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Sampling Designs
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Minimum discriminant information adjustment (MDIA), an approach to weighting samples to conform to known population informa-
tion, provides a generalization of raking and poststratification. In the case of simple random sampling with replacement with uniform
sampling weights, large-sample properties are available for MDIA estimates of population means and related functions of such means.
This research report provides large-sample properties of MDIA estimates under complex sampling designs, such as stratified and two-
stage sampling. Cases are considered for both sampling with replacement and sampling without replacement. MDIA is one case of
calibration weighting, and this report includes results showing that sample calibration weights can exist only if MDIA weights exist,
and MDIA weights can exist in situations where other calibration weights do not. Similarly, results in the report show that calibration
weighting does properly generalize MDIA for populations. To illustrate results and explore the use of large-sample approximations in
samples of moderate size, an application from Florida middle schools is examined for several sampling procedures to evaluate MDIA
estimates for the prevalence of literacy coaches in those schools.

Keywords MDIA; large-sample properties; complex sampling
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Minimum discriminant information adjustment (MDIA) is a statistical method to provide sample weights that satisfy
linear constraints (Csiszár, 1975; Haberman, 1984) typically specified in terms of sample means of auxiliary variables
matching known targets, such as population means or the means of samples from populations of interest. MDIA has
been applied in a variety of disciplines. For example, in survey sampling, raking (Deming & Stephan, 1940) is a special
case of MDIA, and calibration estimation using exponential tilting (Kim, 2010) is another case of MDIA. A sizable litera-
ture (Haberman, 1974; Ireland et al., 1969; Ireland & Kullback, 1968; Kullback, 1959, 1971; Mosteller, 1968) has explored
application of MDIA outside survey sampling. More general versions of MDIA have been employed in educational appli-
cations, such as linking without the use of anchor tests or equivalent groups (Haberman, 2015) and for adjustment of
repeater data for biases resulting from when test takers repeat tests (Haberman et al., 2015; Haberman & Yao, 2015).
Applications to causal inference also exist (Graham & de Xavier Pinto, 2012; Hainmueller, 2011). However, relatively few
general large-sample results for MDIA are available in the literature, except in the case of simple random sampling with
replacement (Haberman, 1984). To fill this gap, this research report concerns large-sample properties associated with esti-
mation procedures for MDIA, especially in the case of complex sampling. The complex sampling designs considered here
include simple random sampling without replacement, stratified sampling with replacement, stratified sampling without
replacement, two-stage sampling with replacement, and rejective sampling. In particular, we provide the asymptotic vari-
ances and the estimated asymptotic variances of MDIA means for each complex sampling design. In addition, asymptotic
results for sample MDIA means are generalized to sample calibration means (Deville et al., 1993; Deville & Särndal, 1992),
including sample calibration means based on empirical likelihood (Hartley & Rao, 1968; Owen, 2001).

A basic description of MDIA and a review of known large-sample results appear in the section Background of Minimum
Discriminant Information Adjustment. The section Large-Sample Results Under Complex Sampling Designs describes
new results introduced in this report. In the section Calibration Weighting, MDIA is considered in the context of calibra-
tion weighting (Deville et al., 1993; Deville & Särndal, 1992). The section Application provides an application to estimate
the rate of reading coaching in a statewide study of Florida middle schools by using the MDIA method. This application
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permits an examination of the accuracy of large-sample approximations in the case of moderate sample sizes. Implications
of results are considered in the Conclusion section.

Background of Minimum Discriminant Information Adjustment

MDIA weighting is applied to make inferences about outcomes in a target population from samples from a study popu-
lation that may not be representative of the target population. The sample from the study population is weighted by the
MDIA weights so that the distribution of the weighted sample more closely resembles the corresponding distribution for
the target population.

To describe the general framework used, let the positive integer m be the dimension of the observations, and let the
positive integer q≥m be the dimension of the underlying sample space Rq of q-dimensional vectors with associated expec-
tation E and probability measure P. Let the positive integer n be the sample size. Let the random vectors Ui, 1≤ i≤ n, be
the m-dimensional sample vectors defined on Rq, and let the random vector U* of dimension m be the population vector
of interest. Throughout the paper, all random variables and random functions are defined on Rq. Let the m× n random
matrix Ũ have columns Ui for 1≤ i≤ n. For each sampled unit i, 1≤ i≤ n, Ui includes the fundamental data observed for
sampled unit i. Thus Ui includes both variables of direct interest and auxiliary variables. To avoid technical complications,
let , the set of real Baire functions on Rm, be the smallest set of real functions on Rm that includes all continuous func-
tions on Rm and has the property that Y is in  if Yt , t ≥ 1, is a sequence of functions in  that converges pointwise to Y .
If Y is a real Baire function on Rm, then Y* = Y(U*) and Yi = Y(Ui), 1≤ i≤ n, are random variables. If the expectation of
Y* is defined, then E*(Y) = E(Y*).

For any positive integer d, a d-dimensional function Y on Rm is a d-dimensional Baire function on Rm if each element of
Y is a real Baire function on Rm. If Y is a d-dimensional Baire function on Rm, then Y* = Y(U*) and Y(Ui) = Yi, 1≤ i≤ n,
are random vectors. If the expectation of Y* is defined, then E*(Y) = E(Y*).

To simplify discussion, the assumption is made throughout the report that any real function on Rm ever mentioned
is a real Baire function and any d-dimensional vector function on Rm that is mentioned is a d-dimensional vector Baire
function.

The sample weight function v is a positive bounded real function on Rm, and sampled unit i, 1≤ i≤ n, has weight
vi = v(Ui). For any real function Y on Rm, let the sample mean M (Y) = n−1 ∑n

i=1 Yi, and let the weighted sample
mean E (Y) of Y be M(vY)/M(v). In this report, the sample vectors Ui, 1≤ i≤ n, and the population vector U* are
related by the unbiasedness requirement that the expectation E(M(vY)) of M(vY) is E*(Y) whenever Y is a real
function on Rm and E*(| Y| )<∞. The added requirement is that M(vY) has finite variance whenever the variance
σ2
∗ (Y) = E∗

([
Y − E∗ (Y)

]2
)

is finite. The case of Y = 1Rm, the real function on Rm with constant value 1, then implies

that 1 = E (M (v)) = n−1 ∑n
i=1 E

(
vi
)

; however, it is not assumed that M(v) is always 1, so that the ratio estimate E (Y)
need not have expectation E*(Y) even if E*(| Y| )<∞. Let Y be a k-dimensional function on Rm for some positive integer
k, and let ∣Y∣ be the maximum absolute value of an element of Y. Let the sample mean M (Y) = n−1 ∑n

i=1 Yi, and let the
weighted sample mean E (Y) = [M (v)]−1 M (vY), so that E(M(vY)) is E*(Y) whenever E*(| Y| )<∞.

Adjustment is based on a d-dimensional function Z on Rm with elements Zj, 1≤ j≤ d, for a positive integer d. The Zj are
auxiliary variables. For each sampled unit i from 1 to n, Zi = Z(Ui) has elements Zij, 1≤ j≤ d. At the population level, Z*
has elements Zj*, 1≤ j≤ d. It is convenient to assume that a vector a of dimension d with elements aj, 1≤ j≤ d, exists such
that a′Z =

∑d
j=1 ajZj = 1Rm. This assumption certainly holds if Z1 = 1Rm. Arguments are also simplified without essential

loss of generality if b′ Z* = 0 with probability 1 for a d-dimensional vector b if, and only if, b = 0d, the d-dimensional
vector with all elements 0.

A sample MDIA weight function (Haberman, 1984) is a positive real function ŵ on Rm with value ŵi = ŵ
(

Ui
)

for
1≤ i≤ n. Let the d-dimensional target vector z with elements zj for 1≤ j≤ d satisfy the constraint that a′z =

∑d
j=1 ajzj = 1.

Subject to the constraint that the weighted average

E
(

ŵZ
)
= z, (1)

the sample discriminant information (Kullback & Leibler, 1951)

K
(

ŵ
)
= E

(
ŵ log ŵ

)
≥ 0 (2)
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is minimized. This sample discrimination compares the weight function ŵ to the uniform weight function 1Rm on Rm.
Let 𝒵 be the set of Zi, 1≤ i≤ n. For any nonempty set 𝒯 in Rm, the convex hull of 𝒯 is the set of weighted averages∑k

j=1 cjtj, where k is a positive integer, cj is a positive real number for 1≤ j≤ k, tj is in 𝒯 for 1≤ j≤ k, and
∑k

j=1 cj = 1.
A sample MDIA weight function exists if, and only if, z is in the interior of the convex hull of 𝒵 . Because a′ Zi is 1 for
1≤ i≤ n, the weighted average E

(
ŵ
)

must be 1. If a sample MDIA weight function ŵ exists, then the sample MDIA weights
ŵi = ŵ

(
Ui
)
, 1 ≤ i ≤ n, are uniquely determined, and log

(
ŵi
)
= β̂

′
Zi for 1≤ i≤ n for some β̂ in Rd. Conversely, if some

β̂ in Rd exists such that ŵ = exp
(
β̂
′
Z
)

and Equation 1 holds, then ŵ is a sample MDIA weight function. If a sample MDIA

weight exists and b′ Zi = 0, 1≤ i≤ n, only if the d-dimensional vector b = 0d, then ŵ and β̂ are uniquely defined. More
generally, the condition that β̂ =

∑n
i=1 biZi for some real bi, 1≤ i≤ n, identifies ŵ and β̂ if a sample MDIA weight function

exists. If no sample MDIA weight function exists, then the convention is adopted that ŵ = 1Rm and β̂ = 0d.
The sample MDIA weight function ŵ is related to the positive population MDIA weight function w. This relationship

relies on basic results concerning exponential families (Berk, 1972) and adjustment by minimum discrimination infor-
mation (Csiszár, 1975). Let w∗ = exp

(
β′Z

)
satisfy the condition that E*(w*Z) = z. Let f be a positive real function on Rm,

and let E*(f Z) = z. Then the nonnegative discriminant information K∗ (w) = E∗
(

w log w
)
= β′z ≤ K∗

(
f
)

, with equality
if, and only if, f * = w* with probability 1. If f * = exp(b′ Z*) with probability 1, then b = β.

