed creative traits such 
as divergent thinking, mathematical creativity was a “spe-
cial kind of creativity not necessarily related to divergent 
thinking” (p. 254). This statement begs the question as to 
whether or not mathematical creativity implies giftedness. 
It does at the level of professional research in mathematics. 
One could easily argue that professional mathematicians 
are gifted based on the fact that they have obtained a doc-
torate in the field and are active in research. However, even 
at this level, only a handful of professional mathematicians 
are classified as being truly “creative” (Usiskin, 2000).

An examination of Usiskin’s (2000) eight-tiered 
hierarchy may help clarify the degrees of giftedness and 
creativity with regard to mathematics. Usiskin devised this 
hierarchy, which ranges from Level 0 to Level 7, to classify 
mathematical talent. In this hierarchy, Level 0 (No Talent) 
represents adults who know very little mathematics, 
and Level 1 (Culture level) represents adults who have 
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rudimentary number sense as a function of cultural usage 
and their mathematical knowledge is comparable to those 
of students in grades 6–9. Clearly, a very large proportion 
of the general population would fall into the first two 
levels. 

Thus, the remaining population is thinly spread 
throughout Levels 2 through 7 on the basis of mathematical 
talent. Level 2 represents the honors high school student 
who is capable of majoring in mathematics, as well as 
those who eventually become secondary math teachers. 
Level 3 (the “terrific” student) represents students that 
score1 in the 750–800 range on the SATs or a 4 or 5 in the 
Calculus AP exams. These students have the potential to 
do beginning graduate level work in mathematics. Level 
4 (the “exceptional” student) represents students who 
excel in math competitions and receive admission into 
math/science summer camps and/or academies because 
of their talent. These students are capable of constructing 
mathematical proofs and are able to converse with 
mathematicians about mathematics. Level 5 represents 
the productive mathematician. Although Usiskin’s (2000) 
description of this level is vague, one can infer that it 
represents students who have successfully completed a 
Ph.D. in mathematics or related mathematical sciences 
and are capable of publishing in the field. Level 6 is the 
rarefied territory of the exceptional mathematician; it 
represents “mathematicians . . . [who] have moved their 
domains forward with notable conquests; they will be 
found in any history of the domains in which they work. 
These mathematicians are at the level of the Alfred P. Sloan 
fellows, the best in their age group in the country” (Usiskin, 
2000, p. 156). Finally, at Level 7 are the all-time greats, 
the Fields Medal winners in mathematics.2 This level is 
the exclusive territory of giants or exemplary geniuses like 
Leonard Euler, Karl Friedrich Gauss, Bernhard Riemmann, 
Srinivasa Ramanujan, David Hilbert, Henri Poincaré, and 
others.

In Usiskin’s (2000) eight-tiered hierarchy of 
mathematical talent, the professional (gifted) mathematician 
is at Level 5, whereas the creative mathematician is found 
at Levels 6 and 7. Therefore, in the professional realm, 
mathematical creativity implies mathematical giftedness, 
but the reverse is not necessarily true. In this hierarchical 
classification of mathematical talent, students who are 
gifted and/or creative in mathematics are found at levels 
3 and 4. The point that Usiskin emphasized is that 
these students have the potential of moving up into the 
professional realm (Level 5) with appropriate affective and 
instructional scaffolding as they progress beyond the K–12 
realm into the university setting.

Motivation for Research

Numerous studies (i.e., Cramond, 1994; Davis, 1997; 
Smith, 1966; Torrance, 1981) indicate that very often 
the behavioral traits of creative individuals go against the 
grain of acceptable behavior in the institutionalized school 
setting. For instance, negative behavioral traits, such as 
indifference to class rules, display of boredom, cynicism, 
or hyperactivity, usually result in disciplinary measures 
as opposed to appropriate affective interventions. In the 
case of gifted students who “conform” to the norm, these 
students are often prone to hide their intellectual capacity 
for social reasons, and identify their academic talent as 
being a source of envy (Massé & Gagné, 2002). History is 
peppered with numerous examples of creative individuals 
described as “deviants” by the status quo. Brower (1999) 
has presented more than 50 examples of eminent writers, 
moral innovators, scientists, artists, and stage performers 
who were jailed because of society’s fear of ideas that were 
“out there,” yet powerful enough to create paradigmatic 
shifts in the public’s mindset. 

The stifling of creativity at the K–12th-grade levels 
is often collectively rationalized under the guise of doing 
what is supposedly good for the majority of the students, 
invoking the often misused term equity, appealing to 
curricular plans and school achievement goals, and so forth. 
The recent interpretation of the No Child Left Behind 
Act (NCLB; 2001) in the United States has brought to 
the forefront the debate about what to do with creative 
and gifted students in the classroom. Recently, Marshak 
(2003) wrote that the NCLB Act’s call for accountability 
based on standardized testing for the traditional skills 
of reading, writing, and arithmetic valued in society’s 
industrial setting is a giant step backwards to the 1940s. 
Based on recent reports released by the U.S. Department 
of Labor, Marshak has further stated that in addition to the 
three “traditional” R’s (reading, writing, and ’rithmatic), 
additional skills such as problem solving and creative 
thinking are necessary for success in the global setting 
of 21st century. Even at the tertiary levels, there have 
been criticisms about the excessive amount of structure 
imposed on disciplines by academics and the limitations 
of “narrow, profoundly Western centric attitudes” (Creme, 
2003, p. 273). Such criticism resonates particularly in 
the world of mathematics, especially at the K–12 level, 
where gifted/creative students with a non-Western ethnic 
background are rarely encouraged to express or use 
mathematical techniques they may be familiar with from 
their own cultures. Instead, they are encouraged to adopt a 
Western attitude. In summary, the literature indicates that 
giftedness is often associated with conformity, whereas 
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creativity is viewed as a fringe commodity, tolerated and 
nurtured by some teachers, but typically not encouraged. 
There is clearly a schism between the value of creativity 
in the K–12 setting and in professional realms, which 
leads one to ponder how this schism can be bridged. This 
question is further explored in the present paper. 

What About Problem Solving?

