
Recently I was working through some problem sets on determining
volumes by triple integrals in cylindrical and spherical coordinate

systems. The textbook I was using included many interesting problems involv-
ing spheres, cylinders and cones and the increasingly complex solids that
arose from the intersections of two or more of these. I was surprised it did not
include the common torus. So naturally I tried it to see what does happen.

I am still unsure why the textbook and several others I have consulted do
not include the torus in the problem sets for triple integration in cylindrical
coordinates. The technique produces the solution quite neatly. However,
after many hours and pages of working, I quite understand why problem sets
on triple integrals in spherical coordinates avoid the torus. It is a long and
arduous journey. It is however a very interesting journey with many unex-
pected sights along the way. I have written this brief guide for readers who
need some assistance with this trek. Pack some doughnuts for visual aids and
sustenance!

Of course, there are much simpler ways to determine the volume of a
torus, which raises the question: why are mathematicians willing to spend
hours solving a problem by a difficult method when they already know an easy
method?

Rather than wasting time in lengthy argument on that issue, I will simply
offer my three favourite answers:
1. because I just do not like to be beaten by a problem;
2. because that behaviour is inherent in the definition of “mathemati-

cian”;
3. because it is fun.

Introducing the torus

Consider a circle in the xy-plane with centre (R,0) and radius a < R. This is the
circle

(x – R)2 + y2 = a2
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Rotate the circle around the y-axis. The resulting solid of revolution is a
torus. It is sometimes described as the torus with inner radius R – a and outer
radius R + a. It is more common to use the pronumeral r instead of a, but later
I will be using cylindrical coordinates, so I will need to save the symbol r for
use there.

Before considering cylindrical and spherical coordinates, it is useful to
briefly review three simple well-known methods of determining the volume of
this torus.

Pappus’ Centroid Theorem

The shortest method is to employ Pappus’ Centroid Theorem.
The circle of radius a has area πa2. When it is rotated around the y-axis its

centroid, which is simply its centre, tracks a circle of radius R. Thus the centre
travels a distance of 2πR. Pappus’ Centroid Theorem then immediately gives
the volume generated as

V = πa2 × 2πR = 2π2a2R

For this method to be convincing to students they need to prove Pappus’
Centroid Theorem, but the proof is within the reach of students who are
studying triple integrals in cylindrical or spherical coordinates.

Two slicing techniques

There are two “volume by slicing” techniques that allow the result to be
readily determined with a single integral. These will only be described very
briefly since they are both well known. For example, in New South Wales,
Mathematics Extension 2 students should encounter both these methods in
Year 12.

In both cases, rather than rotating the full circle (x – R)2 + y2 = a2 around
the y-axis to produce the torus, it is simpler to use only the semicircle above
the x-axis to generate the “top” half of the torus and double the result.

Take a thin horizontal slice of the semicircle between y and y + δy. Rotating
this around the y-axis gives a prism of an annulus. It has height δy. The
annulus at the base of this prism has inner radius , outer radius

and thus area . The
required volume is

While the final integral can be evaluated by using a trigonometrical substi-
tution, it is simpler to recognise it as the area of a quadrant of radius a, giving
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The other “volume by slicing” method involves taking a thin vertical slice
of the semicircle between x and x + δx. Rotating this around the y-axis
produces what is often called a cylindrical shell, though it is really just another
prism of an annulus. It has height . The annulus at the base
has inner radius x, outer radius x + δx and thus area 2πx δx, ignoring the
second order terms in δx. The required volume is

The substitution u = x – R produces

where the second integral has been evaluated by recognising it as the area of
a semicircle of radius a.

Reorienting the torus

Cylindrical and spherical coordinate systems often allow very neat solutions to
volume problems if the solid has continuous rotational symmetry around the
z-axis. While I will use the same torus as discussed above, it will be oriented
differently relative to the axes to produce the required symmetry.

Readers who can be trusted with sharp knives should now take a conven-
ient doughnut and place it on a suitable clean horizontal surface. Use a sharp
knife to slice it in half with a plane parallel to the horizontal surface. Slide the
bottom half out and dispose of it in the obvious manner. (You will need to
keep your strength up to cope with the algebra that follows!) The newly cut
annular surface of the doughnut should now be sitting on the horizontal
surface. Place the origin on the horizontal surface at the centre of the hole in
the middle of the doughnut. The horizontal surface is the xy-plane with the z-
axis rising vertically from that plane. I will determine the volume of the
half-doughnut and double the result.

Readers who do not have a doughnut to hand will have to content them-
selves with taking the circle (x – R)2 + z2 = a2, y = 0 and rotating it around the
z-axis to produce the required torus. Consider the half of the torus above the
xy-plane.
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Cylindrical coordinates

In cylindrical coordinates, a point is located by the triple (r, θ, z) where z is
the usual rectangular z-coordinate and (r,θ) are polar coordinates in the xy-
plane, θ being measured anticlockwise from the positive x-axis. For an
arbitrary θ draw an r-axis in the xy-plane at an angle θ anticlockwise from the
positive x-axis. The cross section of the torus in the rz-plane is as follows
(Figure 1).

Figure 1

This cross-section is the same for all values of θ. This property hints that a
solution by cylindrical coordinates is likely to be efficient. Incidentally, it also
means the above figure looks identical to the cross section in the xz-plane.

When drawing the cross-section, only consider positive values of r.
Allowing θ to run from 0 to 2π generates the whole torus, so there is no need
to consider negative values of r.