For computation and for the study of large-sample approximations, define the function 𝓁 on Rd so that, for b in Rd,

𝓁 (b) = b′z − E
(

exp
(

b′Z
))

, (3)

and let sup
(
𝓁
)

be the supremum of𝓁 (b) for b in Rd. Because𝓁 is concave and has gradient∇𝓁 (b) = z − E
(

exp
(

b′Z
)

Z
)

at b in Rd (Berk, 1972), if a sample MDIA weight function ŵ exists, then ∇𝓁
(
β̂
)
= 0d and 𝓁

(
β̂
)
= sup

(
𝓁
)

. Conversely,

if β̂ is in Rd and 𝓁
(
β̂
)
= sup

(
𝓁
)

, then ∇𝓁
(
β̂
)
= 0d and ŵ = exp

(
β̂
′
Z
)

is a sample MDIA weight function. The rela-

tionship of 𝓁 to the sample MDIA weight functions implies that, if a sample MDIA weight function exists, then it can be
computed by the Newton–Raphson algorithm used in maximum-likelihood estimation for log-linear models. In addi-
tion, iterative proportional fitting (raking) may also be employed if all elements of the vectors Zi, 1≤ i≤ n, are either 0
or 1 (Darroch & Ratcliff, 1972; Deming & Stephan, 1940; Haberman, 1974). A license for noncommercial use is available
from the authors for software for the Newton–Raphson algorithm (Haberman, 2014).

Corresponding to 𝓁 is the function 𝓁 on Rd defined for b in Rd by

𝓁 (b) = b′z − E∗
(

exp
(

b′Z
))

. (4)

Let sup(𝓁) be the supremum of 𝓁(b) for b in Rd. Then 𝓁 is a concave function that is finite and strictly concave on
the nonempty subset Ω of b in Rd such that E*(exp(b′ Z))<∞. To simplify arguments, assume that Ω has a nonempty
interior Ω0. Then 𝓁 is infinitely differentiable on Ω0. For b in Ω0, E*(exp(b′ Z)| Z| )<∞ and the gradient ∇𝓁(b) of 𝓁 at b
is z−E*(exp(b′ Z)Z). If E*(exp(b′ Z)| Z| ) =∞ for any b in Ω but not in Ω0, then w exists if, and only if, z is the interior of
any convex set that contains Z* with probability 1. In addition, w = exp (β′Z) if, and only if, β is in Ω0 and 𝓁 (β) = sup (𝓁).

MDIA weight functions are associated with a variety of MDIA means and probabilities for both samples and popula-
tions. If Y is a real function on Rm, then the sample MDIA mean of Y is Êw (Y) = [M (v)]−1 M

(
vŵY

)
. If E*(w | Y| )<∞,

then the population MDIA mean of Y is Ew(Y) = E*(wY). A similar definition holds for vectors of interest. If k is a posi-
tive integer and Y is a k-dimensional function on Rm, then the sample MDIA mean of Y is Êw (Y) = [M (v)]−1 M

(
vŵY

)
.

By definition, Êw (Z) = z. In the population case, if E*(w| Y| )<∞, then Ew(Y) = E*(wY). To study weighted fractions of
sample units in a specified set B in Rm, define the indicator function χB to be the real function on Rm such that χB(u) = 1
for u in B and χB(u) = 0 for u in Rm but not in B. The set B is a Baire set if χB is a real Baire function. If B is a Baire
set, then the weighted sample probability P (B) of B is P (B) = E

(
χB
)

, the probability P*(B) that U* is in B is E*(χB), the
sample MDIA probability of B is P̂w (B) = Êw

(
χB
)

, and the MDIA population probability is Pw(B) = Ew(χB). It is always
assumed in this report that a set that is mentioned is a Baire set. Much more complex MDIA parameters may be defined
(Haberman & Yao, 2015).

Example 1. In the most trivial use of MDIA, d = 1, Z1 = 1Rm, and z1 = 1. Then ŵ = w = 1Rm. If Y is a real function, then
Êw (Y) = E (Y). In addition, if Y* has a finite expectation, then Ew(Y) = E*(Y).

ETS Research Report No. RR-20-13. © 2020 Educational Testing Service 3
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Table 1 Notation Used

Symbol Description

Ui Sample unit for observation i
Z Auxiliary variables used to construct MDIA weights
z Target vector for MDIA weight constraints
ŵ Sample MDIA weight function
w* Population MDIA weight function
Y Real variable of interest
Y Vector of interest
β Vector of coefficients in the MDIA constraints
H Stratifying or grouping variable
Êw (Y) Sample MDIA mean of Y
P̂w (B) Sample MDIA probability of B
Ew(Y) Population MDIA mean of Y
Pw(B) Population MDIA probability of B
E*(.) Expectation on the random vector U*

Note. MDIA = minimum discriminant information adjustment.

Example 2. For a more general but still elementary case, consider poststratification. Let the real function H on Rm be
the stratifying or grouping function. This function has positive integer values from 1 to J ≥ 1. Consider the case of d = J.
Let z be the d-dimensional vector with elements zj > 0, 1≤ j≤ d, with sum 1, and let Z be the d-dimensional vector with
elements Zj = δj(H), 1≤ j≤ d, where, for real x, δx is the real function on the real line such that, for y real, δx(y) = 1 if
y = x and δx(y) = 0 if y≠ x. Then Zj* = 1 is equivalent to H* = j, and E*(Zj) is the probability pH*(j) that H* = j. Assume
that pH*(j)> 0 for 1≤ j≤ J. Then w = zj/pH*(j) if H = j and 1≤ j≤ J. If Y is a real function on Rm and E*(| Y| )<∞, then
Ew (Y) =

∑J
j=1 zjE∗

(
Y|H = j

)
, where E*(Y| H = j) = E*(Yδj(H))/pH*(j) is the conditional expectation of Y* given H* = j.

If pH
(

j
)
= E

(
δj (H)

)
> 0 for 1≤ j≤ J, then ŵi = zj∕pH

(
j
)

if 1≤ i≤ n, 1≤ j≤ J, and Hi = j, and, for a real function Y

on Rm, Êw (Y) =
∑J

j=1 zjE
(

Y|H = j
)

, where E
(

Y|H = j
)
= E

(
Yδj (H)

)
∕pH

(
j
)

.
For a summary of notation introduced in this section, see Table 1.

Large-Sample Results Under Complex Sampling Designs

Large-sample results under complex sampling designs (Cochran, 1977) are based on large-sample results for simple ran-
dom sampling with replacement (Haberman, 1984) and large-sample results for contingency tables (Haberman, 1974,
chapter 9). Consistency and asymptotic normality are examined. Specific examples include simple random sampling with
or without replacement, stratified simple random sampling with or without replacement, and a simple form of two-stage
sampling with replacement. In all cases, the sample size n becomes large. Cases vary in terms of the definition of the
sampling vectors Ui, 1≤ i≤ n, population vector U*, and sampling weight function v for different values of n. Arguments
presented rely on results commonly found in books on mathematical statistics (e.g., Rao, 1973). In all cases, positive real
numbers Vt and Vb exist such that Vb ≤ v(u)≤Vt for all sample sizes n. Two basic cases, sampling with replacement and
sampling without replacement from a finite population, must be distinguished.

Sampling With Replacement

In sampling with replacement, the following theorem applies.

Theorem 1. Let U* be independent of the sample size n. Let M(vX) converge to E*(X) with probability 1 whenever X is a
real function on Rm and E*(| X| )<∞. For a real function Y on Rm and a nonempty open subset B of Rd that contains 0d, let
Ew([| Y|+1]exp(b′ Z)) be finite for b in B. Then Êw (Y) converges to Ew(Y) with probability 1.

Proof . The case of X = 1Rm implies that M(v) converges to 1 with probability 1, so that E (X) converges to E*(X) with
probability 1 whenever X is a real function on Rm and E*(| X| )<∞. Examination of the proof of strong consistency results
in Haberman (1984) shows that substitution of E (X) for M(X) in all arguments that involve a real function X on Rm such
that E*(| X| )<∞ implies that arguments apply without material change. ◽.

4 ETS Research Report No. RR-20-13. © 2020 Educational Testing Service
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The following cases are examples where the theorem applies.

Example 3. Let Ui, 1≤ i≤ n, be mutually independent with the same distribution as the m-dimensional random
vector T on Rm; let Ui remain the same for a given integer i≥ 1 for all sample sizes n≥ i. For any real function X on
Rm, let X0 = X(T). If ∣X0∣ has a finite expectation, let E0(X) = E(X0). Assume that positive constants Vb and Vt exist
such that, if X is a real function on Rm such that ∣X*∣ has a finite expectation, then VbE0(| X| )≤E*(| X| )≤VtE0(| X| ).
Then a real positive function g exists such that Vb ≤ g ≤Vt and E0(gX) = E*(X) if X is a real function on Rm and
E*(| X| ) is finite (Halmos, 1950). Let v = g. Then E(M(vX)) = E*(X) if X is a real function on Rm such that ∣X*∣ has a
finite expectation. The variance σ2 (M (vX)) = σ2

0 (vX) ∕n whenever the variance σ2
0 (X) of X(T) is finite. In terms of

E∗, σ2
0 (vX) = E∗

(
v
[
X − E∗ (X)

]2
)

. The strong law of large numbers implies that M(vX) converges to E*(X) with proba-
bility 1. In simple random sampling with replacement (Haberman, 1984), T = U* and v = g = 1Rm, so that M(vX) = M(X)
and σ2 (M (vX)) = σ2

∗ (X) ∕n.