 Professional mathematicians engage in problems 
that are full of uncertainty. However, most curricular 
and pedagogical approaches rarely offer students this 
open-ended view of mathematics. In fact, classroom 
practices and math curricula rarely use ill-posed or open-
ended problems, or allow students a prolonged period of 
engagement and independence to work on these types of 
problems. Although problem solving in the mathematics 
classroom has received increased emphasis since the 
release of the original National Council of Teachers of 
Mathematics Standards (1989), nearly two decades later 
it has essentially become a dogmatic term invoked to act 
as panacea to remedy curricular ills. This rather strong 
statement receives considerable support from the extant 
surveys of the research literature on problem solving. For 
example, in the Handbook for Research on Mathematics 
Teaching and Learning, Schoenfeld (1992) described 
how the field of mathematics education in the United 
States has been subject to approximately 10-year cycles 
of pendulum swings between basic skills and problem 
solving. He concluded his chapter with optimism about the 
continuation of a movement that many at that time referred 
to as “the decade of problem solving” in mathematics 
education. However, since the 1992 handbook was 
published “the worldwide emphasis on high-stakes testing 
has ushered in an especially virulent decade-long return to 
basic skills” (Lesh & Sriraman, 2005b, p. 501). 

Additionally, consider the following facts: Polya-
style problem-solving heuristics—such as draw a picture, 
work backwards, look for a similar problem, or identify the 
givens and goals—have long histories of being advocated 
as important abilities for students to develop (Polya, 
1945). But, what does it mean to “understand” them? 
Such strategies clearly have descriptive power. That is, 
experts often use such terms when they give after-the-fact 
explanations of their own problem-solving behaviors—or 
those of other people whom they observe. But, there is 
little evidence that general processes that experts use to 
describe their past problem-solving behaviors should also 
serve well as prescriptions to guide novices’ next steps 
during ongoing problem-solving sessions. Researchers 
gathering data on problem solving also have the natural 

tendency to examine the data in front of them through the 
lens of a priori problem-solving models. Although there 
is great value in doing so, does such an approach really 
advance problem-solving research? 

If one examines the history of problem-solving 
research, there have been momentous occasions when 
researchers have realized the restricted heuristic view of 
problem solving offered by the existing problem-solving 
research “toolkits,” and have succeeded in redesigning 
existing models with more descriptive processes. However, 
the problem remains that descriptive processes are really 
more like names for large categories of skills rather than 
being well-defined skills in themselves. Therefore, in 
attempts to go beyond “descriptive power” to make 
such processes more “prescriptive power,” one tactic that 
researchers and teachers have attempted is to convert each 
descriptive process into longer lists of more restricted, 
but also more clearly specified processes. If this approach 
is adopted, most of what it means to understand such 
processes involves knowing when to use them. So, higher 
order managerial rules and beliefs that specify when and 
why to use lower order prescriptive processes need to be 
introduced. 

The obvious dilemma that arises is that short lists of 
descriptive processes have appeared to be too general to 
be meaningful. On the other hand, lists of prescriptive 
processes tend to become so numerous that knowing when 
to use them becomes the heart of understanding them 
(Lesh & Sriraman, 2005b). Furthermore, adding more 
metacognitive rules and beliefs only compounds these two 
basic difficulties. A decade after Schoenfeld’s chapter in 
Grouws’ (1992) Handbook for Research on Mathematics 
Teaching and Learning was published, in another extensive 
review of the literature, Lester and Kehle (2003) again 
reported that little progress had been made in problem-
solving research, and that problem solving still had little 
to offer to school practice. Their conclusions agreed with 
Silver (1985), who long ago determined what we consider 
to be the core of the problem in problem-solving research. 
That is, the field of mathematics education needs to go 
“beyond process-sequence strings and coded protocols” 
in our research methodologies and “simple procedure-
based computer models of performance” to develop ways 
of describing problem solving in terms of conceptual 
systems that influence students’ performance (Silver, p. 
257). Thus, the use of problem solving in the mathematics 
classroom arguably lends itself to a host of questions about 
its purpose, as well as its effectiveness.
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Mathematical Creativity: 
The Lack of Domain-Specific Definitions 

in Mathematics

Given the relevance of giftedness and creativity to our 
society, we will now focus our attention specifically on the 
domain of mathematics with the purpose of generating 
appropriate definitions for these terms. The existing 
literature provides an overview of the various meanings 
of the terms mathematical creativity and mathematical 
giftedness; in addition, the literature demonstrates their 
compatibility and relevance at the professional and K–12 
levels. Most of the extant definitions of mathematical 
creativity found in the mathematics and mathematics 
education literature are vague or elusive, which may be 
attributed to the difficulty of describing this complex 
construct. For instance, mathematical creativity has been 
defined as the ability to discern, or choose (Hadamard, 
1945; Poincaré, 1948), to distinguish between acceptable 
and unacceptable patterns (Birkhoff, 1969), and to engage 
in nonalgorithmic decision-making (Ervynck, 1991). The 
literature on students who are mathematically creative in 
the K–12 realm is also vague. Exceptional mathematical 
ability (Level 4 talent) in the K–12 realm has been associated 
with Einstein syndrome (Sowell, 2001) and Asperger’s 
syndrome (Jackson, 2002). The Einstein syndrome is 
characterized by exceptional mathematical ability, but 
delayed speech development, whereas Asperger’s syndrome 
is a spectrum disorder characterized by “severe impairment 
in reciprocal social interaction, all absorbing narrow 
interests or obsession with a particular subject . . . [a]nd 
sometimes motor clumsiness” (James, 2003, p. 62). The 
dearth of specific definitions of mathematical creativity 
in the mathematics and mathematics education literature 
necessitates that we move away from the specific domain 
of mathematics to the general literature on creativity in 
order to construct an appropriate definition. 

