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Best linear prediction (BLP) and penalized best linear prediction (PBLP) are techniques for combining sources of information to pro-
duce task scores, section scores, and composite test scores. The report examines issues to consider in operational implementation of
BLP and PBLP in testing programs administered by ETS.

Keywords True scores; scoring accuracy; assessment accuracy; composite scores

doi:10.1002/ets2.12290

Best linear prediction (BLP) has been widely explored for combining information from different components of a test to
improve inferences concerning the test components. This approach has been used to determine both whether subscores
of tests are worth reporting at all and, if so, how they should be reported (Haberman, 2008; Haberman et al., 2009; Puhan
et al., 2008, 2010; Sinharay et al., 2007, 2010, 2011, 2018; Wainer et al., 2001). One indication of professional recognition
of BLP is the 2009 National Council on Measurement in Education Award for Technical or Scientific Contributions to
the Field of Educational Measurement awarded to Shelby Haberman, Sandip Sinharay, and Gautam Puhan. Applications
have also been made to combining human and machine-generated scores for evaluation of either individual constructed
responses or test sections composed of constructed responses (Haberman, 2011; Haberman et al., 2015; Haberman &
Qian, 2007).

A potential complication in using BLP for subscores has been the differential impact on subgroups (Haberman &
Sinharay, 2011, 2013; Sinharay & Haberman, 2014). As shown in these references, the impact of the issue varies appreciably
from assessment to assessment, although the impact can often be minor. Penalized best linear prediction (PBLP) is a
generalization of BLP that can be used in scoring assessments at different levels when the impact of subgroup membership
is relatively large with BLP. Use of PBLP rather than BLP generally involves an attempt to reduce subgroup biases that
present issues of fairness. A change in a scoring procedure that substantially advantages or disadvantages a group of test
takers of interest needs a strong validity justification and may require legal scrutiny.

This report describes the use of BLP and PBLP for task scoring, section scoring, and composite scoring. In the examples
under study, at least two tasks used for scoring are constructed responses with scores that are not deterministic. For
example, reasonable people can disagree about the quality of an essay or about the quality of a spoken response. In each
such task under consideration, the task score for the assessments under review normally involves both a human rater and
computer-generated numerical variables that describe the response. Three ETS assessments are examined: the TOEFL
iBT® test, the GRE® General test, and the PRAXIS® assessment’s Core Writing section. In all these cases, task scores
and section scores are of interest; however, only in TOEFL iBT is a composite score relevant given current reporting
practices. The relevant levels depend on the testing program. Human scores studied are always numerical holistic scores
for a constructed response. It should be emphasized that constructed responses do exist in which scoring is unambiguous
and can be done by computer. For example, in the SAT® test Mathematics section, test takers are asked to provide a
numerical answer rather than to select a response from a list of alternatives. If the sum of 105 and 224 is requested, then
the correct answer is unambiguously defined. In the examples under study, this type of constructed response does not
happen to arise.

In the case of TOEFL iBT (TOEFL®) test, the Writing and Speaking sections only include prompts that require con-
structed responses, and these responses also affect the total score derived by computing the sum of the scale scores for the
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Listening, Reading, Speaking, and Writing sections. The Writing section consists of two essay prompts that are normally
scored by both a trained human rater and the e-rater® automated scoring engine (Attali & Burstein, 2006). A human score
for a response is normally an integer from 1 to 5, with 5 the best score and 1 the worst score, although in certain cases,
a score of 0 is recorded. The Speaking section as of August 2019 consists of four speaking tasks that are normally scored
by a trained human rater and by the SpeechRater® automated scoring service (Higgins et al., 2011). Human scores are
normally integers from 1 to 4, with 1 the worst score and 4 the best score, although a score of 0 can be obtained in certain
cases. The Listening section contains 28 selected responses that are used to compute the scale score, while the Reading
section contains 30 selected responses used to compute the scale score. Test takers may receive additional items for Listen-
ing and Reading that do not contribute to the reported score but are used to pretest items and to link items and scores for
different test administrations. Neither Listening nor Reading includes constructed responses. Score users receive linked
scale scores for each test section together with the total score. Scores received for each section are integers between 0 and
30. The total score is the sum of these four section scores.

