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Abstract 

We look at the problem of the minimum speed of projectiles in a constant gravitational field. In the absence of 

resistance, the problem may be studied in the frame of a high school curriculum. One needs only Newton’s laws and 

a minimum amount of analytic geometry to compute the orbit, which turns out to be parabolic. Furthermore, in case 

the projectile is launched upwards, employing the theorem of conservation of mechanical energy we conclude that 

the minimum speed occurs at the highest point. In the presence of resistance, the system is dissipative and hence, the 

previous tools are not available. We focus at the case where the resisting force is linear in speed and opposing the 

velocity vector. It has been detected in numerical experiments that the minimum speed, if any, occurs when the 

projectile is on the way down, after having achieved the maximum height. We propose a presentation of the solution 

to this problem using the geometry of the velocity space. As a tool, the old idea of the hodograph of motion 

introduced by Hamilton and Maxwell is applied. It turns out that the hodograph of motion in this case is a straight 

line. This fact allows us to describe the values of initial speed and launching angle that will result in an orbit with or 

without minimum speed. In the former case, the calculation of the value of minimum speed represents the distance 

of the origin to the hodograph line and is calculated by elementary manipulations. This approach in the study of 

physical problems, besides being elegant on its own right, helps college students feel the deep relation between 

physics and geometry. 
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INTRODUCTION  

Classical mechanics is a continuous source of inspiration for mathematics. An all-time favorite 

example is projectile motion. In the absence of resistance, the orbit is a parabolic and there are 

two cases of interest. When the projectile is launched upwards, we can employ the theorem of 

conservation of mechanical energy to conclude that the minimum speed will occur at the 

maximum point of the orbit. In the case that the projectile is launched horizontally or 

downwards, there is no minimum since the speed is increasing for all time.  



European J of Physics Education Volume 10 Issue 3 1309-7202   Pispinis 
 

   

 
2 

The next step is to introduce tangential resistance opposing the motion. It has been 

observed, and verified numerically in (Miranda, Nikolskaya & Riba, 2004), that when the 

magnitude of the resistance is proportional to some positive integer power of the speed, the 

minimum speed (if any) occurs after the maximum height position, when the projectile is on the 

way down. In this work we set the task to investigate and prove this curious fact in the case of 

linear air resistance. The method of study is geometric, employing the hodograph of motion. We 

calculate the minimum speed and characterize the type of initial data (initial speed and angle of 

inclination) which allow the minimal speed to occur.  

The organization of the paper is as follows. In the second paragraph we set the notation and 

establish the closed form solution. In paragraph three we study the geometry of the velocity 

space. We discover that the hodograph of motion is a straight-line segment. Furthermore, the 

critical points for the speed occur on a certain semicircle, whose diameter equals the terminal 

speed. In paragraph four we establish, the physically and geometrically evident fact that critical 

points for the speed correspond to minima. Having established the geometric picture, it is easy to 

understand in paragraph five in which cases speed achieves minimum and why it occurs after the 

maximum height. Furthermore, we can give a simple calculation for its value. Conclusions 

follow in paragraph six. 

 

The Linear Resistance Model  

We choose Cartesian coordinates  (x, z), where  x  is horizontal, and z is vertical. The 

corresponding basic unit vectors are î  and k̂ . The position vector of projectile P in time  t is 

described by  

 

            (1) 

 

Consequently, its velocity, acceleration and speed are given, respectively, by   

 

                    (2) 

 

The projectile is launched at time  t = 0  from the origin  (0, 0), forming with the horizontal 

angle      and with initial velocity  

 

          (3) 

 

The set of forces acting on P consist of the vertical weight and the opposing air resistance 

given by the laws 

         (4) 
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Here  m  is the mass, g the acceleration of gravity presumed constant, and b  is a 

proportionality factor. Vertical orbits occurring at   are elementary special cases. 

Newton’s second law of motion leads to the vector differential equation  

 

           (5) 

 

In coordinate form, equation  (5)  is written  

  

       (6)

  

 

 It is evident that the motion takes place in the vertical x-z plane. One usually sets,  

 

 

 

to get immediately the downward terminal speed,   

 

T

g
v

b
=               (7) 

 

The derivation of an explicit solution of (6) is a straightforward exercise (Rees, 1920).  