Creativity: General Definitions in Psychology/
Educational Psychology

In the literature on creativity, numerous definitions 
can be found. Craft (2002) used the term life wide creativ-
ity to describe the numerous contexts of day-to-day life 
in which the phenomenon of creativity manifests. Other 
researchers have described creativity as a natural survival 
or adaptive response of humans in an ever-changing envi-
ronment (Gruber, 1989; Ripple, 1989). Craft (2003) has 
also pointed out that it is essential we distinguish everyday 
creativity such as improvising on a recipe from extraordi-
nary creativity, which causes paradigm shifts in a specific 

body of knowledge. It is generally accepted that works 
of extraordinary creativity can be judged only by experts 
within a specific domain of knowledge (Csikszentmihalyi, 
1988, 2000; Craft, 2003). For instance, Andrew Wiles’ 
proof of Fermat’s Last Theorem could only be judged by 
a handful of mathematicians within a very specific subdo-
main of number theory. 

At the K–12 level, one normally does not expect works 
of extraordinary creativity; however, it is certainly feasible 
for students to offer new insights into a math problem 
or a new interpretation or commentary on a literary or 
historical work. Students at the K–12 level are certainly 
capable of originality. For example, Weisberg (1993) sug-
gested that creativity entails the use of ordinary cognitive 
processes and results in original and extraordinary prod-
ucts. Further, Sternberg and Lubart (2000) defined cre-
ativity as the ability to produce unexpected original work 
that is useful and adaptive. Other definitions usually have 
imposed the requirement of novelty, innovation or unusu-
alness of a response to a given problem (Torrance, 1974). 
Numerous confluence theories of creativity have defined 
creativity as a convergence of knowledge, ability, think-
ing style, and motivational and environmental variables 
(Sternberg & Lubart, 1996, 2000), as well as an evolution 
of domain-specific ideas resulting in a creative outcome 
(Gruber & Wallace, 2000). For example, Csikszentmihalyi 
(2000) has maintained that creativity is a mutation result-
ing from a favorable interaction between an individual, 
domain, and field. Most recently, Plucker and Beghetto 
(2004) offered an empirical definition of creativity based 
on a survey and synthesis of numerous empirical studies in 
the field. They defined creativity as “the interplay between 
ability and process by which an individual or group pro-
duces an outcome or product that is both novel and useful 
as defined within some social context” (p.156).

 
Applying the General Definitions of Creativity 
to Mathematics

A synthesis of the numerous definitions of creativity 
can lead to a working definition of mathematical creativ-
ity at both the professional and K–12 levels. At the pro-
fessional level, mathematical creativity can be defined as 
(a) the ability to produce original work that significantly 
extends the body of knowledge, and/or (b) the ability 
to open avenues of new questions for other mathemati-
cians. 

For instance, Hewitt’s (1948) paper on rings of con-
tinuous functions led to unexplored possibilities and 
questions in the fields of analysis and topology that sus-
tained other mathematicians for decades. A modern-day 
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illustration of the far-reaching effects of Hewitt’s paper is 
to “Google” the title of the paper, which results in over 
120,000 hits. 

On the other hand, mathematical creativity in grades 
K–12 can be defined as (a) the process that results in 
unusual (novel) and/or insightful solution(s) to a given 
problem or analogous problems, and/or (b) the formula-
tion of new questions and/or possibilities that allow an 
old problem to be regarded from a new angle requiring 
imagination (Einstein & Inheld, 1938; Kuhn, 1962). The 
second part of this definition is very similar to definitions 
of creativity in professional mathematics.

The research also indicates that, at both the K–12 
and the professional levels, creative individuals are prone 
to reformulating a problem or finding analogous prob-
lems (Frensch & Sternberg, 1992; Polya, 1945, 1954). 
These individuals are also different from their peers in 
that they are fiercely independent thinkers (Chambers, 
1964; Gruber, 1981; Ypma, 1968), tend to persevere 
(Chambers; Diezmann & Watters, 2003), and reflect a 
great deal (Policastro & Gardner, 2000; Sriraman, 2003, 
Wertheimer, 1945). 

Conditions That Enhance Mathematical Creativity 
at the Professional Level

	 Now that we have a working definition of mathemati-
cal creativity, we can explore the conditions under which 
such creativity manifests. In order to illuminate the condi-
tions that enhance the manifestation of creativity at the 
professional level, Sriraman (2004c) conducted a quali-
tative study with five accomplished and creative profes-
sional mathematicians. The five mathematicians verbally 
reflected on the thought processes involved in studying 
mathematics. The results indicated that in general, the 
mathematicians’ creative process followed the four-stage 
Gestalt model (Wallas, 1926) of preparation, incubation, 
illumination, and verification. It was also found that social 
interaction, imagery, heuristics, and intuition were some 
of the characteristics of mathematical creativity. Other 
characteristics that contributed to their research produc-
tivity were the time available in an academic setting for 
the pursuit of research, freedom of movement, the aes-
thetic appeal of mathematics, and the urgency/drive to 
solve problems with tremendous real-world implications. 
All five mathematicians spoke at length about the “Aha” 
or “Eureka” moment (Burton, 1999a, 1999b; Wallas) at 
which they gained a new insight into the problem, and 
were able to successfully construct a proof. 

Mathematical Giftedness

A synthesis of the research literature on mathemati-
cal giftedness and characteristics of mathematical thinking 
revealed that the construct of mathematical giftedness has 
been defined in terms of the individual’s ability in math-
ematical processes such as: (a) the ability to abstract, gen-
eralize, and discern mathematical structures (Kanevsky, 
1990; Kiesswetter, 1985, 1992; Krutetskii, 1976; Shapiro, 
1965; Sriraman, 2002, 2003); (b) the ability to manage 
data (Greenes, 1981; Yakimanskaya, 1970); (c) the abil-
ity to master principles of logical thinking and inference 
(Goldberg & Suppes, 1972; Suppes & Binford, 1965); (d) 
the ability to think analogically and heuristically and to 
pose related problems (Polya, 1954; Kiesswetter, 1985); (e) 
flexibility and reversibility of mathematical operations and 
thought (Krutetskii); (f ) an intuitive awareness of mathe-
matical proof (Sriraman, 2004c); (g) independent discovery 
of mathematical principles (Sriraman, 2004a, 2004b); (h) 
the ability to make decisions in problem-solving situations 
(Frensch & Sternberg, 1992; Schoenfeld, 1985; Sriraman, 
2003); (i) the ability to visualize problems and/or relations 
(Hershkowitz, 1989; Presmeg, 1986); (j) the ability to infer 
behaviors that test for truth or falsity of a construct (Wason 
& Johnson-Laird, 1972); (k) the ability to distinguish 
between empirical and theoretical principles (Davydov, 
1988, 1990; Vygotsky, 1962, 1978); and (l) the ability to 
think recursively (Kieren & Pirie, 1991; Minsky, 1985).

