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Introduction

his article presents two classroom episodes in which students were

exposed to the value of asking questions and to the different roles played
by proof in mathematics. Having students ask questions is a way to address
what de Villiers labels a ‘distorted perspective of mathematical creativity as
being always purely deductive’ (de Villiers, 1997, p.15). He claims that ‘the
false impression is sometimes created that mathematicians are only problems
solvers who spend most of their time trying to solve already given problems’
(ibid).

The conversation in the two episodes is outlined in the paper. The setting
was a classroom of fifteen good high-school students, who were studying
calculus. These episodes occurred spontaneously, after the discussion of
certain theorems during the lessons. Each one of these theorems will be
labelled trigger of the episode, since they inspired students to ask the initial
question that led to the whole episode. All over her work, it appears that their
teacher approaches mathematics teaching following Marcel Proust’s (Ref. 1)
saying, ‘The real voyage of discovery consists not in seeking new landscapes,
but in having new eyes.’

The content she teaches appears in the curriculum and is the same
content all her colleagues teach, so the ‘landscape’ is not new. However, it
seems she teaches her students to develop ‘new eyes’ and to look at the same
landscape all the other students see, with their new eyes.

The teacher produced the documentation of the discussions immediately
after the end of the lesson, based on her memory and the students’ notes. She
was encouraged to do so by the writer who was witness of her enthusiasm in
the teacher’s staff room.
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Episode 1

Trigger

The derivative of a periodic function is also a periodic function.

Student question
Is every antiderivative of a periodic function also a periodic function?

Construction of an example by a student

Consider the periodic function A(x) = cos(x). Is it possible that 4 is the deriva-
tive of a certain non-periodic function f* If f(x) = sin(x), then f'(x) = h(x) but in
this case fis periodic. Looking at a sketch of the function y = sin(x), he
suggested considering it by segments and moving up or down each part of the
graph (see Figure 1).

Figure 1. Graph of a non-periodic function, whose derivative is a periodic function.

Then, the student wrote on the board the non-periodic function that he
had previously described by means of its graph:

sin(x)+1 20 <x <49
flx)= sin(x) 0<x<20
sin(x)-1 —-20<x<0

He concluded that an antiderivative of a periodic function is not neces-
sarily periodic since the function fis not periodic but /" is a periodic function
since ‘f'(x) = cos(x) for every real x such that x # 2pk (k any integer number)’.

Student question

We know how to prove that a function is periodic, but how do you prove that
a function is not periodic? How do we prove that fis indeed not periodic? You
can see that from its graph, but how do you explain why it is so?



In other words, the student who asked the question believed that the prop-
erty ‘an antiderivative of a periodic function is not necessarily periodic’ was
true but asked for a proof in order to get an insight into why it is true.
Following de Villiers’ model, in this case proof did not play the role of verifi-
cation nor the role of conviction, but the role of explanation (de Villiers, 1999).

One of the students (S1) tried to explain that fcannot be periodic because
it has only one real root. One of the other students (S2) did not see the
connection between these facts, and thought he could build a periodic func-
tion with any number of roots. He presented the sketch in Figure 2 to
exemplify a ‘periodic function with exactly three roots’.
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Figure 2. Graph of Daniel’s function: a ‘periodic’ function with exactly three roots.

Most of the students agreed that this function had three roots but the
problem was to decide whether it was periodic. S1 tried to convince the others
that it was not periodic by looking at the points of intersection of its graph
and the line y = 4. He reasoned as follows: if this function were periodic with
period p, the equation f{x) = 4 must have had an infinite number of solutions
including all the numbers of the form 2 + n-p for every integer n. But it can
be easily proved using algebraic tools that this equation has exactly two roots.
This fact contradicts the existence of a period p.

The teacher rescued a statement formulated by S2 some minutes before
and wrote it on the board: ‘There are periodic functions with any number of
roots’.

Then she asked the students for reactions. One of them (S3) asked
whether is it possible at all to have a periodic function with a finite number
of roots. S1 remarked that a periodic function may not have a root at all and
when he was challenged by the teacher to present an example of such a func-
tion, he chose the function y = sin(x) + 10 that indeed has no roots since for
every real number x, 11 > sin(x) + 10 = 9. From here the students concluded
that a periodic function may have no roots at all, or it may have an infinite
number of roots.

In this situation, S2 tried to build an argument in order to refute what he
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believed was a false statement. He was aware of the fact that one single
counter-example suffices to contradict a given conjecture, but he generated a
‘counter-example’ that turned to be a non-example, since the function he
presented was not periodic. This case shows some of the difficulties students
can have building appropriate counter-examples to refute a statement, which
is a problem that Zaslavsky and Ron (1998) comment on.

It is important to notice that although the teacher identified the potential
embedded in S2’s statement (“There are periodic functions with any number
of roots’), she did not interrupt the dynamics of the lesson. She considered it
worthwhile discussing it, so she presented it again. Her attitude reminds us of
one of George Polya’s Ten Commandments for Teachers: ‘Do not give away your
whole secret at once — let the students guess before you tell it — let them
find out by themselves as much as is feasible’ (Polya, 1981, p. 116). The
journey in which the students got involved during this episode appears much
more fruitful and instructive than its last station, the conclusion itself.

