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A rich problem 

If you roll a coin across a chessboard and it

comes to rest on the board, what is the prob-

ability that it covers some corner of one of the

grid squares? 

The online magazine Plus (2004) posed this
problem for students to solve. It is a useful
problem for several reasons: it introduces the
idea of probability in a continuous sample
space, it has a historical background worth
exploring and it can be simulated easily using
a computer program. 

Le jeu de franc-carreau 

The coin-and-chessboard problem is a variant
of the problem of finding the odds in an old
game, Le jeu de franc-carreau, in which bets
were laid concerning whether a small coin
dropped on a square-tiled floor would come to
rest touching a crack between the tiles.
Georges Louis Leclerc, Comte de Buffon
analysed this game in 1733. 

Figure 1

Buffon saw that the coin would not touch a
boundary if its centre landed within a smaller

square inside a tile such that the side of the
inner square was smaller than the side of the
tile by an amount equal to the diameter of the
coin. And he came to the important realisation
that the associated probability was just the
ratio of the areas of the smaller and larger
squares. 

In this way, Buffon made the leap from
probabilities calculated by counting — in what
are now called discrete sample spaces — to
probabilities involving measuring. He was the
first to apply geometry and the newly invented
tools of calculus to the study of probability. 

In the same memoir, Buffon went on to
explain what would happen if the coin were to
be replaced by a baguette or stick. This is the
origin of the famous Buffon needle problem: 

What is the probability that a needle dropped

on a grid of equally spaced parallel lines will

come to rest touching a line? 

Buffon eventually published his solution to
the needle problem in 1777 in his Essai
d'arithmetique morale. He showed that the
theoretical probability for this experiment is

where d is the distance between the lines and
l is the length of the needle (with the restric-
tion l < d). We note that the number π appears
in the solution. 

Coin and chessboard 

The coin-and-chessboard problem is easier to
solve than Buffon’s needle problem but the
two have a common feature. It happens that
the number π is involved in the theoretical
probability in both. This is because in the
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coin-and-chessboard problem the area of the
circular coin comes into the calculation. 

Figure 2

It is not hard to see that the coin covers a
corner of a grid square whenever its centre
lands within a circle with the same radius as
the coin, centred on the corner.  

We should require the centre of the coin to
land on the board. Then, to simplify the situa-
tion, we can allow the coin to land on just one
square of the 8×8 grid instead of the full 64 —
the probability will be the same. 

For a small enough coin, there is a quad-
rant at each corner of a square such that the
corner will be covered if the centre of the coin
lands within the quadrant.  

Figure 3

Assuming the radius r of the coin is no
more than half the side s of the square, the
probability P that the coin covers a corner is
just the ratio of the total area of the quadrants
at the corners to the area of the whole square.  

So, if C is the event that the coin covers a
corner, we have

It is an interesting although not immedi-
ately useful exercise to work out the
probability, when r is between 

and

To do this, divide up a quarter of the tile as
shown, and then find the areas of the two
triangles and the sector.

Figure 4

In this case,

More history 

A century after Buffon posed the needle
problem, the Swiss mathematician and
astronomer Johann Rudolf Wolf (1816–1893)
had the idea that by comparing the theoretical
probability in Buffon’s experiment with a value
obtained experimentally, one could obtain an
estimate for the value of π. This surprising
result is the essence of what have come to be
called Monte Carlo methods (after a 1949
paper by Stanislaw Ulam and Nicholas
Metropolis). 

Buffon’s formula, when rearranged, gives
the relation

where P is the probability. Wolf obtained a
probability estimate by performing the needle
experiment a predetermined number of times
with fixed values of l and d, counting the
number of favourable outcomes. He then
found π (approximately) by substitution.  

The coin-and-chessboard experiment can
be used in a similar way. Fortunately, it is
easily simulated with a spreadsheet program
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and can be quickly iterated millions of times —
for many more times than Buffon or Wolf
would have had the patience. 

In this case, since

we can use

with P estimated by the proportion of
successes in a large number of trials of the
experiment. 

Simulation 

The essential things a simulated
coin-and-chessboard experiment
must do are: 

• randomly place the centre of
the coin in a two dimensional
coordinate system;

• check whether each trial has
been a success; and  

• keep a tally while iterating
the experiment some speci-
fied number of times. 

For simplicity, we can let the
chessboard squares have side length 1. To
locate the centre of the coin, two random
numbers are needed, one each for the x- and
y-coordinates. In Excel, we can use the
RAND() function: it generates random
numbers between 0 and 1 with an approxi-
mately uniform distribution. 

Instead of testing whether the centre of the
coin lands in one of the corner quadrants, we
may as well combine the quadrants into one
circle at the centre of the square. The coin is
just as likely to land in this central circle as in
the corner quadrants. We can put the origin of
the coordinate axes in the centre of the
square. 

Figure 5

With these arrangements, both the x- and
y-coordinates of the coin centre are obtained
using the formula =RAND()-0.5. Testing for a
success is now a matter of checking how far
the coin centre is from the origin. 