In the case of GRE General, the section on Analytical Writing (GRE Writing) is composed of two prompts that require
essay responses. These responses are normally scored by one human rater and by e-rater. They yield a single unlinked
reported score provided to test takers and institutions. This report considers the scores for individual essays and the score
for the section. For each prompt, a human score is normally an integer from 1 to 6, with 6 the best score and 1 the lowest
score. In special cases, a score of 0 is possible.

The PRAXIS Core Writing (PRAXIS Writing) test consists of two essay prompts—an argumentative prompt and an
informative/explanatory prompt—and 34 selected responses. A total raw score for the essay responses, a total raw score
for the selected responses, a weighted total raw score for the test, and a linked scale score for the test are produced. Each
essay is normally scored by one human rater and by e-rater. For human raters, the best score is 6, and the worst is 1,
although a 0 can occur in special cases. This report considers the scores of individual essays, the total score for the two
essays, and the raw score for the entire test.

In the examples under study, traditional item response theory (IRT) is not applicable owing to the limited number
of constructed responses involved and the use of computer-generated features that are continuous variables. Therefore
analysis will involve linear methods and classical test theory (Lord & Novick, 1968).

In this report, the section Best Linear Prediction and Penalized Best Linear Prediction provides a general description
of BLP and PBLP. The discussion relies heavily on Yao et al. (2019a, 2019b); however, further background is provided by
Haberman and Qian (2004, 2007), Haberman and Yao (2015), and Haberman et al. (2015). As in these publications, the
predictions are of true scores, a classical psychometric concept (Lord & Novick, 1968), although the use of true scores in
the cited papers and reports is not entirely conventional. There are two separate cases of true scores to predict, both of
which are important to consider. These definitions strongly affect applications.

The case of scoring accuracy involves the true rating score. This version of a true score is only really relevant when
the basis of scoring of constructed responses is human scoring. For a specific constructed response for a particular task,
the true rating score is the expected score assigned by a rater chosen from the rater pool. The rating prediction error is
the difference between the observed score and the true rating score. If only human raters are used to score a constructed
response, the true rating score and the observed score are not typically the same, for different human raters may score the
same response differently. Thus there is a rating prediction error when the true rating score for a constructed response is
predicted by one or more observed scores provided by human raters. On the other hand, computer scoring of a selected
response involves a true rating score and an observed score that are the same. If one ignores the possibility of equipment
malfunction, the same response always receives the same score so that no rating prediction error exists.

Computer-generated numerical features of a constructed response may be used to predict a true rating score in cases,
such as essays and speech samples, in which different human raters may not necessarily provide the same score. Alterna-
tively, human scores and computer-generated numerical features may be used together to predict the true rating score.
In either of these cases, observed scores and true rating scores are typically not the same so that rating prediction error
exists. Rating prediction error exists even though the computer-generated features should not vary in the same way as
human scores do. The computer features assigned to a constructed response should always be the same for the same com-
puter program; otherwise, the program is defective. Rating prediction error arises because the true rating score of the
constructed response is not observed and the computer-generated features never provide perfect descriptions of the con-
structed response. Use of linear combinations permits a true rating score to apply to section scores and composite scores
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as well as to individual tasks. Once again, rating prediction error here involves scoring accuracy. The section Scoring
Accuracy considers the procedures required to apply scoring accuracy to assessments.