Example 4. To treat stratified sampling with replacement, as in Example 2, let H be a real function on Rm with positive
integer values no greater than the positive integer J, and let H* = j with positive probability pH*(j) for positive integers
j≤ J. Define T and g as in Example 3. Let pH0(j) = E0(δj(H))> 0, 1≤ j≤ J, denote the probability that H0 = H(T) = j. For
any real function X on Rm and positive integer j≤ J such that E(| X0| δj(H0)) is finite, let E0(X| H = j) = E0(Xδj(X))/pH0(j)
denote the conditional expectation of X0 given H0 = j. Let Ui, i≥ 1, be mutually independent, and let j(i), i≥ 1, be a positive
integer not greater than J. Let Ui, i≥ 1, have the same distribution as the conditional distribution of T given H0 = j(i), so
that, if X is a real function on Rm such that E0(| X| δj(i)(H)) is finite, then E(X(Ui)) = E0(X| H0 = j(i)). For each positive
integer j≤ J, let nj be the number of integers i≤ n such that j(i) = j. Assume that nj/n converges to pH(j)> 0 as the sample

size n increases. Assume that n is sufficiently large that nj is positive for 1≤ j≤ J. Let v = g
∑J

j=1

(
n∕nj

)
pH0

(
j
)
δj (H), so

that v(u) = (n/nj)pH0(j)g(u) if H(u) = j, u is in Rm, and 1≤ j≤ J. Then E(M(vX)) = E*(X) whenever X is a real function
on Rm such that E*(| X| ) is finite. The variance

σ2 (M (vX)) =
J∑

j=1

[
pH∗

(
j
)]2 E∗

(
v
[
X − E∗

(
X|H = j

)]2 |H = j
)
∕nj.

For positive integers j≤ J and X a real function on Rm, let M(X| H = j) be the average of Xi for positive integers i≤ n
such that Hi = j. Then

M (vX) =
J∑

j=1
pH0

(
j
)

M
(

gX|H = j
)
.

If E*(| X||H = j) is finite and 1≤ j≤ J, then the strong law of large numbers implies that M(gX| H = j) converges to
E0(gX| H = j) with probability 1 for 1≤ j≤ J. If the real function X on Rm satisfies the condition that E*(| X| ) is finite, then
M(vX) converges with probability 1 to E0(gX) = E*(X).

If T = U* and g = 1Rm, then E*(v[X −E*(X| H = j)]2) is the conditional variance σ2
∗
(

X|H = j
)

of X* given H* = j.
A variation on Theorem 1 is important in sampling without replacement but applies more generally. The proof is in the

appendix.

Theorem 2. Let U* converge in distribution to U∞ as the sample size n goes to ∞. Let h be a nonnegative continuous real
function on Rm such that E(h(U∞)) is finite. Let M(vX) converge in probability to E∞(X) = E(X∞), where X∞ = X(U∞), if
X is a real function on Rm that is continuous with probability 1 at U∞ and that satisfies the condition that ∣X ∣ ≤ h. Let Z
be continuous with probability 1 at U∞, and let Y be a real function on Rm such that Y is continuous with probability 1 at
U∞. Assume that b′ Z∞ = 0 with probability 1 for a b in Rd if, and only if, b = 0d. Let β∞ in Rd and W = exp

(
β′∞Z

)
satisfy

E∞(WZ) = z. For some nonempty open subset B of Rd such that 0d is in B, let W[| Y|+1]exp(b′ Z)≤ h for all b in B. Then
Êw (Y) converges to EW(Y) = E∞(WY) with probability 1, and Ew(Y) converges to EW(Y).

In the statement of Theorem 2, the condition that M(vX) converges in probability to E∞(X) if X is a real function on
Rm such that ∣X ∣ ≤ h and X is continuous at U∞ with probability 1 can often be verified in the following manner, as shown
in the appendix.

Corollary 1. Let U* converge in distribution to U∞ as the sample size n goes to ∞. Let h be a nonnegative continuous real
function on Rm. Let the variance σ2(M(vX)) of M(vX) converge to 0 if X is a real bounded function on Rm. Let Z be continuous

ETS Research Report No. RR-20-13. © 2020 Educational Testing Service 5
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with probability 1 at U∞, and let Y be a real function on Rm such that Y is continuous with probability 1 at U∞. Assume that
b∞

′ Z∞ = 0 with probability 1 for a b in Rd if, and only if, b = 0d. Let β∞ in Rd and W = exp
(
β′∞Z

)
satisfy E∞(WZ) = z.

For some nonempty open subset B of Rd such that 0d is in B, let W[| Y|+1]exp(b′ Z)≤ h for all b in B. Then Êw (Y) converges
to EW(Y) = E∞(WY) with probability 1, and Ew(Y) converges to EW(Y).

Sampling Without Replacement

In sampling without replacement from a finite population, results are affected by the need for U* to vary with n. To see
this issue, let 𝒰 be a finite set with N ≥ n elements and assume that N ≥ 2. Let U* only have values in 𝒰 . For X a real
function on Rm, let M𝒰 (X) be the average of X(u) for u in 𝒰 . Let 𝒰n be the set consisting of the N ! /(N − n)! matrices ũ
with n distinct columns ui in 𝒰 , 1 ≤ i ≤ n, and let M𝒰n (Y) be the average of Y

(
ũ
)

for ũ in 𝒰n, where Y is a real function
on the set Rm× n of m by n real matrices. In sampling from 𝒰 without replacement, Ũ is in 𝒰n, so that the Ui are distinct
members of 𝒰 for 1≤ i≤ n. This requirement on sampling without replacement from 𝒰 can only be met if n≤N.

In this section, two elementary cases are considered.

Example 5. In simple random sampling without replacement, Ũ is uniformly distributed on 𝒰n, so that if Y is a real
function on Rm× n, then E

(
Y
(

Ũ
))

= M𝒰n (Y) and Ui, 1≤ i≤ n, is uniformly distributed on U. Let T be uniformly
distributed on 𝒰 , so that Ui and T have the same distribution for 1≤ i≤ n and E0 (X) = E (X (T)) = M𝒰 (X) for any
real function X on Rm. Let T converge in distribution to T∞, and let U* converge in distribution to U∞. If X is a real
function on Rm and X0∞ = X(T∞) satisfies the condition that ∣X0∞∣ has a finite expectation, then let E0∞(X) = E(X0∞).
As in Example 3, let positive Vb∞ and Vt∞ exist such that Vb∞E0∞(| X| )≤E∞(| X| )≤Vt∞E0∞(| X| ) if ∣X∞∣ has
a finite expectation. Then a positive real function g on Rm exists such that Vb∞ ≤ g ≤Vt∞ and E∞(X) = E0∞(gX)
if ∣X∞∣ has a finite expectation. Assume that g is continuous at U∞ with probability 1. Let v = g∕M𝒰

(
g
)

, so that
Vb∞/Vt∞ ≤ v≤Vt∞/Vb∞ and v converges to g. Let E∗ (X) = M𝒰 (vX) = E0 (vX) for any real function X on Rm, so that
the probability that X* = u in 𝒰 is v(u)/N. The expectation E(M(vX)) = E*(X) for all real functions X on Rm. The variance
σ2(M(vX)) = (1− f )E*(v[X −E*(X)]2)/n, where f = (n− 1)/(N − 1). The finite upper bound of v implies that σ2(M(vX))
converges to 0 whenever X is bounded. Thus Corollary 1 applies.

Example 6. Simple stratified random sampling without replacement is closely related to stratified random sampling with
replacement. Define U*, T*, T∞, and U∞ as in Example 5. Define H as in Example 2 to be a real function on Rm with
positive integer values no greater than the positive integer J. For positive integer i≤ n, let j(i) be a positive integer no
greater than J. For 1≤ j≤ J, let nj be the number of integers i≤ n such that j(i) = j, and let Nj ≥max(2, nj) be the number of
u in 𝒰 such that H(u) = j. Then pH0(j) = Nj/N for 1≤ j≤ J. Let j be the n-dimensional vector with elements j(i), 1≤ i≤ n.
Let nj/n approach pH(j)> 0, 1≤ j≤ J, as the sample size n increases, and assume that n is large enough so that each nj is
positive. Let Hn be the n-dimensional function on Rm× n such that, for ũ in Rm× n with columns ui, 1 ≤ i ≤ n, H

(
ũ
)

has elements H(ui) for 1≤ i≤ n. For any real function Y on Rm× n, let M𝒰n
(

Y|H = j
)

be the average of Y
(

ũ
)

for ũ in 𝒰n

such that H
(

ũ
)
= j, and let E

(
Y
(

Ũ
))

= M𝒰n
(

Y|H = j
)

. For a real function X on Rm and a positive integer j≤ J, let
M𝒰

(
X|H = j

)
be the average of X(u) for u in 𝒰 such that H(u) = j. Then E

(
X
(

Ui
))

= M𝒰

(
X|H = j (i)

)
if X is a real

function on Rm. Let H be continuous with probability 1 at T∞, and let the probability pH∞(j) that H∞ = j be positive for
1≤ j≤ J.