In addition, mathematical giftedness has also been 
associated with the capacity for learning at a faster pace 
(Chang, 1985; Heid, 1983). Most of the mathematical 
processes listed above are primarily cognitive and learned 
during K–12 schooling experiences. It should be noted 
that many of these studies involved task-based instruments 
with specific mathematical concepts/ideas to which stu-
dents had previous exposure. Another important observa-
tion is that although many of these traits do play a role and 
are necessary in the setting of professional mathematics, 
they are not sufficient for creativity to manifest. In other 
words, in order to work as a professional mathematician 
(Level 5) and to create new mathematics, some abilities 
are more crucial than others. In particular, decision mak-
ing; the abilities of abstracting and generalizing, inferenc-
ing, and constructing theoretical principles; and recursive 
thinking play an important role in how mathematics are 
created at the professional level. The processes of inferenc-
ing (Wason & Johnson-Laird, 1972), constructing theo-
retical principles (Davydov, 1988, 1990), and recursive 
thinking (Kieren & Pirie, 1991; Vitale, 1989) play a vital 
role in how new mathematics are created. Simply put, this 
process can be viewed as follows: The applied mathemati-
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cian is trying to create mathematical models that say some-
thing about the physical world. The pure mathematician is 
willing to take those models and see what the implications 
are. During the modeling process, there exists some physi-
cal situation and the applied mathematician tries to iden-
tify the underlying principles. The pure mathematician 
steps back and abstracts to a setting in which these basic 
principles hold, and to see what the implications are. The 
pure mathematician who is dealing with the implications 
is working rather formally to see what is implied logically 
by this particular set of assumptions, without worrying 
about whether this is an appropriate model or not. 

Wason and Johnson-Laird (1972) investigated whether 
adults, when given a set of assertions, were able to appreciate 
the logical implications. They were particularly interested 
in determining contexts that led adults3 into drawing falla-
cious conclusions. According to Wason and Johnson-Laird, 
“The rational individual, in our sense of the word, is merely 
one who has the ability to make inferences [italics added]; he 
may not be rational in any other sense of the word” (p. 2). 
The process of inferencing can lead to mathematical gen-
eralizations. Thus, Wason and Johnson-Laird investigated 
how adults discovered general rules by setting up struc-
tured experiments, in which “subjects were presented with a 
hypothesis and they had to decide the items of evidence rel-
evant for testing its truth. The experiments were designed to 
investigate the propensity of individuals to offer premature 
solutions based on confirming evidence” (p. 202). 

The researchers had several interesting findings. First 
of all, subjects tended to make fallacious inferences when 
presented with affirmative statements. Another finding was 
that an overwhelming majority of the subjects in the study 
were prone to try to verify generalizations rather than to 
try and falsify them. Moreover, the researchers noted that 
the content of the material about which inferences were 
made was significant. Subjects tended to make “illicit con-
versions” and were biased towards verification when faced 
with material of an abstract nature, such as mathematical 
problems in n-dimensional space that can only be symbol-
ically represented. However when the material was con-
crete and subjects had experienced a variety of connections 
with it, they tended to generate and assess hypothetical 
connections between facts. In other words, mathemati-
cal inference behavior is different from everyday inference 
behavior and mathematically gifted individuals are adept 
at logically and correctly connecting abstract constructs 
different from everyday constructs. This distinction 
between everyday (or empirical) and abstract (or theoreti-
cal) concepts was studied by Vygotsky (1962, 1978) in his 
investigations on concept formation and later pursued by 
Davydov (1988, 1990). 

Initially Vygotsky (1962, 1978) explored the notion 
of scientific generalizations during his investigations on 
concept formation and distinguished between two types 
of concepts, namely spontaneous, or everyday, concepts, 
and scientific, or theoretical, concepts. Davydov (1988) 
continued this line of investigation on conceptualization 
and stressed that the important difference between every-
day (empirical) concepts and theoretical concepts lies in 
their mode of formation. According to Davydov (1988), 
the difference between everyday concepts and theoretical 
concepts also lies in the type of abstraction one engages 
in, namely empirical abstraction versus theoretical abstrac-
tion. The former involves superficial comparisons for dis-
cerning similarities and differences, whereas the latter 
involves structural comparisons. Thus, empirical general-
ization requires the abstraction of similarities from collec-
tions of entities, which may themselves represent disparate 
functions and structures. For instance, Davydov (1988) 
said that the notion of “roundness” can be empirically 
abstracted from a dish, a wheel, and so forth. However, 
this empirical notion of circularity does not reveal the real 
objective content, which is the locus of points at a constant 
distance from a fixed point. This content is not apparent 
from the mere appearance of roundness. Davydov (1988, 
1990) claimed that cultivating empirical generalizations 
useful only for the formation of everyday concepts is inad-
equate for the formation of theoretical generalizations, 
which characterize mathematics. Aside from inferencing 
behavior in theoretical situations, mathematical thinking 
is also characterized by “recursive thinking” a term bor-
rowed from information processing.

According to Vitale (1989), recursion is the mode 
in which human beings tackle and represent problems. 
Kieren and Pirie (1991) have claimed that recursion is an 
appropriate metaphor “in looking at the complex phe-
nomenon of the whole of a person’s mathematical knowl-
edge and mathematical understanding” (p. 79). Kieren 
and Pirie substantiated this claim by arguing that children 
are self-referencing and in their realm of existence there 
are a number of “behavioral possibilities.” Consequently, 
because children are self-referencing, one of the primary 
means of cognition is recursive in nature, and their knowl-
edge “is formed through thought actions which entail 
the results of previous thought actions as inputs” (p. 79). 
This aspect of cognition is particularly relevant in math-
ematics because mathematical knowledge building and 
understanding is a dynamic process in which one’s present 
knowledge and understanding builds from and is linked to 
previous knowledge. Kieren and Pirie analyzed recursion 
in students’ thoughts and actions within a problem-solv-
ing experience. They posed the well-known “handshake 
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problem”: How many handshakes are needed in a class 
with 35 students so that each person in a room shakes 
hands with every person exactly once?