The second case involves the true assessment score. The true assessment score is the expected observed score for a test
taker on a parallel task, section, or test. The true assessment score, which applies to all assessments, corresponds to the
customary definition of reliability used in psychometrics. In principle, the true assessment score for the TOEFL Listening
section might be thought of as the expected score the test taker would receive by taking the same test again; however, this
definition is not quite right, because the act of taking a test once can influence performance at a later time, even if the
time elapsed is quite small. A more accurate definition for TOEFL Listening is the expected score of the test taker on a
randomly selected Listening section. Indeed, in some areas of the world, security concerns dictate that the test taker must
in fact randomly receive one of several test forms administered in that location simultaneously. Assessment prediction
errors involve assessment accuracy. Virtually no realistic case exists in which the true assessment score and the observed
score are always the same. The Listening score reported does vary to some extent for different forms the test taker might
take at a specific test administration. For a given construct, a loss of scoring accuracy will reduce assessment accuracy,
which, in turn, will reduce the validity of the observed score as an indicator of the construct to be measured. It should
be emphasized that no assessment can be satisfactory if scoring accuracy is inadequate, whereas very accurate scoring
does not imply that a test is satisfactory for its intended purpose. In some sense, scoring accuracy is a necessary but not a
sufficient condition for a good assessment. The Assessment Accuracy section examines application of assessment accuracy
to assessments.

In the Conclusions section, basic recommendations are provided concerning use of PBLP, and some consideration is
given to issues that require significant research and/or software enhancement.

Best Linear Prediction and Penalized Best Linear Prediction

PBLP builds on BLP. In the case of BLP, a random vector X of finite dimension K ≥ 1 includes the observed real obser-
vations Xk for 1≤ k≤K. These observations can have widely varying interpretations—they can be task scores, various
computer-generated features of task responses, item scores for selected responses, or section scores. It is assumed that these
observations have finite variances and a positive-definite covariance matrix Cov(X) with row j and column k denoted by
Cov(Xj, Xk) for positive integers j and k no greater than K. This assumption implies that the variance σ2(Xk)=Cov(Xk, Xk)
is positive. More generally, the variance of c′X =

∑K
k=1 ckXk is positive for every K-dimensional vector c with elements ck,

1≤ k≤K, that are not all 0. For different applications involving the same assessment, more than one definition of X may
be used.

Example 1. Consider a case with K = 21. For 1≤ k≤ 20, let Xk be the item score for item k, and let each such item score
have a finite variance. Let X21 be the sum of the Xk, 1≤ k≤ 20. Then X does not have a positive-definite covariance matrix,
for c′ X is identically 0 if ck = 1 for 1≤ k≤ 20 and c21 = − 1. This example does not imply that sums of item scores may
not be considered. For example, each element Xk of X may itself be a function of the sum of the item scores for a separate
section of an assessment. This situation is discussed further in Example 7 for the scaled scores for the TOEFL test. Here
K = 4, X1 is the Listening score, X2 is the Reading score, X3 is the Speaking score, and X4 is the Writing score. Each scaled
score for a section is a form-dependent nonlinear transformation of the sum of the item scores for that section. Each
reported scaled score is an integer between 0 and 30.

True Scores and Measurement Errors

The observed vector X is the sum of an unobserved true vector 𝛕 with elements τk with finite variances, 1≤ k≤K, and an
unobserved error vector ϵwith elements ϵk with finite variances, 1≤ k≤K. Here τk is the true score of Xk, and ϵk =Xk −τk
is the error of measurement of Xk. It is assumed that 𝛕 and ϵ are uncorrelated in the sense that the covariance Cov(τj, ϵk)
of τj and ϵk is 0 for all positive integers j and k no greater than K. If the covariance matrix Cov (𝛕, ϵ) of the vector 𝛕 of true
scores and the vector ϵ of true scores is defined to be the K ×K matrix with row j, 1≤ j≤K, and column k, 1≤ k≤K, equal
to Cov(τj, ϵk), then it follows that Cov (𝛕, ϵ) is the K ×K matrix 0KK with all elements 0. Because the covariance matrix
Cov (ϵ, 𝛕) of the vector ϵ of measurement errors and the vector 𝛕 of true scores is the transpose of Cov (𝛕, ϵ) , Cov (ϵ, 𝛕) is
also 0KK . Unlike common treatments of classical test theory (Lord & Novick, 1968), it is not necessarily assumed that, for
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K > 1, the error variables ϵj and ϵk, 1≤ j< k≤K, are uncorrelated. Nonetheless, it is assumed that the expected value of
ϵk is 0 for 1≤ k≤K so that the expectation E(τk) of τk is equal to the expectation E(Xk) of Xk. In terms of random vectors,
the expectation E (X) = E (𝛕) and E(𝛜)= 0K . Here E(X) is the K-dimensional vector with element k equal to E(Xk) for
1≤ k≤K and 0K is the K-dimensional vector with all elements 0. The assumptions on 𝛕 and ϵ also imply that