Let vr = g∕M𝒰

(
g
)

and

v = nvr

J∑
j=1

pH0
(

j
)
δj (H) ∕nj.

Then E(M(vX)) = E*(X) whenever X is a real function on Rm such that E*(| X| ) is finite. To consider variances, let
f j = (nj − 1)/(Nj − 1) for 1≤ j≤ J. Then

σ2 (M (vX)) =
J∑

j=1

(
1 − fj

) [
pH∗

(
j
)]2 E∗

(
v
[
X − E∗

(
X|H = j

)]2
)
∕nj.

If X is bounded, then σ2(M(vX)) approaches 0 as the sample size n approaches ∞. Thus Corollary 1 applies.
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As in Example 4, E∗

(
v
[
X − E∗

(
X|H = j

)]2 |H = j
)
= σ2

∗
(

X|H = j
)

for 1≤ j≤ J if T = U* and g = 1Rm.

Normal Approximations

Normal approximations are available for both sampling with replacement and sampling without replacement, although
arguments for sampling with replacement are somewhat simpler. Let Ew(|Z|2) be finite, and let b′ Z* = 0 only if b in Rd is
0d. For a real function Y on Rm such that Ew(| Y||Z| ) is finite, for b in Rd, let

Sw (b;Y) = Ew

([
Y − b′Z

]2 − Y2
)

(5)

for each d-dimensional vector b. Let
cw (Y) =

[
Ew

(
ZZ′)]−1 [Ew (YZ)

]
. (6)

Then Sw(b; Y)≥ Sw(cw(Y); Y) with equality if, and only if, b = cw(Y). Define the residual rw(Y) to be Y − [cw(Y)]′ Z.
This residual satisfies Ew(rw(Y)Z) = 0d. Because a is assumed to exist such that a′ Z = 1Rm, Ew(rw(Y)) = 0. If, in addition,
Ew(|Y|2) is finite, then the MDIA variance of Y is σ2

w (Y) = Ew

([
Y − Ew (Y)

]2
)

. The MDIA residual variance is then

σ2
w
(

rw (Y)
)
= Ew

([
rw (Y)

]2
)

.
The following result applies to sampling with replacement.

Theorem 3. Assume that the conditions of Theorem 1 hold. Let Ew(w|Y|2) and Ew(w |Z|2) be finite. Let τ2 be a nonnegative
real function on the set of real functions X on Rm such that E*(X2)<∞. Assume that n1/2[M(vX)−E*(X)] converges in
law to the normal distribution N(0, τ2(X)) with mean 0 and variance τ2(X) if X is a real function on Rm such that E*(X2)
is finite. Let σ2

a

(
Êw (Y)

)
= σ2 (M

(
vwrw (Y)

))
. Then nσ2

a

(
Êw (Y)

)
converges to τ2(wrw(Y)), and n1∕2

[
Êw (Y) − Ew (Y)

]
converges in law to N(0, τ2(wrw(Y))).

Remark. The statement on convergence in law to N(0, τ2(X)) is equivalent to a statement on convergence in distribution
to a real random variable with distribution N(0, τ2(X)). The asymptotic variance of Êw (Y) is σ2

a

(
Êw (Y)

)
, and the square

root σa

(
Êw (Y)

)
of σ2

a

(
Êw (Y)

)
is the asymptotic standard deviation of Êw (Y).

Proof . As in the proof of Theorem 1, the arguments in Haberman (1984) apply almost without change once E (X)
is used instead of M(X) for real function X on Rm such that E*(X) is finite. Consider the case of E*(X2) finite, so that
M(vX) converges to E*(X) with probability 1. Because E*(v) = 1, M(v) converges to E*(v) = 1 with probability 1. Stan-
dard properties of ratio estimation imply that n1∕2

[
E (X) − E∗ (X)

]
converges in law to N(0, τ2(X −E*(X))). Because

E∗
(

wrw (Y)
)
= 0, n1∕2E

(
wrw (Y)

)
converges in law to N(0, τ2(wrw(Y)). In the proof in Haberman (1984), τ2(wrw(Y))

replaces E*([wrw(Y)]2).

Several examples related to Theorem 1 are addressed in the appendix.
The following result is needed for sampling without replacement. As in the case of Theorem 2, the result applies more

generally. The required arguments based on convergence in probability rather than convergence with probability 1 proceed
as in the proof of Theorem 2.

Theorem 4. Assume that the conditions of Theorem 2 hold. In addition, let n1/2[M(vX)−E*(X)] converge in dis-
tribution to N(0, τ2(X)) if X also satisfies the inequality X2 ≤ h, and let (WY)2 and (W| Z| )2 both be less than h.
Let cW(Y) = [EW(ZZ′)]−1EW(YZ) and rW(Y) = Y − [cW(Y)]′ Z. Then nσ2

a

(
Êw (Y)

)
converges to τ2(WrW(Y)), and

n1∕2
[

Êw (Y) − Ew (Y)
]

converges in law to N(0, τ2(WrW(Y))).

Example 7. In Example 5, let n / N converge to f ∞ < 1, and let g be continuous at U∞ with probability 1. Then M𝒰

(
g
)

converges to 1. In Theorem 4, let X be continuous with probability 1 at U*, let τ2(X) be positive, and let ∣X ∣ ≤ h and
X2 ≤ h. Let τ2(X) = (1− f ∞)E∞(g[X −E∞(X)]2). Because X2g/sup(g)≤ h, it follows that nσ2(M(vX)) converges to
τ2(X). For any real number ϵ> 0, let tϵ(y) be y for real y such that y> nσ2(M(vX)) and 0 for other real y. Consider
qϵ = M𝒰

(
tϵ
(

v2 [X − E∗ (X)
]2
))

∕
[
nσ2 (M (vX))

]
. As n increases, tϵ(v2[X −E*(X)]2) converges to 0 and is no greater
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than v2[X −E*(X)]2, and E0([v2[X −E*(X)]2) converges to τ2(X). It follows that qϵ converges to 0. Because ϵ is arbitrary,
it follows that n1/2[M(vX)−E*(X)] converges in law to N(0, τ2(X)) (Hájek, 1960, 1964). As in Example A2, E*(wrw(Y))
and E∞(WrW(Y)) are both 0, so that σ2

a

(
Êw (Y)

)
=
(

1 − f
)

E∗

(
v
[
wrw (Y)

]2
)
∕n and τ2(WrW(Y)) = EW(gW[rW(Y)]2).

Example 8. In Example 6, let nj/Nj converge to f j∞ < 1 for positive integers j≤ J. Define g as in Example 5. Let X
be a real function on Rm such that X is continuous at 𝒰∞ with probability 1, τ2(X) is positive, ∣X ∣ ≤ h, and X2 ≤ h.
For a real function Y on Rm such that E∞(| Y| ) is finite and for a positive integer j≤ J, let E∞(Y| H = j) be the con-
ditional expectation of Y∞ given H∞ = j. As in Example 7, n1∕2

j

[
M

(
gX|H = j

)
− E0

(
gX|H = j

)]
converges in law

to N
(

0,
(

1 − fj∞

)
σ2

0∞
(

gX|H = j
))

, where σ2
0∞

(
gX|H = j

)
is the conditional variance of g0∞X0∞ given H0∞ = j.

The M(gX| H = j) are mutually independent for 1≤ j≤ J. As in Example A3, n1/2[M(vX)−E*(X)] converges in law to
N(0, τ2(X)), where

τ2 (X) =
J∑

j=1

(
1 − fj∞

) [
pH

(
j
)]−1 [pH∞

(
j
)]2 E∞

(
g
[
X − E∞

(
X|H = j

)]2
)
∣ H = j, (7)

and nσ2(M(vX)) converges to τ2(X).
If δj(H) is a linear function of Z for 1≤ j≤ J, then some simplification occurs. The asymptotic variance σ2

a

(
Êw (Y)

)
=∑J

j=1

(
1 − fj

) [
pH∗

(
j
)]2 E∗

(
v
[
wrw (Y)

]2 |H = j
)

if Y is a real function on Rm.

Estimated Asymptotic Variances

Asymptotic variances can be estimated for both sampling with replacement and sampling without replacement. Results
are obtained by essentially the same arguments used in Haberman (1984). Slight additions are needed to the conditions
for asymptotic normality. The estimates for each case are based on a nonnegative-definite symmetric n× n matrix Q
with elements Qij, 1≤ i≤ n, 1≤ j≤ n, and a corresponding estimate s2 (X) =

∑n
i=1

∑n
j=1 QijXiXj defined for real functions

X on Rm. In this report, the matrix Q is selected so that, if X is a real function on Rm such that E*(X2) is finite, then
E(s2(X)) = σ2(M(vX)) for n sufficiently large. Because Q is nonnegative definite, s(X), the square root of s2(X), has the
seminorm properties that s(cX) = ∣ c ∣ s(X) and s(X +Y)≤ s(X)+ s(Y) for real functions X and Y on Rm and a real constant
c. It follows that ∣s(X)− s(Y) ∣ ≤ s(X −Y). It is assumed that a real γ> 0 exists such that ns2(X)≤ γM(vX2) for all real
functions X on Rm and all sample sizes n such that the unbiasedness property holds. Let

ĉ (Y) =
{

Êw
(

ZZ′)}−1
Êw (YZ) (8)

and r̂w (Y) = Y −
[̂
c (Y)

]′ Z. The basic practice is to estimate σ2
a

(
Êw (Y)

)
by the estimated asymptotic variance

s2
a

(
Êw (Y)

)
= s2 (ŵr̂w (Y)