One of the solution strategies used by a group was 
to first specialize the problem involving 35 people to 
one involving the group. The students devised a strategy 
whereby the people were lined up, and the person furthest 
from the door shook hands with everybody else, reported 
the number of handshakes to the last person with whom 
the handshake occurred, and then left the room. The sec-
ond person furthest from the door then repeated the above 
procedure, reported the number of handshakes to the last 
person, and left the room. After many iterations, the last 
person added up the number of handshakes, namely 34 + 
33 + 32 + . . . + 1, and left the room. Note that the above 
solution is easily generalized to the case with n people. 
One of the findings of this study was that most of the stu-
dents never bothered to compute a solution for 35 people, 
because they had come up with a strategy that would gen-
erally work. 

The fact that the problem was never answered 
at any level suggests that the students sense that 
the solution to the problem does not reduce to 
an answer or result of a special case, but “calls” or 
uses the structure of that special case. The “struc-
ture” of this special case has in it both a substan-
tially correct mathematical idea (a sequence of 
non-repeating handshakes) and a form by which 
it can be procedurally described (Kieren & Pirie, 
1991, pp. 83–84). 

The researchers envisioned this recursive structure dia-
grammatically as a triangle of activities, which included 
specializing, creating results, and then generalizing through 
interpretation and validation. The process of specializing 
to particular cases, conjecturing, and then generalizing 
through interpretation and validation is a common trait 
among mathematically gifted students (Krutetskii, 1976; 
Sriraman, 2003, 2004d). This process also shows simi-
larities to how professional mathematicians interpret and 
extend results in their field (Sriraman, 2004c). 

Discussion, Implications,  
and Recommendations for the K–12 

classroom

The preceding discussion reveals that although math-
ematically gifted students possess many of the cognitive 
qualities required for work at the professional level, some 

cognitive traits are more important than others. This hier-
archy necessitates a use of problems that call for the use of 
high-level inferencing, generation/discovery of principles, 
and recursive thinking. 

The discussion on mathematical creativity indicates 
that many of the characteristics of mathematical creativity 
described by mathematicians as invaluable aspects of their 
craft, such as the freedom to choose and pursue problems 
in an academic setting, the freedom of movement required 
during work, the awareness of the distinction between 
learning versus creating, the aesthetic appeal of mathemat-
ics, and the affective urgency/drive to solve problems with 
tremendous real world implications, might be extremely 
difficult to simulate in a traditional classroom setting. A 
model involving the use of five principles to maximize 
creativity among the mathematically gifted in the K–12 
setting is shown in Figure 1. I have outlined five general 
principles extracted from the literature and studies on 
mathematical creativity that can be applied in the every-
day classroom setting in order to maximize the potential 
for mathematical creativity to manifest in the K–12 class-
room.

Five Overarching Principles  
to Maximize Creativity

As seen in Figure 1, the five overarching principles that 
emerged from a synthesis and analysis of the literature as 
significantly enhancing mathematical creativity are labeled 
as (a) the Gestalt principle, (b) the aesthetic principle, (c) 
the free market principle, (d) the scholarly principle, and 
(e) the uncertainty principle. 

The Gestalt Principle. The eminent French mathema-
ticians Hadamard (1945) and Poincaré (1948) viewed 
creativity as a process by which the mathematician makes 
choices between questions that lead to fruition as opposed 
to those that lead to nothing new. These mathematicians 
were influenced by the Gestalt psychology of their time 
and characterized mathematical creativity as a four-stage 
process consisting of preparation, incubation, illumi-
nation, and verification (Wallas, 1926). Although psy-
chologists have criticized the Gestalt model of creativity 
because it attributes a large “unknown” part of creativ-
ity to unconscious drives during the incubation stage, 
numerous studies with scientists and mathematicians 
(i.e., Burton, 1999a, 1999b; Davis & Hersh, 1981; Shaw, 
1994; Sriraman, 2004c) have consistently validated this 
model. All of these studies found that after one has worked 
on a problem for a considerable time (preparation) with-
out making a breakthrough, the person puts the problem 
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aside and other interests occupy the mind. This period of 
incubation eventually leads to an insight to the problem, 
to the “Eureka” or the “Aha!” moment of illumination. 
Most of us have experienced this magical moment. Yet, 
the value of this archaic Gestalt construct is ignored in 
the classroom. In fact, Krutetskii (1976) found that math-
ematically gifted children also experienced the sheer joy 
of creating that “included the feeling of satisfaction from 
the awareness of the difficulties that have been overcome, 
that one’s own efforts have led to the goal” (p. 347). This 
implies that it is important for teachers to encourage the 
mathematically gifted to engage in suitably challenging 
problems over a protracted time period, thereby creating 
the opportunities for the discovery of an insight and to 
experience the euphoria of the “Aha!” moment. 

The Aesthetic Principle. Mathematicians have often 
reported the aesthetic appeal of creating a “beautiful” theo-
rem that ties together seemingly disparate ideas, combines 
ideas from different areas of mathematics, or utilizes an 
atypical proof technique (Birkhoff, 1956, 1969; Dreyfus 
& Eisenberg, 1986; Hardy, 1940). Wedderburn’s theorem 

that a finite division ring is a field is one instance of a 
unification of apparently random ideas, because the proof 
involves algebra, complex analysis, and number theory. 
Cantor’s argument about the uncountability of the set of 
real numbers is an often-quoted example of a brilliant and 
atypical mathematical proof technique (Nickerson, 2000). 
The eminent English mathematician G. H. Hardy (1940) 
compared the professional mathematician to an artist, 
because like an artist, a mathematician was a maker of pat-
terns in the realm of abstract ideas. Hardy said, 

A mathematician, like a painter or a poet, is a 
maker of patterns. If his patterns are more per-
manent than theirs, it is because they are made 
with ideas. . . . The mathematician’s patterns, 
like the painter’s or the poet’s, must be beautiful; 
the ideas, like the colors or the words, must fit 
together in a harmonious way. Beauty is the first 
test: there is no permanent place in the world for 
ugly mathematics (p. 13). 