Cov (X, 𝛕) = Cov (𝛕, 𝛕) + Cov (ϵ, 𝛕) = Cov (𝛕) , (1)

Cov (X, ϵ) = Cov (𝛕, ϵ) + Cov (ϵ, ϵ) = Cov (ϵ) , (2)

Cov (X) = Cov (X, 𝛕 + ϵ) = Cov (𝛕) + Cov (ϵ) . (3)

True scores are used to distinguish between the observed measurement and the quantity measured. The issue arises
in practice in all cases in which a measurement must be made. Consider a purchase of a five-pound sack of potatoes at a
supermarket. Because whole potatoes cannot be sorted so that a collection of them weighs exactly five pounds, the actual
weight of the sack varies. There is a true weight of the item, and there is a measured weight from a supermarket scale.
There is also a measured weight from a scale in a physics laboratory. The latter is likely to be much more accurate. In
addition, the supermarket usually has multiple scales that are likely to exhibit some variation in measurements for the
same bag. A further problem is that, for two supermarket scales, the difference between the measured weights for one bag
need not be the same as the difference between the measured weights for a different bag. Thus even in this simple scenario,
measurement error is not an entirely straightforward matter.

This supermarket example illustrates two different concepts of true scores and measurement errors. Consider estima-
tion of the average weight of the population of five-pound sacks at the supermarket by use of a random sample of K = 10
sacks. Each sack selected is weighed on a randomly selected scale at the supermarket and yields an observed measurement
Xk for 1≤ k≤K. In scoring accuracy, which is considered in the Scoring Accuracy section, the true score τk for sack k
is the average measured weight of the specified sack weighed for different supermarket scales. The measurement error
ϵk is the difference between the observed weight and the true score. In assessment accuracy, the subject of the section
Assessment Accuracy, the true score is the average weight of a sack from the population of sacks as measured by a ran-
domly selected scale. Here the true score τk is the same for all measured sacks, and the measurement error ϵk contains
both a component for variation of average measured weights of five-pound sacks for different scales and a component for
variation of measured weights given the same sack due to use of different scales. A simple variation would involve division
of the potatoes into different types so that X1 might involve a randomly chosen sack of russet potatoes, while X2 might
involve a randomly selected bag of red potatoes. In this case, τk would likely depend on the type of potato selected. In all
cases, the true score is not the weight of the potato sack obtained by an extremely precise scale.

In educational assessment, the problem of observed and true scores is much more severe, for the quantity to be mea-
sured is usually more difficult to define than is the weight of a sack of potatoes. Language proficiency or knowledge of
algebra is not nearly as clearly defined. As in the case of the sacks of potatoes, the concept of a true score is somewhat
restricted. Scoring accuracy generally only applies to results for constructed responses, such as essays rated by human
raters. It involves variations in test scores or item scores related to human judgment. Assessment accuracy generally
involves variation in test results due to random selection of a test form from a pool of similar forms. This concept involves
variation in performance on parallel tests. These concepts of accuracy, true scores, and measurement errors are based on
means, variances, and covariance and not on specific models.