)
. The square root sa

(
Êw (Y)

)
of s2

a

(
Êw (Y)

)
is the estimated asymptotic standard deviation

of Êw (Y). For an asymptotic confidence interval, let 0< α< 1, and define the constant zα/2 so that a standard normal
random variable exceeds zα/2 with probability α/2. Then the asymptotic confidence bounds for Ew(Y) of approximate
level 1−α are given by the following inequality:

Êw (Y) − zα∕2sa

(
Êw (Y)

)
≤ Ew (Y) ≤ Êw (Y) + zα∕2sA

(
Êw (Y)

)
. (9)

The probability that Equation 9 holds approaches 1−α if τ2 (wrw (Y)
)
> 0, n1∕2

[
Êw (Y) − Ew (Y)

]
converges in law to

N(0, τ2(wrw(Y))), and s2
a

(
Êw (Y)

)
converges in probability to τ2(wrw(Y)). Justification of the practice is based on conver-

gence results for nσ2
a

(
Êw (Y)

)
and the observation that

[
sa

(
Êw (Y)

)
− σa

(
Êw (Y)

)]2
≤ γM

(
v
[
ŵr̂w (Y) − wrw (Y)

]2
)

.
In sampling with replacement, the added requirements are imposed in Theorem 3 that τ2(wrw(Y))> 0, Ew([Y2 + 1]w

exp(b′ Z))<∞ for all d-dimensional vectors b in B, and ns2(X) converges with probability 1 to τ2(X) whenever E*(X2)
is finite. It then follows that ns2

a

(
Êw (Y)

)
converges with probability 1 to τ2(wrw(Y)). If τ2(wrw(Y)) is positive, then

s2
a

(
Êw (Y)

)
∕σ2

a

(
Êw (Y)

)
converges in probability to 1. Proofs of these assertions are essentially the same as in Haber-

man (1984).

8 ETS Research Report No. RR-20-13. © 2020 Educational Testing Service



L. Yao et al. MDIA Estimates Under Complex Sampling Designs

In sampling without replacement, the added requirements are imposed in Theorem 3 that τ2(WrW(Y))> 0,
W2[Y2 + 1]exp(b′ Z))≤ h for all d-dimensional vectors b in B, and ns2(X) converges in probability to τ2(X) whenever
X2 ≤ h and X is continuous at U∞ with probability 1.

Example 9. In Example 7, if n> 1, then s2(X) = (1− n/N)M([vX −M(vX)]2)/(n− 1)≤ sup(v)(1− n/N)[n/(n− 1)]
M(vX2)/n, and ns2(X) converges with probability 1 to τ2(X) if X2 ≤ h; g and X are continuous at U∞ with probability 1;
and s2 (vŵr̂w (Y)

)
= (1 − n∕N)M

([
vŵr̂w (Y)

]2
)
∕ (n − 1).

Example 10. In Example 8, if nj > 1 for 1≤ j≤ J, then s2 (X) =
∑J

j=1

(
Nj∕N

)2 (
1 − nj∕Nj

)
M

([
X − M

(
X|H = j

)]2

|H = j
)
∕
(

nj − 1
)

converges with probability 1 to τ2(X) if X2 ≤ h and X is continuous at U∞ with probability 1. If δj(H)
is a linear function of Z for 1≤ j≤ J, then the formula for s2 (vŵr̂w (Y)

)
simplifies because M

(
vŵr̂w (Y) |H = j

)
= 0 for

1≤ j≤ J.

Calibration Weighting

Calibration weighting (Deville et al., 1993; Deville & Särndal, 1992) provides an approach to weighting that, in principle,
generalizes MDIA; however, as shown in this section, the usefulness of the generalization is much more limited than it
may appear at first to be. To describe the weighting procedure, let g be a nonnegative and twice-differentiable real function
on the set (0,∞) of positive real numbers such that g has a nonnegative derivative g1 and a positive second derivative g2,
g(1) = g1(1) = 0, and g2(1) = 1. A positive sample calibration weight function ŵ on Rm minimizes the weighted mean K̂c =
E
(

g
(

ŵ
))

subject to Equation 1. A positive population calibration weight function w on Rm minimizes Kc* = E*(g(w))
subject to the requirement that w* ∣Z*∣ has a finite expectation, E*(wZ) = z, and E*(g(w)) is finite. The function g, although
not a true distance measure, does measure the discrepancy between a positive real number x and the number 1 to the extent
that g is strictly convex; g(x) = 0 if, and only if, x = 1; g(x) is increasing for x> 1; and g(x) is decreasing for x< 1. In MDIA,
g(x) = xlog(x)− x+ 1, g1(x) = log(x), and g2(x) = x−1 for x> 0. The equation Kc = K holds because Equation 1 implies
E
(

ŵ
)
= 1. In the same way, Kc*(w) = K*(w). In the least squares approach (Deming & Stephan, 1940), g(x) = (x− 1)2/2,

g1(x) = x− 1, and g2(x) = 1 for x> 1. In empirical likelihood (Hartley & Rao, 1968; Owen, 2001), g(x) = − log(x)+ x− 1,
g1(x) = 1− x−1, and g2(x) = x−2 for x> 0. Additional choices of the discrepancy measure g can be found in Deville and
Särndal (1992).

The difficulty encountered with calibration weighting involves problems of generalizability, especially when treating
infinite populations. Let A be the nonempty open interval such that y is in A if, and only if, y = g1(x) for some positive real
x. Problems quickly arise if A is not the real line R. Indeed, all is straightforward for MDIA because A = R; however, in
least squares, A is the set (−1,∞) of real numbers greater than −1, and for empirical likelihood, A is the set (−∞, 1) of real
numbers less than 1. Let Ĉ be the set of b in Rd such that b′ Zi is in A for 1≤ i≤ n. If ŵ is a positive sample calibration weight
function with value ŵi at Ui, then g1

(
ŵi
)
= β̂

′
Zi, 1 ≤ i ≤ n, for some β̂ in Ĉ. The ŵi, 1 ≤ i ≤ n, are uniquely defined,

so that the sample calibration mean Êw (Y) = E
(

ŵY
)
= [M (v)]−1 ∑n

i=1 viŵiYi is well defined for any real function Y on
Rm. If F1 is the function on A defined by g1(F1(y)) = y for y in A, then ŵi = F1

(
β̂
′
Zi

)
for 1≤ i≤ n. Unless A = R, one

cannot simply write ŵ = F1

(
β̂
′
Z
)

, although the arbitrary convention may be used that ŵ = F1

(
β̂
′
Z
)

for β̂
′
Z in A and

ŵ = 1 otherwise. If Zi
′ b = 0 for 1≤ i≤ n for b in Rd only if b = 0d, then β̂ is uniquely defined. If no sample calibration

weight function exists, then β̂ = 0d and ŵ = 1Rd. A sample calibration weight function ŵ can exist only if a sample MDIA
weight function exists. If a MDIA weight function exists, then the sample calibration weight function exists for the case
of empirical likelihood (Chen & Qin, 1993); however, this result does not hold in general for least squares.

The population case is much more difficult. To apply the argument of Csiszár (1975), assume that positive real c0 < 1
and positive real c1, c2, and c3 exist such that g(xy)≤ c1g(y)+ c2y+ c3 if x and y are positive real numbers such that
∣x− 1 ∣ ≤ c0. This assumption holds for MDIA, least squares, and empirical likelihood. Assume that a population calibra-
tion weight w exists. It guarantees that Kc*(fw) is finite if f is a positive real function on Rm such that 1− c0 ≤ f ≤ 1+ c0.
With this assumption, if E*(fw) = z, then E*(g1(w)f ) = 0. It then follows that g1

(
w∗

)
= β′Z∗ with probability 1 for some

d-dimensional vector β. Unfortunately, this condition cannot hold if A is not R, E*(Z) is not z, and no d-dimensional vector
b and positive real numbers ν and η exist such that b′ Z* = η with probability 1 and ∣b′ Z ∣ ≤ ν with probability 1. Failure
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of these conditions is hardly unusual. If A is not R, E*(Z) is not z, Z1 = 1Rm, and the joint distribution of Zj, 2≤ j≤ d, is a
nonsingular multivariate normal distribution, then no population calibration estimate exists. As a consequence, calibra-
tion estimation is not an adequate generalization of MDIA.

Application

Data from a statewide literacy coaching program in Florida public schools (Lockwood et al., 2010) were used to illustrate
the MDIA weighting method and to evaluate the accuracy of the large-sample variance approximations under four sam-
pling designs: simple random sampling with replacement, simple random sampling without replacement, stratified simple
random sampling with replacement, and stratified simple random sampling without replacement. For each design, cases
considered involve both a standard case and a case with added weights. This example provides a framework for evaluat-
ing the accuracy of large-sample approximations. By itself, one example is inherently not a representative of all possible
sampling designs, all possible data, and all possible sample sizes.

A brief description of literacy coaching and of its possible effect provides some context for the data analyzed and their
origin. The main role of a literacy coach is to work with teachers to help them develop effective methods for teaching
students reading skills. The study by Lockwood et al. (2010) used longitudinal school-level data to evaluate whether lit-
eracy coaches in Florida schools improved measures of student reading achievement. The study data included a census
of schools and data on whether each school had a literacy coach. However, in other settings, the information of whether
a school employs a literacy coach may be costly to obtain because it is not always coded consistently in administrative
databases, and thus discussion with school personnel may be required to measure it accurately. Moreover, the presence
of a coach may be related to more easily measured school attributes, such as the size and characteristics of the student
population. Thus it is plausible that sampling of schools, along with weighting using auxiliary information, would be used
in some circumstances when population characteristics regarding literacy coaching are of interest.