Figure 1. Harmonizing creativity and giftedness at the K-12 level
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Figure 1. Harmonizing creativity and giftedness at the K–12 level
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Recent studies in Australia (Barnes, 2000) and Germany 
(Brinkmann, 2004) with middle and high school students 
revealed that students were capable of appreciating the aes-
thetic beauty of a simple solution to a complex mathemat-
ical problem. Brinkmann found that even low achievers 
appreciated the struggle to get the insight that unlocked a 
seemingly unsolvable mathematical puzzle. Barnes noted 
that real-world problem selection and the careful “stag-
ing” of the discovery moment by the teacher were found 
to be the crucial elements for conveying an appreciation of 
mathematics to the classroom. 

The Free Market Principle. Professional mathemati-
cians in an academic setting take a huge risk when they 
announce a proof to a long-standing unsolved problem. 
Often times the mathematician puts his or her repu-
tation at risk if a major flaw is discovered in the proof. 
For instance, in mathematical folklore, Louis de Branges’ 
announcement of a proof to the Riemann hypothesis4 
fell through upon scrutiny by the experts. This led to 
subsequent disregard of his claim to a brilliant proof for 
the Bieberbach conjecture.5 The Western mathemati-
cal community took notice of Louis de Brange’s proof of 
the Bieberbach conjecture only after a prominent Soviet 
group of mathematicians supported his proof. On the 
other hand, Ramanujan’s numerous intuitive claims, 
which lacked proof, were widely accepted by the commu-
nity because of the backing of giants like G. H. Hardy and 
J. E. Littlewood. The implication of these anecdotes from 
professional mathematics for the classroom is that teachers 
should encourage students to take risks. In particular, they 
should encourage the gifted/creative students to pursue 
and present their solutions to contest or open problems 
at appropriate regional and state math student meetings, 
allowing them to gain experience at defending their ideas 
upon scrutiny from their peers.

The Scholarly Principle. K–12 teachers should embrace 
the idea of creative deviance as contributing to the body 
of mathematical knowledge, and they should be flexible 
and open to alternative student approaches to problems. 
In addition, they should nurture a classroom environment 
in which students are encouraged to debate and question 
the validity of both the teachers’, as well as other students’, 
approaches to problems. Gifted students should also be 
encouraged to generalize the problem and/or the solu-
tion, as well as pose a class of analogous problems in other 
contexts. Allowing students problem-posing opportunities 
and promoting the understanding of problem design helps 
them differentiate mathematical problems from nonmath-
ematical problems, good problems from poor, and solv-
able from nonsolvable problems. In addition, independent 
thinking can be cultivated by offering students the oppor-

tunity to explore problem situations without any explicit 
instruction (English, in press; Sriraman & English, 2004). 
Teachers are also encouraged to engage in curriculum 
acceleration and compaction to lead mathematically gifted 
students into advanced concepts quickly and to promote 
independent scholarly activity. The longitudinal Study 
of Mathematically Precocious Youth (SMPY), started by 
Julian Stanley at Johns Hopkins University in 1971, gener-
ated a vast amount of empirical data gathered over the last 
30 years, and has resulted in many findings about the types 
of curricular (e.g., acceleration, compacting) and affective 
interventions that foster the pursuit of advanced course-
work in mathematics. More than 250 papers have been 
produced in its wake, and they provide excellent empiri-
cal support for the effectiveness of curriculum acceleration 
and compaction in mathematics (Benbow, Lubinski, & 
Sushy, 1996). 

The Uncertainty Principle. Mathematics at the profes-
sional level is full of uncertainty and ambiguity, as indi-
cated in some of the quotes presented earlier. Creating, as 
opposed to learning, requires that students be exposed to 
the uncertainty and the difficulty of creating mathemat-
ics. This ability requires the teacher to provide affective 
support to students who experience frustration over being 
unable to solve a difficult problem. Students should peri-
odically be exposed to ideas from the history of mathemat-
ics and science that evolved over centuries and took the 
efforts of generations of mathematicians to finally solve. 
Cultivating this trait of perseverance will ultimately serve 
the mathematically gifted student in the professional realm. 
Keisswetter (1992) developed the so-called Hamburg 
Model in Germany, which is more focused on allowing 
gifted students to engage in problem-posing activities, fol-
lowed by time for exploring viable and nonviable strate-
gies to solve the posed problems. This approach captures 
an essence of the nature of professional mathematics, in 
which the most difficult task is to correctly formulate 
the problem (theorem). Conversely, some extant mod-
els within the U.S., such as those used in the Center for 
Talented Youth (CTY) at Johns Hopkins University, tend 
to focus instead on accelerating the learning of concepts 
and processes from the regular curriculum, thus prepar-
ing students for advanced coursework within mathematics 
(Barnett & Corazza, 1993).

Having presented five principles that can maximize 
mathematical creativity in the K–12 classroom, I present a 
model (see Figure 2) that captures the underlying essence 
of this paper and shows the relationship and compatibility 
of the constructs of mathematical creativity and giftedness 
between the K–12 and the professional realms of math-
ematics.
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The Conceptual Model

The model presented in Figure 2 shows the dynamic 
nature of the relationship between mathematical creativity 
and mathematical giftedness and illustrates the possibilities 
for bridging the schism between the two. The K–12 world 
in the figure shows that mathematical creativity manifests 
in the “fringes” in the general pool of mathematically 
gifted students. On the other hand, the professional world 
of mathematics shows that creativity is a rare and sought 
after commodity. How do we bridge these two disjointed 
worlds? The model suggests that these realms of profes-

sional mathematics and the K–12 mathematics classrooms 
can be successfully bridged by paying increased attention 
to maximizing the creative potential of the mathemati-
cally gifted students in the “ideal” classroom. This can be 
accomplished by applying the five principles (see Figure 1) 
that work for creative mathematicians in the K–12 class-
room. A classroom environment, especially classrooms 
with mathematically gifted students, in which the Gestalt, 
aesthetic, free market, scholarly, and uncertainty princi-
ples become a part of the classroom culture, maximizes 
the potential for creativity among the mathematically 
gifted. This increase in creativity serves these students as 

The Professional World The K-12 World

Figure 2. Maximizing the compatibility of creativity and giftedness
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they progress into the world of postsecondary and research 
mathematics, or progress from Levels 4 to Levels 5 and 6. 
Progress into Level 6 increases the subgroup of creative 
mathematicians. 