For a fixed vector c with elements ck, 1≤ k≤K, a linear combination ν = c′𝛕 =
∑K

k=1 ckτk is to be predicted. It is
assumed that c is nonzero in the sense that, for some positive integer k≤K, ck ≠ 0. Here ν is the true score of the observed
linear combination O= c′ X, and η=O−ν is the error of measurement of O. The expectation

E (O) = c′E (X) =
K∑

j=1
ckE

(
Xk

)
(4)

of O is the same as the expectation

E (ν) = c′E (𝛕) =
K∑

k=1
ckE

(
τk
)

(5)
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of ν, so that η has expectation 0. The variance of η is

σ2 (η) = c′Cov (ϵ) c =
K∑

k=1

K∑
k′=1

ckck′Cov
(
ϵk, ϵk′

)
. (6)

Similar formulas apply to the true score ν and the observation O. Thus

σ2 (ν) = c′Cov (τ) c (7)

and
σ2 (O) = c′Cov (X) c. (8)

By Equation 1, the covariance Cov(O, ν) of the observation O and its true score ν is equal to the variance σ2(ν) of ν.
The reliability coefficient of O is

ρ2 (O) =
σ2 (ν)
σ2 (O)

= 1 −
σ2 (η)
σ2 (O)

, (9)

so that ρ2(O) is nonnegative and does not exceed 1. A simple special case sometimes of interest has c = 𝛅k for some positive
integer k≤K, where 𝛅k has element k equal to 1 and all other elements equal to 0. In this case, the true score τk of the
observation Xk is predicted.

Example 2. Kelley (1923) considered the case of K = 1 and c1 = 1. Here the predicted variable ν = c′𝛕 is the true score τ1 of
the observed score O=X1. It is assumed that X1 has a positive variance σ2(O)=σ2(X1). The error of measurement η= ϵ1
has expectation 0 and variance σ2(η)=σ2(ϵ1). The variance σ2(ν)=σ2(τ1), and σ2(O)=σ2(ν)+σ2(η). The covariance
Cov(O, ν)=Cov(X1, τ1)=σ2(ν)=σ2(τ1).

Example 3. In TOEFL Writing, one case that has been considered with BLP uses one human score per prompt and nine
computer-generated feature scores per prompt (Yao et al., 2019a, 2019b). Let K = 20, let X1 be the human score for the
first prompt (the integrated task), let X2 be the human score for the second prompt (the independent task), let X3 to X11 be
the feature scores for the first prompt, and let X12 to X20 be the feature scores for the second prompt. Let c have elements
c1 = c2 = 1, and let all other elements be 0. Then ν is the true score τ1 +τ2 of the sum score O=X1 +X2, and η= ϵ1 +ϵ2.
In this case, a raw score is considered for the assessment based on the human scores for the two prompts. The human
observed score X1 and true score τ1 for the integrated task correspond to c = 𝛅1, while the human score X2 and true score
τ2 for the independent task correspond to c = 𝛅2. A variation on this case uses K = 4. The definitions of X1 and X2 remain
unchanged, O is still X1 +X2, ν is still τ1 +τ2, and η is still ϵ1 +ϵ2, but X3 is a score on the integrated task from e-rater, and
X4 is a score on the independent task from e-rater. The score X3 is normally a linear combination of computer-generated
features from the first response, and X4 is normally a linear combination of computer-generated features from the second
response. In current practice, the true score ν is approximated by 1

3

(
2X1 + X3

)
+ 1

2

(
X2 + X4

)
in the case of K = 4. This

practice involves an approximation based on an early use of BLP (Haberman, 2011). In the section Best Linear Prediction,
methods are provided to evaluate the impact of using this approximation rather than BLP. Other variations exist based on
changes of e-rater features over time. For instance, current practice uses 11 features for the integrated task and 10 for the
independent task.