 

               

 

       (8) 

 

 

 

We observe, 

 

(9)       
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Therefore,            is a vertical asymptote and the vertical downward limiting 

speed (or terminal speed) equals  
T

g
v

b
= , in accordance with  (7). 

We remark, that even though we have achieved explicit solutions, we cannot obtain direct 

answers to basic questions. For example, the calculation of the horizontal range and time of 

flight requires Lambert’s  W  function (Packel & Yuen, 2004), (Stewart, 2011). For the 

calculation of the minimum speed one has to invest a substantial amount of effort. The next 

paragraph offers a geometric method to tackle this last problem. 

 

Hodograph of Motion  

Let us be reminded that the hodograph of motion is the locus on the velocity diagram of the 

head of the velocity vector when its tail is kept at the origin. This idea was introduced by 

(Hamilton, W. R. 1847), studied by (Maxwell, 1952) and exploited recently, among others, by 

(Apostolatos,  2003). 

In our case, we proceed as follows. By elimination of the factor  bte-   in (8) we find, 

 

    (10)                                                                                                     

 

This is an equation of a straight-line segment in the velocity space equipped with Cartesian  

coordinates  . The endpoints, for , correspond to the initial data  

and the terminal speed  ( )0, TT v- . In the language of dynamical 

systems, the point ( )0, TT v-  is an asymptotically stable equilibrium point for (6), as shown in 

the following figure. 

 

 

 

Figure 1. The line segments AT, A΄T, BT, CT 

represent the hodograph of motion for various 

initial values of 
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Next, we characterize the critical points for the speed function. Differentiating  

 and employing (6), we obtain after some manipulation 

 

(11) 

                  

, the critical points of the speed where 0
dv

dt
=  occur exactly  Therefore, since 

when , that is on the semicircle to the right of the axis, centered at  

and radius 
2

Tv
. The corresponding polar equation is of (11) is, 

(12) 

 

 

We finally remark that the horizontal line through ( )0, Tv-  is given by the equation 

 

                  (13) 

 

 

CRITICAL POINTS FOR THE SPEED FUNCTION  

Now we study critical points for the speed function. A combination of calculus and physics 

produces theorem 1 below. We begin with a lemma. 

 

Lemma 1:  Critical points for the speed function v occur exactly when the velocity vector  

 

is perpendicular to the acceleration   

 

 

Proof: Taking into account  v > 0, the result follows from the well-known calculation   
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Figure 2. The geometry and physics of the orbit at a critical 

point for the speed 

 

Theorem 1:  Critical points for the speed function can 

occur only when the projectile is on the way 

down and correspond to minima. 

 

Proof: Differentiate  and use (6), to conclude 

 

     (14) 

 

 

At a critical point  ( )0 0
dv

t
dt

= . Hence, 
 
and the projectile is on the 

way down.  

To continue, differentiate (14), employing ( )0 0
dv

t
dt

=  and (6) and obtain 

 

 (15)  

 

Since , the last relation may be written as  

 

   (16) 

 

By lemma 1, at a critical point the forces    acting on the projectile and the  
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vector   form a right triangle. Therefore,   

By the first part of the proof,  sinθ < 0. This means and  

. From (16) we have 

 

     (17) 

 

By the second derivative test, we conclude ( )0v t  is minimum. 

 

Corollary 1.  The speed function cannot have more than one critical points. 

Proof: Assume  ( ) ( )1 2 1 20,
dv dv

t t t t
dt dt

= = < . Then for some, 1 0 2t t t< < , ( )0v t  will be 

maximum, which implies  ( )0 0
dv

t
dt

= . The last equality contradicts the theorem above. 

 

THE PROBLEM OF MINIMUM SPEED  

We now employ geometry. Examining the velocity diagram in Fig. 1, we find that a critical point  

will occur exactly when the hodograph of motion intersects the semicircle  

At any moment, the speed of the projectile equals the distance of its hodograph position to 

the origin. Therefore, depending on the initial position, the orbits fall into three cases: 

 

1) They start at  A or A΄, that is above the horizontal line and out of the semicircle 

(Fig. 1). In the first case the projectile is launched upwards whence in the 

second case is launched downwards. The speed will be decreasing until the minimum value   

minv  is achieved at  M. Then it will be increasing converging to  
Tv  (Fig. 3). 