Our application considers use of sampling with MDIA weighting to estimate both the fraction of schools in the state
with a literacy coach and the fraction of students in the state who are in a school with such a coach. The true value of
each of these target parameters is known in this illustration from the available population-level data, so that the effects of
random sampling and estimation can be evaluated with data from a real application.

For each sampling method explored, MDIA adjustment uses variables related to coaching status to weight the study
samples to conform to known population attributes of the schools. In addition, in stratified sampling, dummy variables
associated with the strata are also employed. Each sampling procedure was replicated 1,000 times. Each sampling proce-
dure uses random samples of size n = 200 from the population of N = 1,813 schools. The sample size of 200 is selected
to be large enough that large-sample approximations are plausible but small enough to be meaningful for a population of
1,813 schools. The following questions are of particular interest:

1 What is the value of MDIA adjustment for reducing estimation variance under different sampling designs?
2 How well do the asymptotic standard error estimators for MDIA weighted estimates described in the previous

sections perform under different designs with samples of modest size?

Data Description

The application here employs data for students in Grade 5 in the 2005–2006 school year. After screening to remove records
from four schools due to questionable accuracy of those data, the data contain information from 1,813 schools in Florida
that serve Grade 5. For each school in the population, the vector U includes Y , the indicator function for presence of
a school literacy coach; the number S of Grade 5 students who participated in end-of-year testing in reading; and the
auxiliary vector Z used to construct MDIA weights. The variable S is a surrogate for the number of students in Grade 5.
The vector Z includes the average score Z1 for the school for the state accountability assessments in reading for Grade 5,
the average score Z2 for the school for the state accountability assessments in mathematics for Grade 5, the percentage Z3
of students in the school who are Black, the percentage Z4 of students in the school who are Hispanic, and the percentage
Z5 of students in the school who participate in the federal free and reduced-price lunch (FRL) program. In use of MDIA in
this example, quadratic terms Z6 = Z2

1 and Z7 = Z2
2 are added. In addition, when simple random sampling is used with or

without replacement, d = 8 and Z8 = 1Rm. When stratified simple random sampling is used with or without replacement,
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Table 2 Summary Statistics for the School Population

Even weights Weighted by school size

Variable Mean SD Mean SD

Coacha 0.64 0.48 0.63 0.48
Number of Grade 5 students 107.85 49.21 130.29 50.71
Average Grade 5 reading score 301.90 22.41 304.73 21.08
Average Grade 5 math score 326.04 20.62 329.08 19.38
School percentage Black students 26.72 27.42 22.91 24.74
School percentage Hispanic students 22.61 23.65 25.23 24.85
School percentage FRL students 54.41 25.12 51.24 25.02

Note. FRL = free and reduced-price lunch.
a1 = yes; 0 = no.

d = 12, Z8 = 1Rm, and Zj = χB(j) for sets B(j), 9≤ j≤ 12, defined for some real numbers c(j), 8≤ j≤ 12, such that c(8) = 0,
c(j)< c(j+ 1), for 8≤ j≤ 12 and B(j) is the set of u in Rm such that c(j− 1)< S(u)≤ c(j). The choice of c(j) is discussed in
the section Sampling Designs.

For summary statistics for these variables for the 1,813 schools, see Table 2. The fraction of schools with a literacy
coach in the population is .64. Alternatively, the percentage of students in the Grade 5 population who are in schools with
literacy coaches is 63%. Estimates E (Y) and Êw (Y) are examined for E*(Y) in this section, where E*(Y) is either M𝒰 (Y)
or M𝒰 (SY) ∕M𝒰 (S). In the first case, schools are equally weighted. In the second case, schools are weighted by school
size. The elementary case considered here has z = E*(Z).

Several of the variables in this application are related to coaching status, and thus their use in MDIA weighting may
help to reduce error in estimates based on samples. For example, the correlation between the average reading score and
coaching status is −.28, and the corresponding correlation for average math scores is −.26. The correlations are negative
because schools were more likely to receive funding from the Florida coaching program to hire a literacy coach when
their students had lower performance on the state accountability tests. The correlations between coaching status and the
percentage of Black, Hispanic, and FRL students are .12, .25, and .39, respectively. Collectively, the average test scores and
student demographic characteristics explain about 18% of the variance in coaching status in a linear regression, so that
there is at least some opportunity for weighting adjustments with these variables to improve precision of sample estimates.

Sampling Designs

As previously noted, the simulation study evaluated four different sampling designs: simple random sampling of 200
schools with replacement, simple random sampling of 200 schools without replacement, stratified simple random sam-
pling of 200 schools with replacement, and stratified simple random sampling of 200 schools without replacement. No
further specifications are needed for the first two cases; however, in the latter two cases, strata must be defined. In the
example, five strata are based on school size. Define c(j), 9≤ j≤ 12, so that, for 8 ≤ j ≤ 12, M𝒰

(
χB(j)S

)
is close to

0.2MU(S). Thus approximately one-fifth of all students in all schools in the population are in schools in B(j). One may let
H have positive integer values no greater than 5; let H = j if c(j+ 8)< S≤ c(j+ 9) and 1≤ j≤ 4, and let H = 5 if S> c(13).
Let nj = 40 for 1≤ j≤ 5. This procedure leads to a weighting variable v relatively close to 1Rm in the case of weighting based
on school size S but leads to a variable v somewhat further from 1Rm in the case of uniform weighting of schools.

For each sampling design and approach to weighting schools, the simulations yielded 1,000 observed estimates
E (Y) , Êw (Y) , sa

(
E (Y)

)
, and sa

(
Êw (Y)

)
. Here sa

(
E (Y)

)
is sa

(
Êw (Y)

)
for the trivial case in Example 2 with

d = 1 and Z1 = 1Rm. The sample mean, sample standard error, and standard error of the sample mean of these estimates
were then computed. (Not all are displayed.) In the case of the sample MDIA mean Êw (Y), the resulting sample mean
is denoted by Mmc

(
Êw (Y)

)
, the sample standard deviation is smc

(
Êw (Y)

)
, and the standard error of the sample

standard deviation is smce

(
Êw (Y)

)
= smc

(
Êw (Y)

)
∕ (1000)1∕2. Similar notation is employed for E (Y) , sa

(
E (Y)

)
, and

sa

(
Êw (Y)

)
.
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Table 3 Sample Means of Estimated Fraction of Schools With Coach

Sampling design Replacement E*(Y) Mmc

(
E (Y)

)
Mmc

(
Êw (Y)

)
Simple random No .6404 .6408 .6409
Simple random Yes .6404 .6406 .6405
Stratified No .6404 .6417 .6423
Stratified Yes .6404 .6411 .6414

Table 4 Sample Means of Estimated Fraction of Students in Schools With Coach

Sampling design Replacement E*(Y) Mmc

(
E (Y)

)
Mmc

(
Êw (Y)

)
Simple random No .6251 .6258 .6234
Simple random Yes .6251 .6253 .6252
Stratified No .6251 .6262 .6255
Stratified Yes .6251 .6268 .6259

Table 5 Standard Error Estimates for Sample Means for Fraction of Schools With Coach

Sampling Replacement σa

(
E (Y)

)
Mmc

(
sa

(
E (Y)

))
smce

(
sa

(
E (Y)

))
smc

(
E (Y)

)
Simple random No .0320 .0320 .0006 .0323
Simple random Yes .0339 .0339 .0007 .0340
Stratified No .0347 .0346 .0013 .0334
Stratified Yes .0364 .0364 .0014 .0367

Results

Table 3 summarizes the means of the estimates of the fraction of schools with a coach, and Table 4 provides the analogous
information for the estimates of the fraction of students in schools with a coach. In Table 3, E𝒰 (Y) = M𝒰 (Y) and E (Y) =
M (Y). In Table 4, E𝒰 (Y) = M𝒰 (SY) ∕M𝒰 (S) and E (Y) = M (SY) ∕M (S). Recall the definition of M𝒰 in the section
Sampling Without Replacement, the definition of M is in the section Background of Minimum Discriminant Information
Adjustment, and the definition of the school size S in the section Data Description. The differences between population
values and sample means are quite small, so that bias appears to be minimal.