Example 4. In GRE Writing, a case that has been examined with BLP uses one human score per prompt and nine
computer-generated feature scores per prompt (Yao et al., 2019a, 2019b). As in Example 3, let K = 20, let X1 be the human
score for the first prompt (the issue prompt), let X2 be the human score for the second prompt (the argument prompt),
let X3 to X11 be the feature scores for the first prompt, and let X12 to X20 be the feature scores for the second prompt. Let
c have elements c1 = c2 = 0.5, and let all other elements be 0. Then ν is the average true score (τ1 +τ2)/2 of the average
sum score O= (X1 +X2)/2, and η= (ϵ1 +ϵ2)/2. In this case, a raw score is considered for the assessment based on the
human scores for the two prompts. The human observed score X1 and true score τ1 for the issue prompt correspond to
c = 𝛅1, while the human score X2 and true score τ2 for the argument prompt correspond to c = 𝛅2. As in Example 3, an
alternative approach uses K = 4 with X1, X2, O, ν, and η unchanged but with X3 the e-rater score for the issue prompt
and X4 the e-rater score for the argument prompt. In GRE Writing, the current practice for prediction of ν involves a
somewhat rounded approximation based on the formulation with K = 4 uses (X1 +X2 +X3 +X4)/4. In addition, current
practice uses 10 feature scores for each prompt to find the e-rater score.
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Example 5. In TOEFL Speaking, several rather distinct approaches may be considered for the four Speaking prompts
currently in use. The approach most similar to that in Examples 3 and 10 uses 1 human score and 28 computer-generated
feature scores for each prompt. Here K = 116. For prompt j, 1≤ j≤ 4, Xj is the human score and X4+ k+ 28(j− 1) is the
kth feature score for 1≤ k≤ 28. The variable X7 is the third feature score for the first prompt, while X39 is the seventh
feature score for the second prompt. With this approach, c has cj = 1 for 1≤ j≤ 4, and all other elements of c are 0, so
that the observed score O=X1 +X2 +X3 +X4, ν= τ1 +τ2 +τ3 +τ4, and η= ϵ1 +ϵ2 +ϵ3 +ϵ4. For prompt j, 1≤ j≤ 4, the
observed score Xj and true score τj correspond to c = 𝛅j. Variations on this approach will be considered in this report
because of the relatively high dimension of the observation vector and because symmetry considerations appear to apply
relatively well in this case. One simple case uses sums over the four items to reduce the dimension K to 29. In this case,
X1 is the sum of the four human scores for the four prompts, and Xk+ 1 is the sum of the kth feature scores for the four
prompts. Thus c = 𝛅1 so that O=X1, ν= τ1, and η= ϵ1. Note that the value of O has not changed due to the change in
formulation. A further alternative formulation has K = 2, X1 the sum of the four human scores, and X2 the sum of the
four SpeechRater scores. In current practice, an approximation for the case of K = 2 is used based on the PBLP approach
for the case of K = 2 described in the section Penalized Best Linear Prediction. For a study of BLP for a previous version
of TOEFL Speaking with six prompts, see Zhang et al. (2019).

Example 6. In PRAXIS Writing, consider 1 human score and 10 computer-generated features for the argumentative
prompt, 1 human score and 11 features for the informative/explanatory prompt, and the sum of the selected-response
item scores. In this case, K = 24, X1 is the human score for the argumentative prompt, X2 is the human score for the
informative/explanatory prompt, X3 is the sum of the item scores for the selected responses, X4 to X13 are feature scores
for the first prompt, and X14 to X24 are feature scores for the second prompt. The vector c with c1 = c2 = 1.5, c3 = 1, and
ck = 0 for 4≤ k≤ 24 is used to generate a composite raw score. Thus O= 1.5(X1 +X2)+X3, ν= 1.5(τ1 +τ2)+τ3, and
η= 1.5(ϵ1 +ϵ2)+ϵ3. The case of c = 𝛅j corresponds to Xj and τj for 1≤ j≤ 3. Current reporting practice does provide the
sum X3 of the scores for the selected responses, but no scores are provided for individual essay responses. A raw score is
provided based on c with c1 = c2 = 1 and ck = 0 for 3≤ k≤K. Thus O=X1 +X2 is the sum of the human essay scores, and
ν= τ1 +τ2 is the corresponding true score. An alternative uses e-rater scores rather than individual feature scores. Here
K = 5, X1, X2, and X3 are defined as before, but X4 is the e-rater score for the first prompt, and X5 is the e-rater score for
the second prompt. Once again, variations can occur due to changes in e-rater features. Because the data for Yao et al.
(2019a, 2019b) were obtained before PRAXIS Writing used e-rater for the informative/explanatory prompt, only a rather
restricted analysis was made for the argumentative prompt. In addition, that analysis only used nine essay features.