The circle shown above is (r – R)2 + z2 = a2. The top half of the circle can
be generated by allowing r to run from R – a to R + a and allowing z to run
from 0 to . Thus, using a triple integral in cylindrical coordi-
nates the volume of the torus is

It was noted above that the cross section was independent of θ. As a result
of this the inner two integrals are constant with respect to θ, and so they can
be taken outside the outer integral as a common factor, giving 
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This integral, with the dummy variable r replaced by x, has already been
evaluated in the last of the simpler methods given above, the result again
being

V = 2π2a2R

Spherical coordinates

In spherical coordinates a point is described by the triple (ρ, θ, φ) where ρ is
the distance from the origin, φ is the angle of declination from the positive z-
axis and θ is the second polar coordinate of the projection of the point onto
the xy-plane.

Allow θ to run from 0 to 2π. For any θ, the cross-section in the resulting rz-
plane is as shown in Figure 2. Only consider the half of the torus above the
xy-plane. Let OB be a tangent to the semicircle.

Figure 2

For the arbitrary θ, determine the integration limits for φ. Imagine φ as
controlling a ray in the rz-plane, the ray being able to pivot around the origin.
Start with φ = 0, meaning the ray overlaps with the positive z-axis. Allow φ to
increase, so the ray rotates clockwise around the origin. The ray first intersects
the semicircle when it overlaps the tangent OB, where φ = β. Triangle OAB is
right-angled, so 

The ray continues to intersect the semicircle until the ray overlaps the r-axis
where 

Hence allow φ to run from to .

Now consider an arbitrary φ within this range and determine the integration
limits for ρ (Figure 3).
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Figure 3

The points to be included in the integration are those making up the inter-
val CD. That is, the minimum acceptable value of ρ is the length of OC and
the maximum is the length of OD. The lengths of OC and OD can be deter-
mined by applying the cosine rule to triangles OAC and OAD respectively. Let
j denote the length of OC in the first case and OD in the second. Curiously,
both triangles give the same equation, 

This is a quadratic equation in j. 

Solving gives

or

That last rearrangement is probably not an obvious thing to do and it is
not clear whether it improves things or not. If the rearrangement is not done
now, then at a later point in the working it will become the obvious thing to
do. I will do it now since it does marginally simplify the next few steps. If this
were being set as a problem for students, this is a good point to provide guid-
ance by asking them to “Show .”

The two solutions to this quadratic are the lower and upper integration
limits for ρ, corresponding to the cases where j is the length of OC and OD
respectively. It now becomes important to distinguish between the two solu-
tions. Let the lengths of OC and OD be j1 and j2 respectively. That is,
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After lengthy algebra such as the above some reasonableness checks are in
order. 

Consider the case φ = β. This makes the points C and D coincide at the
point B of Figure 2. That is, the minimum and maximum acceptable values of
ρ should coincide at the length of OB, which is . Substituting φ = β
into the expressions for j1 and j2 gives 

where . Hence

Also, since ,

Hence 

as expected.

The other easy check is . 

In Figure 3 this places points C and D at the intersections of the semicircle
with the r-axis. The resulting lengths of OC and OD should be R ± a.
Substituting into the expressions for j1 and j2 gives

as required; that is, both checks produced reasonable results.
Recall that j1 and j2 are the integration limits for ρ. Thus, using a triple

integral in spherical coordinates the volume of the torus is
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Since the cross section is independent of θ the inner two integrals are
constant with respect to θ, and so they can be taken outside the outer integral
as a common factor, giving

The next step is to evaluate where 

and to hope that the product of this result and sin φ is integrable.
This step is ugly however it is attempted. Perhaps the least ugly method is

to set u = R sin φ and v = , so that j1 = u – v and j2 = u + v. Then
wade into the algebra and find 

By this point any sane person would have concluded that spherical coor-
dinates are just not the bright way to solve this problem, but people who use
mathematics for recreational purposes are made of sterner stuff and will press
on.

Substituting this result into the expression for the volume gives

This integral does not look very promising. However, the volume of a torus
does have a nice solution so further effort is warranted. The obvious line of
attack is to use a substitution to tidy up the mess within the square root sign.
Hopefully some unexpected side effect of this will deal with the troublesome
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sin φ factor and allow the integral to be evaluated before I run out of differ-
ent letters to use as pronumerals.

Try the substitution R cos φ = a cos w. 
Hence R2 cos2 φ = a2 cos2 w and R sin φ dφ = a sin w dw. Turning to the

limits:

The substitution has simplified the lower limit, an unexpected bonus.
Applying the substitution gives

Finally, the integral is looking manageable. Using the results

gives

Then gives

Symmetry could now be used to argue that the terms in cos 2w and cos 4w will

 

 

sin2 w = 1
2

1− cos2w( )

and  cos2 w = 1
2

1+ cos2w( )
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evaluate to zero on integration over 0 to . Alternatively, integrating in the
normal manner gives

Of course, I am not suggesting that using triple integrals in spherical coor-
dinates is an efficient way to find the volume of a torus. Given the great
potential for algebraic errors, it does not even make a particularly good exam
question. It is more the type of problem that could be tackled as a group exer-
cise, where students can check their progress with each other frequently and
find the errors before they carry them through too many steps.

What I find most fascinating about this problem is the number of different
mathematical concepts that need to be applied to reach the result. Students
sometimes seem to treat mathematics as a series of unrelated techniques each
with their own clearly demarcated area of application. This problem demon-
strates the need to reach for tools that would not normally be thought of as
part of the area of knowledge labelled “triple integrals”.
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