Excel works faster if several calculations
are combined into one cell. So, a formula like
=SUMSQ(RAND()-0.5,RAND()-0.5) can be used
to get the squared distance of the centre from
the origin, and this can then be compared with
the square of the coin’s radius. In my imple-
mentation this calculation is embedded in an
even bigger formula (see Figure 6). 

Figure 6

I found it convenient to automate the coin
tossing process with a Visual Basic for
Applications procedure. 

The code for this is activated by a button on
the sheet that causes the virtual coin to be
tossed ten million times. There is also a button
to reset the experiment. 

Setting the radius of the coin to 0.4 will
result in successes in about half the trials. To
save Excel the trouble of calculating the
square of the radius repeatedly, it is possible
to set a value for the radius between 0 and 0.5,
and have the VBA procedure calculate the
square only once for each run of the experi-
ment. 

Cell A5 switches the process on or off
depending on whether its value is set to ‘1’ or
‘0’. Formulas in other cells test whether A5 is
set to on or off by treating its contents as a
boolean variable: ‘1’ in cell A5 evaluates to
true, ‘0’ evaluates to false. 

Cells D5 and F5 include circular references.
These enable the contents of the cells to be
incremented as the experiment proceeds. To
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use the circular reference feature in Excel
2000, go to the Tools menu and select Options
and the Calculation tab. Check the Iteration
box and set Maximum Iterations to 1 (see
Hartley Hyde’s ‘Cactus’ article in The
Australian Mathematics Teacher 60(4), 2004.) 

While at the Calculation tab dialogue box,
select the Manual button. This will make it
possible for the Visual Basic for Applications
code to control which cells are to be updated
on each trial. 

To put Command Buttons on a spreadsheet
and attach code to them, first activate the
Control Toolbox on the View: Toolbars menu.
Work in Design Mode, selected from the
Control Toolbox, making use of the Properties
and View Code options. 

Visual Basic for Applications
code 

'This procedure resets the experiment. 

Private Sub CommandButton1_Click() 

Dim state As Integer 

state = Range("A5") 

If state = 1 Or state = 0 

Then Range("A5") = 1 - state 

Else Range("A5") = 0 

If Range("A5") = 0 

Then Range("A1:F7").calculate 

End Sub 

This procedure repeats the simulated coin toss
10 million times. 

Private Sub CommandButton2_Click() 

Dim counter As Long, outer_counter As

Long 

outer_counter = 0 

If Range("A5") = 1 Then 

Do 

outer_counter = outer_counter + 1 

counter = 0 

Do 

counter = counter + 1 

Range("D5").calculate 

Loop Until counter = 10000 

Range("F5,D7").calculate 

Loop Until outer_counter = 1000 

End If 

End Sub 

A wave of the hand 

In 10 000 000 trials of the coin-and-chess-
board experiment, there could be any number
of successes between 0 and 10 000 000. To
each one of these outcomes, it is possible to
assign a probability depending on the number
of successes in the outcome and on the prob-
ability of a success in a single trial. The
assignment of probabilities among the
outcomes in this case is of a particular kind,
called a binomial distribution. 

We need to distinguish between the exact
number π and what is called the estimator

(where m is the number of successes, n is the
number of trials, s = 1 is the side of a chess-
board square and r is the radius of the coin).
Because the number m varies each time the
experiment is performed, it is a random vari-
able — with a binomial probability
distribution. The estimator is also a random
variable. Its probability distribution has the
same shape as the distribution for m. 

It can be shown that the mean or average
value of is π, in the sense that is likely to
approach π when n is very large. It can also be
shown that the variance of , a measure of the
degree of spread of its probability distribution,
is given by

From this formula we can see that
maximising the coin radius will minimise the
variance. If the variance is small, most of the
probability is concentrated within a narrow
range around the mean. So, for a given
number of trials in the experiment, the esti-
mate for π is likely to be more accurate if the
variance is small. 

In the spreadsheet simulation then, it
would be wise to set the coin radius to 0.5, its
largest possible value. By trying out different
coin radii between 0 and 0.5 one can test the
validity of the claims made above. 

According to my calculations, with
10 000 000 iterations per experiment and a
coin radius of 0.5, the estimate of π will be
accurate to two decimal places in more than
99.9% of experiments. It will be accurate to
three decimal places about 53% of the time,



and accurate to four decimal places in less
than 8% of experiments. 

Looked at another way, the estimate will be
accurate to two decimal places 95% of the time
if the experiment consists of 4.14 × 103 trials;
it will be accurate to three decimal places 95%
of the time if the experiment has 4.14 × 105

trials; and it will be accurate to four decimal
places 95% of the time if there are 4.14 × 107

trials. 
Clearly this is not a good way to calculate π,

but it does provide an interesting way to get a
feel for a statistical process. 

Paul Turner 
Melrose High School, ACT
pturner@melrosehs.act.edu.au 
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