The conceptual model, although triadic in nature, is 
different from the general models proposed by Renzulli 
(1978, 1986) and Sternberg (1997) in that it shows the 
relationship between creativity and giftedness in the spe-
cific domain of mathematics, but it also has elements of 
Renzulli’s (1978, 1986) three-ringed conception of gift-
edness, as well as Sternberg’s triarchic view of giftedness. 
Renzulli’s three-ringed conception suggests that giftedness 
is the interaction between above-average abilities, focused 
task-committed behavior, and creativity. The professional 
world of mathematics (Level 5) is characterized by above-
average mathematical abilities among mathematicians and 
a commitment to research. However, mathematical creativ-
ity at this level remains an elusive commodity manifesting 
among a tiny subset of the general pool of mathemati-
cians. In the ideal K–12 world, Renzulli’s (1978) concep-
tion of task-commitment can be emphasized under the 
uncertainty principle, which suggests that difficult prob-
lems take extended time periods to solve and involve con-
siderable struggle. Sternberg’s triarchic view of giftedness 
suggests that gifted individuals possess a varying blend of 
analytic, synthetic (creative), and practical giftedness. This 
view particularly resonates in the world of mathematics. 

Level 5 mathematicians that are productive in their 
areas of research have high levels of analytic and practi-
cal abilities. Practical abilities manifest in choosing prob-
lems that are accessible and publishable. However, creative 
mathematicians (Levels 6 and 7) have higher levels of 
synthetic abilities in comparison to the Level 5 math-
ematicians in that the papers they publish open up new 
research vistas for other mathematicians. An example of 
such creative work is the aforementioned paper by Hewitt 
(1948). These high levels of synthetic abilities are perhaps 
compromised by slightly lower levels of practical abilities. 
For example, mathematicians at Levels 6 and 7 often leave 
proofs half-finished or sometimes do not even bother to 
publish their work. 

There are numerous examples in the history of math-
ematics that reveal such tendencies among highly cre-
ative mathematicians. For instance, Srinivasa Ramanujan 
(1887–1920), the Indian mathematician, had handwritten 
notebooks filled with numerous theorems without proof 
that still contribute to fertile directions in the growth of 
analytic number theory, elliptic functions, infinite series, 
and continued fractions. David Hilbert’s (1900) list of 
23 problems presented to mathematicians at the 1900 
International Congress in Paris contributed both to the 

phenomenal growth of mathematics and the particular 
directions in which it has grown (Rowe & Gray, 2000). 
The Riemann hypothesis still remains an open problem 
with profound implications for numerous areas of math-
ematics. The most recent example is that of Paul Erdös, 
a contemporary and enigmatic mathematical genius, who 
was renowned for giving other mathematicians conjec-
tures and/or problems with hints, partial solutions, or no 
solutions. The mathematicians that finished these prob-
lems and wrote up the results usually graciously listed 
Erdös as the coauthor of their papers. In fact, coauthors of 
Erdös gave themselves a number called “Erdös number 1,” 
and mathematicians that coauthored a paper with “Erdös 
number 1” mathematicians gave themselves the number 
“Erdös number 2” and so on.

Elements of Sternberg’s (1997) triarchic view of gift-
edness are also seen in the model in Figure 2. In order 
to maximize the potential for creativity to manifest in the 
mathematics classroom, teachers can encourage mathe-
matically creative students to share their synthetic insights 
on connections between seemingly diverse problems with 
the other students in the class (Sriraman, 2004a). Historic 
examples of synthetic thinking in mathematics, which 
connect seemingly diverse ideas/concepts, can be used in 
the classroom to further illustrate the power and value of 
such insights. The scholarly, free-market, and aesthetic 
principles also contain aspects of Sternberg’s triarchic view 
of giftedness. 

Furthermore, the five principles encompass notions of 
polymathy, which can foster creativity in general by con-
necting notions from the arts and sciences to mathemat-
ics and vice versa. Common thinking traits of hundreds 
of polymaths (historical and contemporary) as analyzed 
by Root-Bernstein (1989, 1996, 2000, 2001, 2003) and 
many others are: (a) visual geometric thinking and/or 
thinking in terms of geometric principles; (b) frequent 
shifts in perspective; (c) thinking in analogies; (d) epis-
temological awareness, or an awareness of domain limita-
tions; (e) interest in investigating paradoxes, which often 
reveals interplay between language, mathematics, and sci-
ence; (f ) belief in Occam’s Razor, or belief that simple ideas 
are preferable to complicated ones; (g) acknowledgment of 
serendipity and the role of chance; and (h) the drive to 
influence the agenda of the times (Sriraman, 2005).

One recent example provided by Root-Bernstein 
(2003) is the effect of Escher’s drawings on a young Roger 
Penrose, the mathematical physicist, who visited one of 
Escher’s exhibitions in 1954. Stimulated by the seemingly 
impossible perspectives conveyed by Escher in two dimen-
sions, Penrose began creating his own impossible objects 
such as the famous Penrose “impossible” tribar that shows 
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a three-dimensional triangle that twists both forwards and 
backwards in two dimensions. Root-Bernstein wrote:

Roger Penrose showed his tribar to his father L. S. 
Penrose, a biologist who dabbled in art . . . [who] 
invented the impossible staircase in which stairs 
appear to spiral both up and down simultane-
ously . . . [and] sent Escher a copy . . . [who] then 
developed artistic possibilities of the impossible 
staircase in ways that have since become famous. 
(p. 274)

Another well-known consequence of Escher’s artistic influ-
ence on mathematicians is the investigation of tiling prob-
lems (both periodic and aperiodic) popularized by both 
Roger Penrose and Martin Gardner, which helped cystal-
lographers understand the structure of many metal alloys 
that are aperiodic (Root-Bernstein, 2003).