Episode 2

Trigger
The product of two even functions is an even function and the product of two
odd functions is also an even function

Student question
Is the product of two periodic functions also a periodic function?

Analysis of an example by a student
Consider the product of f(x) = sin(x) and g(x) = cos(x).

Their product is h(x)= sin (2x)

, which is periodic.

Another student argued that while the principal period of the functions fand
g1is 2w, the principal period of their product is 7. So, their product is indeed
a periodic function but its principal period is not the same.

Student question
The example shown constitutes a special case of a pair of functions with the
same principal period. Is the product of any two functions with the same
period also a periodic function?

The teacher asked the student to look for the answer. He came to the board
and used an algebraic approach, using the definition of periodic function:

EIpIVxe Df f(x-l—l)):f(x) ~
dplVxe D, g(x+p)=g(x)}:>EIPIVxe D,ND, f(x+p). glx+p)= f(x). g(x)

From here, he was able to conclude that the function f.gis indeed a peri-
odic function. His approach allowed him to answer his own question. He
really did not know the answer in advance so, in this case, he approached
proving not as a verification task but as a discovery tool (de Villiers, 1999).



Student question
The product of two periodic functions with the same principal period is also
a periodic function. Is its period always smaller that theirs?

This question was not answered. Instead a new question was formulated,
which fitted the “What if Not’ strategy to problem posing (Brown & Walters,
1983). This strategy to generate new problems is based on changing the
conditions of a current problem. For example, given a mathematics theorem,
the student may be asked to identify its attributes. After a discussion of these
attributes, the student may ask, ‘What if some or all of the given attributes are
not true?’” Through this discussion, the students generate new problems.

Student question
Is the product of any two periodic functions with different principal periods
also a periodic function?

Analysis of an example by a student (S1)

Consider the product of f(x) = cos(x) and g(x) = tan(x). Their product is
h(x) = sin(x) (for every x # mk, ke 7). While the principal periods of fand gare
21 and 7 respectively, the principal period of 4 is 2.

Formulation of a conjecture (S2)
The product of two periodic functions fand gwith principal periods p; and p,
respectively is a periodic function and its principal period is the maximum of

{1, pol-

Analysis of an example (S3)
Consider the product of

—sin| ¥ —sin| X
f(x)—sm(z] and g(x) sm(g]

whose principal periods are 41w and 67 respectively.
Test whether the period of the function

h(x)= sin(gj : sin(gj is 6.

Refutation of the conjecture (S3 at S1’s suggestion and S4). Taking x = r.

h(gj= sin[%)- sin(E]: g : % _V2 4nd

6 4

h| =467 | =sin| =437 |-sin| = +2m | = (~1)sin| = |-sin| = |= | =
2 4 6 4 6 2
Looking for the period of the function 4 (S5):

e L R ]

p P

Since the numbers E, g must be multiples of 27, p must be 12.
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Formulation of a conjecture (S1) — Generalisation of the former result:

If p; and p, are the principal periods of two functions fand grespectively, their
product is a periodic function and its principal period is ‘something like the
least common multiple of p; and ps’.

Verification of the conjecture with a new example (SI):

The principal period of the function

—sinl X |- cos| X
h(x)—sm(QJ COS(BJ

is 207 since the principal period of

—anl X
flx)= SIH[QJ

- X
glx)= COS(E)J

is 10 and the lowest common multiple of 41w and 107 is 207.

is 47, the principal period of

Student question (S$4):
Does any couple of positive numbers p; and p, have a positive number ¢ such

that —— and j?_ are natural numbers?
1 o

Reformulation of the question (S5):
Does any couple of periodic functions fand gwith principal periods p; and p,
respectively have a positive number ¢ that is the period of the function f.g?

Negative answer to the question (S6):

If a function has period p; = 2p and the other function has period p, = 1, their
product is a non-periodic function since there is no common multiple for the
numbers 2p and 1.

Conclusion (S4):
f(x) = sin(x)-sin(2mx) is not a periodic function (see Figure 3). The product of
two periodic functions is not necessarily a periodic function.
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Figure 3: Graph of the non-periodic function f(x) =sin(x) . sin(27x)



Concluding remarks

The students involved in the episodes described in this article may be consid-
ered experts in Polya’s terms:

Quite often, when an idea that could be helpful presents itself, we do not
appreciate it, for it is so inconspicuous. The expert has, perhaps, no more ideas
than the inexperienced, but appreciates more what he has and uses it better.
(Ref. 2)

The students were taught how to focus their attention on knowns,
unknowns and restrictions of the problems they solved and they felt comfort-
able playing with them. In this way some of them became ‘experts’ in problem
posing too. Moreover, different facets of the process of solving a mathemati-
cal problem emerged during these episodes:

a)  representation of problem situations in a variety of forms (graphic,
symbolic, verbal);

b)  generalisation from an observation made in a particular case;

c)  test of a conjecture;

d)  distinction between valid and invalid arguments (e.g. reasoning from a
counter-example, reasoning from an example);

e)  explanation of how a certain conclusion was derived;

f) formulation of new questions.

As these episodes show, a classroom climate in which students formulate
questions and not simply solve already given problems is an environment that
may lead students to the appreciation of the nature of mathematical proofs as
well as the different roles they play during a mathematical activity.
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