Tables 5–8 summarize the results for estimation of standard errors. The tables permit comparisons of σaU

(
E (Y)

)
,

Mmc

(
sa

(
E (Y)

))
, smc

(
E (Y)

)
, smce

(
E (Y)

)
, σaU

(
Êw (Y)

)
, Mmc

(
sa

(
Êw (Y)

))
, smce

(
Êw (Y)

)
, and smc

(
Êw (Y)

)
for the different sampling procedures and for uniform weighting of schools versus weighting of schools in proportion
to the number S of students, where σaU

(
E (Y)

)
, sa

(
E (Y)

)
, σaU

(
Êw (Y)

)
, and sa

(
Êw (Y)

)
are the asymptotic vari-

ances for E (Y) and Êw (Y) and the estimated asymptotic variances, while smce

(
E (Y)

)
and smce

(
Êw (Y)

)
are the standard

errors of the estimated asymptotic variance. Two issues are to be considered in these tables: One is the accuracy of
approximations for asymptotic standard errors; the other is the accuracy of estimates of the mean E*(Y). Accuracy of
approximations for asymptotic standard errors involves comparison ofσa

(
E (Y)

)
, Mmc

(
sa

(
E (Y)

))
, and Mmc

(
E (Y)

)
in the case of the standard estimate E (Y) and comparison of σa

(
Êw (Y)

)
, Mmc

(
sa

(
Êw (Y)

))
, and Mmc

(
Êw (Y)

)
in

the case of the sample MDIA mean. Reasonable expectations for accuracy are informed by the estimates smce

(
E (Y)

)
and smce

(
Êw (Y)

)
. Accuracy of estimates involves comparison of σa

(
E (Y)

)
and σa

(
Êw (Y)

)
for different sampling

procedures.
In terms of accuracy of approximations, results are relatively satisfactory. The largest contrast observed involved the

sample MDIA mean for stratified simple random sampling with replacement for estimation of M𝒰 (Y) and for simple
random sampling without replacement for estimation of M𝒰 (SY) ∕M𝒰 (S). In each case, the mean of the replicates for
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Table 6 Standard Error Estimates for Sample Minimum Discriminant Information Adjustment Means for Fraction of Schools With
Coach

Sampling Replacement σa

(
Êw (Y)

)
Mmc

(
sa

(
Êw (Y)

))
smce

(
sa

(
Êw (Y)

))
smc

(
Êw (Y)

)
Simple random No .0284 .0287 .0010 .0297
Simple random Yes .0307 .0304 .0012 .0312
Stratified No .0318 .0307 .0018 .0317
Stratified Yes .0334 .0323 .0020 .0344

Table 7 Standard Error Estimates for Fraction of Students in Schools With Coach

Sampling Replacement σa

(
E (Y)

)
Mmc

(
sa

(
E (Y)

))
smce

(
sa

(
E (Y)

))
smc

(
E (Y)

)
Simple random No .0360 .0358 .0011 .0362
Simple random Yes .0381 .0381 .0010 .0383
Stratified No .0321 .0320 .0006 .0308
Stratified Yes .0340 .0344 .0007 .0336

Table 8 Standard Error Estimates for Sample Minimum Discriminant Information Adjustment Means for Fraction of Students in
Schools With Coach

Sampling Replacement σa

(
Êw (Y)

)
Mmc

(
sa

(
Êw (Y)

))
smce

(
sa

(
Êw (Y)

))
smc

(
Êw (Y)

)
Simple random No .0315 .0311 .0013 .0331
Simple random Yes .0334 .0329 .0015 .0341
Stratified No .0286 .0283 .0011 .0284
Stratified Yes .0306 .0302 .0020 .0310

the estimated asymptotic standard deviation Mmc

(
sa

(
Êw (Y)

))
or Mmc

(
sa

(
E (Y)

))
differs from the corresponding

sample standard deviation smc

(
Êw (Y)

)
or smc

(
E (Y)

)
) of the replicates of the sample MDIA mean by approximately

.002, as shown in Tables 5–8. These deviations are not surprising given the corresponding standard errors of the estimated
asymptotic standard deviations for these two cases.

Results for accuracy of the estimation of E*(Y) present several basic patterns. Sampling without replacement obvi-
ously yields greater accuracy than sampling with replacement. The square root of 1− n/N is approximately .94, so that
sampling without replacement yields standard errors approximately 6% smaller than corresponding values for sampling
with replacement. The precise percentage reduction for stratified sampling is slightly different because of variations in
the number of population members in the strata. In this example, stratification is not helpful in estimating the average
M𝒰 (Y). As suggested previously, this result reflects the variability in the function v for this case. In contrast, stratification
is rather helpful in estimating the weighted average M𝒰 (SY) ∕M𝒰 (S). For comparable sampling designs, sample MDIA
means Êw (Y) provide better estimates than do sample estimates E (Y). Thus the prevalence of coaching is more accurately
estimated by use of MDIA. Ratios of corresponding asymptotic standard deviations are approximately .9. These ratios are
consistent with the previously noted coefficient of determination of .18 from prediction of Y by 1Rm and Zj, 1≤ j≤ 5, for
the square root of 1− 0.18 is approximately .9. Alternatively, the ratios of corresponding asymptotic standard deviations
of the ratio estimates are approximately .85, indicating that the school sizes have some impact on the precision of the
estimates.

The example indicates that MDIA procedures can be used effectively with samples of modest size even when the vector
Z is not strongly related to the variable Y under study. The example illustrates how to use realistic cases to study accuracy
of large-sample approximations for the distributions of MDIA estimates. More examples and more sampling procedures
can provide further insight.
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Conclusion

Results presented indicate that MDIA can be applied effectively with complex sampling, even with samples of moderate
size, in observational studies. Thus the example illustrates gains from use of MDIA to estimate the prevalence of reading
coaches in schools. These results extend the known MDIA results for simple random sampling with replacement and for
polytomous variables. Effectiveness involves straightforward computations and available large-sample approximations.
As noted in the section Calibration Weighting, the MDIA approach can in principle be generalized to treat calibration
weights; however, MDIA has distinct advantages in terms of generality of application.

The large-sample results for sample MDIA means are readily generalized to estimation of population parameters much
more complex than expectations (Haberman & Yao, 2015). Standard asymptotic arguments (Rao, 1973, pp. 38–389) may
be applied. For example, let k be a positive integer, and let h be a real Baire function on Rk. Let k-dimensional vector
function Y have elements Yj for 1≤ j≤ k, and let w*Y* have a finite expectation. If h is continuous at Ew(Y) and Êw (Y)
converges to Ew(Y) with probability 1, then h

(
Êw (Y)

)
converges to h(Ew(Y)) with probability 1. In sampling without

replacement, if h is continuous in a neighborhood of Ew(Y), Ew(Y) converges in probability to EW(Y), and Êw (Y) − Ew (Y)
converges in probability to 0, then h

(
Êw (Y)

)
− h

(
Ew (Y)

)
converges in probability to 0.

In the case of asymptotic normality, let h be continuously differentiable on an open subset O of Rk. For x in
O, let ∇h(x) be the gradient of h at x, and let ∇h(x) be 0k for x in Rk not in O. Let Xw = [∇h(Ew(Y))]′ Y, and let
X̂w =

[
∇h

(
Êw (Y)

)]′
Y. Let consistency and asymptotic normality results apply to c′Êw (Y) for any c in Rk such

that c is not 0k; let Ew(Y) be in O; and let ∇h(Ew(Y)) not be 0k. In sampling without replacement, let EW(Y) be in
O, and let ∇h(EW(Y)) not be 0k. Let σ2

a

(
h
(

Êw (Y)
))

be σ2
a

(
Êw

(
Xw

))
, and let s2

a

(
h
(

Êw (Y)
))

= s2
a

(
Êw

(
X̂w

))
.

Then
[

h
(

Êw (Y)
)
− h

(
Ew (Y)

)]
∕σa

(
Êw

(
Xw

))
converges in law to N(0, 1). If s2

a

(
Ê(c′Y

)
)∕σ2

a

(
Êw (c′Y)

)
con-

verges in probability to 1 for any c in Rk not equal to 0k, then, for 0< α< 1, the probability approaches 1−α that
h
(

Êw (Y)
)
− Φ−1 (1 − α∕2) sa(h

(
Êw (Y)

)
≤ h

(
EwU (Y)

)
≤ h

(
Êw (Y)

)
+ Φ−1 (1 − α∕2) sa(h

(
Êw (Y)

)
.

For instance, if k = 2 and Y2 = Y2
1 , then these results are easily applied to estimation of the variance σ2

w
(

Y1
)
=

Ew
(

Y2
)
−
[
Ew

(
Y1

)]2. One may let h (x) = x2 − x2
1 for x in R2 with elements x1 and x2. In this case, O = R2, and the

gradient ∇h(x) has elements −2x1 and 1.
In addition to estimation of population parameters that are not expectations, further generalizations may be made to

sampling procedures not considered in this report and to less trivial target vectors z. Even for estimation of population
means and for sampling methods in this report, more can be studied simply by examining other applications related to
causal inference or to linking of educational tests.
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Appendix

Proofs

Proof of Theorem 2

The case of Y = 1m implies that M(v) converges in probability to 1, so that E (Y) converges in probability to E∞(Y)
whenever Y is a real function on Rm and M(vY) converges in probability to E∞(Y). The strong consistency results in
Haberman (1984) can be used for weak consistency given substitution of E (Y) for M(Y) in all arguments that involve a
real function Y on Rm such that Y is continuous at U∞ with probability 1 and ∣Y ∣ ≤ h. The one significant issue is that β∞
is in the open set C of vectors β∞ + b for b in B. Define the function 𝓁∞ for a d-dimensional vector b by

𝓁∞ (b) = b′z − E∞
(

exp
(

b′Z
))

. (A1)

Because 𝓁(b) converges to 𝓁∞(b) for b in C, 𝓁 converges uniformly to 𝓁∞ on any nonempty closed and bounded
subset D of C. Because 𝓁∞ is strictly concave on C and has a unique minimum at β∞, β converges to β∞, so that Ew(Y)
converges to E∞(WY). For b in C, 𝓁 (b) converges in probability to 𝓁∞(b). At this point, it follows that for any closed and
bounded subset D of C, sup ∣ 𝓁 (b) − 𝓁∞ (b) ∣ converges in probability to 0 (Andersen & Gill, 1982). Therefore β̂ converges
in probability to β∞. Remaining arguments require no special comment.