The Changing Nature of Mathematics

Another important aspect of this discussion is the ques-
tion of the balance between pure and applied mathemat-
ics. The literature suggests that the nature of mathematics 
relevant for today’s world has also changed. In spite of the 
rich and antiquated roots of mathematics, Steen (2001) 
suggested that mathematicians should acknowledge the 
contributions of researchers in external disciplines like 
biology, physics, finance, information sciences, economics, 
education, medicine, and so on who have successfully used 
mathematics to create models with far-reaching and pro-
found applications in today’s world. These interdisciplin-
ary and emergent applications have resulted in the field of 
mathematics thriving at the dawn of the 21st century. Yet, 
problem solving, as it is implemented in the classroom, 
does not contain this interdisciplinary approach and mod-
eling of what is happening in the real world. In the U.S., 
the urgency of preparing today’s students adequately for 
future-oriented fields is increasingly being emphasized 
at the university level. Steen (2005) writes that “as a sci-
ence biology depends increasingly on data, algorithms and 
models; in virtually every respect it is becoming . . . more 
mathematical” (p. xi). Both the National Research Council 
(NRC) and the National Science Foundation (NSF) in the 
U.S. are increasingly funding universities that promote 
interdisciplinary doctoral programs between mathematics 
and the other sciences with the goal of producing scientists 
who are adept at “mathematizing” reality. 

Mathematics at the secondary level exposes stu-
dents to both breadth and depth of mathematical topics. 
However, most mathematics curricula are still anchored in 

the traditional treatment of mathematics, as opposed to an 
interdisciplinary- and modeling-based approach of mathe-
matics used in the real world (Sriraman, in press). Sheffield, 
Bennett, Berriozabal, DeArmond, and Wertheimer (1995) 
lamented that not much had changed in terms of math-
ematics curricula at that point in time and remarked that 
gifted mathematics students were the ones who were most 
shortchanged and unable to utilize their talents, which 
could be viewed as a societal resource invaluable to main-
taining leadership in a technologically changing world. 
Moreover, high school mathematics also serves as the gate-
keeper for many areas of advanced study (Kerr, 1997). 
The traditional treatment of mathematics has little or 
no emphasis on modeling-based activities, which require 
teamwork and communication. Additionally, traditional 
mathematics has historically kept gifted girls from pursu-
ing 4 years of high school mathematics. This deficit is dif-
ficult to remediate at the undergraduate level and results in 
the effect of low numbers of students capable of graduate-
level work in interdisciplinary fields such as mathematical 
biology and bio-informatics (see Steen, 2005). 

Any educator with a sense of history should foresee 
the snowball effect or the cycle of blaming inadequate 
preparation in high school on middle school and conse-
quently elementary school mathematics, which suggests 
we work bottom up. That is, students should engage in the 
study and modeling of complex systems that occur in real-
life situations from the very early grades on. Lesh, Kaput, 
and Hamilton (in press) reported that in projects such as 
Purdue University’s Gender Equity in Engineering Project, 
when students’ abilities and achievements were assessed 
using tasks that were designed to be simulations of real-life 
problem-solving situations, the understandings and abili-
ties that emerged as being critical for success included many 
that are not emphasized in traditional textbooks or tests. 
Thus, the importance of a broader range of students and 
of deeper understandings and abilities naturally emerged as 
having extraordinary potential. Surprisingly enough, these 
students also came from populations, specifically female 
and minority, that are highly underrepresented in fields 
that emphasize mathematics, science, and technology, and 
they were underrepresented because their abilities had 
been previously unrecognized (Lesh & Sriraman, 2005a, 
2005b; Sriraman, 2005). Thus, it may be more fruitful to 
engage students in model-eliciting activities, which expose 
them to complex real-life systems, as opposed to contrived 
problem solving. The mathematical conceptual systems 
arising from such investigations have great potential for 
being pursued by mathematically gifted students purely 
in terms of their implications, and because they create axi-
omatic structures through which theorems can be discov-
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ered that are analogous to what a pure mathematician does 
(Sriraman & Strzelecki, 2004). 

 
Conclusion

In conclusion, the goal of the gifted education com-
munity is not simply to ensure that mathematically gifted 
students fulfill their potential by becoming productive 
pure and applied mathematicians, but also to ensure that 
the mathematically creative students among the math-
ematically gifted do not get overlooked. After all, these 
may indeed be the very students who have the potential to 
move the field forward through their atypical/unorthodox 
methods and insights. The butterfly effect of overlooking 
one of these potential Level 6 (creative mathematician) stu-
dents in the classroom eventually affects the livelihood of 
a thousand potential Level 5 (productive mathematician) 
students. A case in point that illustrates the far-reaching 
ripples of such a butterfly effect is Hilbert’s (1900) prob-
lems, which sustained both pure and applied mathematics, 
as well as Ramanujan’s notebooks.
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End Notes

1 	 These scores place the students approximately in the 
95–99 percentile band.
2 	 The Fields Medal was established by John Charles 
Fields (1863–1932) and is the equivalent of the Nobel 
Prize for the field of mathematics. These medals are 
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awarded every 4 years to mathematicians under 40 years of 
age, at the International Congress of Mathematics.
3 	 Behr and Khoury (1986) found that the inferencing 
behavior of younger school children were analogous to 
those found by Wason and Johnson-Laird (1972).
4 	 The Riemann hypothesis states that the zeros of 
Riemann’s zeta function all have a real part of one half. 
Conjectured by Riemann in 1859, it has neither been 
proved nor disproved. This is currently the most outstand-
ing unsolved problem in mathematics.

5 	 The Bieberbach Conjecture is easily understood by 
undergraduate students with some exposure to complex 
analysis because of the elementary nature of its statement. 
A univalent function f transforms a point in the unit 
disk into the point represented by the complex number 
f(z) given by an infinite series f(z) = z + a2z

2 + a3z
3 + 

a4z
4 + . . . where the coefficients a2, a3, a4, . . . are fixed 

complex numbers, which specify f. In 1916, Bieberbach 
conjectured that no matter which such f we consider, | an | 
≤ n. Louis de Branges proved this in 1985.