 

2) They start at  B, inside or on the semicircle. Then speed is increasing for all time, converging 

to  
Tv . Minimum speed equals to 

0v  (Fig. 1). 

  

3) They start at  C, that is below or on the horizontal line              . The speed is decreasing 

for all time, converging to  
Tv  and there is no minimum speed (Fig. 1). 
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Figure 3. The minimum speed 
minv OM=  occurs on the intersection of the hodograph AT and the semicircle 

 

The above remarks combine to the following. 

Theorem 2:  A projectile launched in constant gravitational field under opposing resistance  

 

linear in speed will attain minimum speed, exactly when  

 

the initial data  satisfy   the conditions  and   

 

Proof:  The existence of the minimum exactly under the conditions, is clear by the 

aforementioned geometric analysis. We proceed to calculate more geometrico the value of the 

minimum speed. Let D be the orthogonal projection of A on the    axis  (Fig. 3). Since M is on  

. Consequently, triangles  TOM   and  TDA  are similar. the semicircle, angle 

Hence, 

 

OM AD

OT AT
=                 (18) 

 

But     and by the cosine law on triangle  AOT 

 

 (19) 
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Combining (18) and (19) we get the value for  minv  

 

  (20) 

 

Let us further remark, since OM is perpendicular to AT, the corresponding tangent of the 

angle of inclination    is given by   

 

(21) 

 

 

CONCLUSIONS 

We finish with some remarks about the educational merits of this presentation. It is the author’s 

belief that dimensionless analysis, useful it may be at advanced level, hides from the student the 

physical aspects of the problem (Theorem 1 in our case) and thus, should be avoided. Physics 

and geometry stand a deep long relation. The advantage of the geometric method is that it gives 

the overall idea with one picture, providing a sense of elegance to the solution. Specific skills 

exercised by the students in the solution presented include polar coordinates in the velocity 

space, equations of straight line and circle in Cartesian and polar coordinates, distance, behavior 

of a function at critical points, 1st and 2nd derivative test from Calculus. 

   

REFERENCES  

Apostolatos, T. A. (2003). Hodograph: A useful geometrical tool for solving some difficult 

problems in dynamics, American Journal of Physics, 71(3), 261–265.    

Hamilton, W. R. (1847). The Hodograph, or a new method of expressing in symbolical language 

the Newtonian law of attraction, Proceedings of the Royal Irish Academy, 3, 344–353.  

Maxwell, J. C. (1952). Matter and Motion, Dover Editions: Toronto. 

Miranda, E. N., Nikolskaya, S., & Riba, R. (2004). Minimum and terminal velocities in projectile 

motion, Revista Brasileira de Ensino De Fisica, 26(2), 125–127.   

Packel, E. W. & Yuen, D. S. (2004). Projectile Motion with Resistance and the Lambert W

 Function, The College Mathematics Journal 35(5), 337–350.   

Rees, E. L. (1920). The Path of a Projectile when the Resistance Varies as the Velocity, The  

American Mathematical Monthly, 27(3), 119–120.  

Stewart, S. M. (2011). Some remarks on the time of flight and range of a projectile in a linear 

resisting medium, Journal of Engineering Science and Technology Review 4(1), 32–34.   


	Dimitrios Pispinis
	Department of Mathematics,
	University of Hafr al Batin, Saudi Arabia.
	(Received 25.04.2019, Accepted 17.06.2019)
	INTRODUCTION
	Classical mechanics is a continuous source of inspiration for mathematics. An all-time favorite example is projectile motion. In the absence of resistance, the orbit is a parabolic and there are two cases of interest. When the projectile is launched u...
	The Linear Resistance Model
	Hodograph of Motion
	CRITICAL POINTS FOR THE SPEED FUNCTION
	THE PROBLEM OF MINIMUM SPEED