Proof of Corollary 1

If Y is a real function and Y is bounded, then M(vY)−E*(Y) converges in probability to 0. If Y is continuous at U∞
with probability 1 and ∣Y ∣ ≤ g, then consider Yt = max(−t, min(Y , t)) for positive integers t. Then σ2(M(Ytv)) converges
to 0 and M(vYt)−E*(Yt) converges in probability to 1. Let ϵ and δ> 0 be positive real numbers. The difference Y −Yt
satisfies

(ϵ∕2) P
(|M (

v
(

Y − Yt
)) | > ϵ∕2

)
≤ E(∣ M

(
v
(

Y − Yt
) |) ≤ E

(
M

(
v|Y − Yt|)) = E∗

(|Y − Yt|) ,
and E*(| Y −Yt| ) converges to E∞(| Y −Yt| ). Because ∣Y −Yt ∣ ≤ h and ∣Y −Yt∣ converges to 0 as t approaches
∞, a positive integer t exists such that E∞(| Y −Yt| )< ϵδ/4. A positive integer n′ exists such that, for n≥ n′ ,
P(| M(v(Y −Yt))−E*(Y −Yt)|>ϵ/2)< δ/2, ∣E*(| Y −Yt| )−E∞(| Y −Yt| ) ∣ < ϵδ/4, P(| M(v(Y −Yt))|>ϵ/2)< δ/2,
and P(| M(vY)−E∞(Y)|>ϵ)< δ. It follows that M(vY) converges in probability to E∞(Y).

Other Examples

Example A1. For a slightly more complex case, let n1 and n2 be positive integers. Let n1 be constant, let n2 approach ∞,
and let n = n1n2. Define T and v = g as in Example 3. Let Ui, i≥ 1, all have the same distribution as T. For each positive
integer j, let UAj be the m× n1 matrix with columns Ui, i = n1(j− 1)+ k, for 1≤ k≤ n1. Let UAj be mutually independent
and identically distributed for j≥ 1. For any real function Y on Rm and any positive integer j, let Lj(Y) be the average
of Yn1(j−1)+k for 1≤ k≤ n1, so that M(Y) is the average of Lj(Y) for 1≤ j≤ n2. By assumption, the Lj(Y) are identically
distributed and mutually independent for j≥ 1. Let v = g. let X be a real function on Rm such that E*(| X| )<∞. Then
E(M(vX)) = E*(X). In the simplest cases, v = g = 1Rm and T may be set equal to U* as in Example 3. In general, for each
positive integer j, E(Lj(vX)) = E*(X). If X* has a finite variance, then each Lj(vX), j≥ 1, has a finite varianceσ2(L1(vX)), and
σ2 (M (vX)) = n−1

2 σ2 (L1 (vX)
)

. The strong law of large numbers implies that M(vX) converges to E*(X) with probability
1 if X is a real function on Rm such that E*(| X| ) is finite.

This case applies to two-stage sampling with replacement with n2 primary sampling units and n1 secondary sampling
units per primary sampling unit. One model for this case has 1≤m′ <m, with Ui1, i≥ 1, the random vector of dimension
m′ with elements the initial m′ elements of Ui and Ui2 the random vector of dimension m−m′ with elements the last
m−m′ elements of Ui. Ui1 correspond to the primary sampling units, and Ui2 correspond to the secondary sampling
units. Let T1 be the random vector of dimension m′ with elements equal to initial m′ elements of T, and let T2 be the
random vector of dimension m−m′ with elements equal to the last m−m′ elements of T. The assumption that Ui and T
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have the same distribution implies that Ui1 and T1 have the same distribution, and the conditional distribution of Ui2 given
Ui1 is the same with probability 1 as the conditional distribution of T2 given T1. Let Ui1 be constant for n1(j− 1)< i≤ n1j
and 1≤ j≤ n1; let Ui2, (n− 1)j< i≤ nj, be conditionally independent given the common value of Ui1 for (n− 1)j< i≤ nj;
and let the conditional distribution of U2 given U1 be the same as the conditional distribution of T2 given T1. Then all
requirements for Ui, i≥ 1, are satisfied.

Example A2. In Example 3, let X be a real function on Rm such that E*(X2) is finite. Let τ2(X) = E*(v[X −E*(X)]2). Then
nσ2(M(vX)) = τ2(X). The central limit theorem applies to n1/2[M(vX)−E*(X)]. It follows that the condition on conver-
gence in law holds. Because E*(wrw(Y)) = 0, it also follows that τ2 (wrw (Y)

)
= nσ2

a

(
Êw (Y)

)
= Ew

(
vw

[
rw (Y)

]2
)

. In
Haberman (1984), this case applies with v = 1Rm. In this instance, τ2 (X) = σ2

∗ (X) and τ2 (wrw (Y)
)
= σ2

∗
(

wrw (Y)
)
=

Ew

(
w
[
rw (Y)

]2
)

.

Example A3. In Example 4, nσ2(M(vX)) converges to

τ2 (X) =
J∑

j=1

[
pH∗

(
j
)]2 E∗

(
g
[
X − E∗

(
X|H = j

)]2 |H = j
)
∕pH

(
j
)
.

The central limit theorem applies to n1∕2
j

[
M

(
gX|H = j

)
− E0

(
gX|H = j

)]
. As nj becomes large, n1∕2

j

[
M

(
gX|H = j

)
−E0

(
gX|H = j

)]
converges in law to N

(
0, σ2

0
(

gX|H = j
))

. Because the M(gX| H = j), 1≤ j≤ J, are mutually indepen-
dent, n1/2[M(vX)−E*(X)] converges in law to N(0, τ2(X)).

If δj(H), 1≤ j≤ J ≤ d, is a linear function of Z, then the formula for σ2
a

(
Êw (Y)

)
simplifies because Ew(δj(H)rw(Y)) = 0

for 1≤ j≤ J, so that σ2
a

(
Ê (Y)

)
=

J∑
j=1

[
pH∗

(
j
)]2 E∗

(
v
[
wrw (Y)

]2 |H = j
)

for 1≤ j≤ J.

Example A4. In Example A1, let X be a real function on Rm such that E*(X2)<∞. Then nσ2(M(vX)) = τ2(X) = n1σ2(L1(vX)),
and the central limit theorem implies that n1/2[M(vX)−E*(X)] = (n1n2)1/2[M(vX)−E*(X)] converges in law to
N(0, τ2(X)). In this case, σ2

a

(
Êw (Y)

)
= E

([
L1

(
vwrw (Y)

)]2
)
∕n2.

In the two-stage case, nσ2(M(vX)) = n1σ2(E(v(T)X(T)| T1))+E(σ2(v(T)X(T)| T1)). Here the random variable
E(v(TX(T)| T1) is the expected value of v(T)X(T) given T1 and the random variable σ2(v(T)X(T)| T1) is the variance of
v(T)X(T) given T1. Both variables can be defined to be real.

Example A5. In Example A2, s2(X) = (n− 1)−1M([vX −M(vX)]2) = (n− 1)−1{M(v2X2)− [M(vX)]2}≤ [n/(n− 1)]sup(v)M(vX2)/n
if n> 1. As is well known, E(s2(X)) = σ2(M(vX)) if X has a finite variance. Because M(v2X2) converges with probability 1
to E*(vX2) and M(vX) converges with probability 1 to E*(X), ns2(X) converges with probability 1 to τ2(X). In this case,

M
(

vŵr̂w (Y)
)
= 0, so that s2

a

(
Êw (Y)

)
= (n − 1)−1 M

([
vÊw (Y)

]2
)

. This case is considered by Haberman (1984) for

v = 1Rm. The divisor n – 1 is replaced there by n without any change in the basic results.

Example A6. In Example A3, if nj > 1 for 1≤ j≤ J, then

s2 (X) =
J∑

j=1

(
nj − 1

)−1 [
pH∗

(
j
)]2 M

(
[vX − M (vX)]2 |H = j

)
. (A2)

If X2
∗ has a finite expectation, then E(s2(X)) = σ2(M(vX)). If γ is the maximum of [nj/(n− 1)][npH*(j)/nj]2sup(v) for

1≤ j≤ J and for n sufficiently large that each nj > 1, then s2(X)≤ γM(vX2)/n. Because M([vX −M(vX)]2| H = j) = M
([vX]2| H = j)− [M(vX| H = j)]2 for 1≤ j≤ J, ns2(X) converges with probability 1 to τ2(X).

If δj(H) is a linear function of Z for 1≤ j≤ J ≤ d, then

s2
a

(
Êw (Y)

)
=

J∑
j=1

(
nj − 1

)−1 [
pH∗

(
j
)]2 M

([
vŵr̂w (Y)

]2 |H = j
)
. (A3)
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Example A7. In Example A4, if n2 > 1, then

s2 (X) =
[
n2

(
n2 − 1

)]−1
n2∑
j=1

[
Lj (vX) − M (vX)

]2
≤ n3

1
[
n2∕

(
n2 − 1

)]
sup (v)M

(
vX2) ∕n. (A4)

If X2
∗ has a finite expectation, then the expectation of s2(X) isσ2(M(vX)), and ns2(X) converges to τ2(X) with probability

1. In this case, s2
a

(
Êw (Y)

)
=
[
n2

(
n2 − 1

)]−1 ∑n2
j=1 [Lj(vŵr̂w (Y)]2.

Suggested citation:

Yao, L., Haberman, S., McCaffrey, D. F. & Lockwood, J. R. (2020). Large-sample properties of minimum discriminant information adjust-
ment estimates under complex sampling designs (Research Report No. RR-20-13). Educational Testing Service. https://doi.org/10
.1002/ets2.12297

Action Editor: Gautam Puhan

Reviewers: Katherine Castellano and Hongwen Guo

ETS and the ETS logo are registered trademarks of Educational Testing Service (ETS). All other trademarks are property of their
respective owners.

Find other ETS-published reports by searching the ETS ReSEARCHER database at http://search.ets.org/researcher/

18 ETS Research Report No. RR-20-13. © 2020 Educational Testing Service

https://doi.org/10.1002/ets2.122970
https://doi.org/10.1002/ets2.122970