Example 7. The total TOEFL score illustrates a composite score based on linked scaled scores. Let K = 4. As discussed
in Example 1, let X1 be the scaled Listening score, let X2 be the scaled Reading score, let X3 be the scaled Speaking
score, and let X4 be the scaled Writing score. Each of these scores is a real number between 0 and 30 when unrounded,
obtained by a nonlinear transformation of a section raw score, where the transformation is specific to the test form
and administration. Let c= 14 be the four-dimensional vector with all elements equal to 1. The total unrounded score
is O= c′ X=X1 +X2 +X3 +X4, η= ϵ1 +ϵ2 +ϵ3 +ϵ4, and ν= τ1 +τ2 +τ3 +τ4. Note that the X4 in this example is a func-
tion of the O in Example 3, while X3 is a function of the O of Example 5. In this example, the scale score for Listening
corresponds to c = 𝛅1, the scale score for Reading corresponds to c = 𝛅2, the scale score for Speaking corresponds to
c = 𝛅3, and the scale score for Writing corresponds to c = 𝛅4.

Best Linear Prediction

In BLP, the linear predictor ν̂ of ν based on the observed vector X is selected to minimize mean squared error. Thus the
real constant α and K-dimensional vector 𝛃 with elements βk, 1≤ k≤K, are found such that for the linear predictor

ν̂ = α + 𝛃′X = α +
K∑

k=1
βkXk, (10)

and error of prediction η̂ = ν − ν̂, the mean squared error

MSE
(
ν, ν̂

)
= E

(
η̂2) ≤ MSE (ν,Y) = E

(
[ν − Y]2) (11)
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for any linear predictor

Y = a + b′X = a +
K∑

k=1
bkXk (12)

of ν based on X determined by the real number a and the K-dimensional vector b with elements bk for 1≤ k≤K. The
random variable ν̂ is the best linear predictor of ν, and η̂ = ν − ν̂ is the corresponding prediction error.

Regression Equations

Use of standard regression theory shows that

Cov (X) 𝛃 = Cov (X, ν) = Cov (𝛕) c, (13)
and

α = E (ν) − 𝛃′E (X) . (14)

Here
Cov (X, ν) = Cov (X, 𝛕) c = Cov (𝛕) c, (15)

is the K-dimensional vector with element k, 1≤ k≤K, equal to the covariance of Xk and ν.
The mean squared error MSE

(
ν, ν̂

)
for prediction of the true score ν by the BLP ν̂ is only equal to the mean squared

error MSE(ν, Y) for prediction of the true score ν by the linear predictor Y if a = α, b = 𝛃, and Y = ν̂.

Properties of the Best Linear Predictor

The BLP ν̂ has the basic properties
ν̂ = E (ν) + 𝛃′ [X − E (X)] , (16)

and has expectation E(ν)=E(O) and variance σ2 (ν̂) = 𝛃′Cov (X) 𝛃.
By Equation 13, the covariance of X and ν̂ is

Cov
(

X, ν̂
)
= Cov (X) 𝛃 = Cov (𝛕) c, (17)

so that
Cov

(
X, η̂

)
= Cov (X, ν) − Cov

(
X, ν̂

)
= 0K . (18)

Thus the prediction error η̂ = ν − ν̂ and the predicting vector X are uncorrelated.
If

𝛕̂ = E (X) + Cov (𝛕) [Cov (X)]−1 [X − E (X)] (19)

has elements τ̂k, 1 ≤ k ≤ K, and ϵ̂ = 𝛕 − 𝛕̂ has elements ϵ̂k for 1≤ k≤K, then ν̂ = c′𝛕̂. The best linear predictor of τk = 𝛅′k𝛕
is τ̂k. The prediction error ϵ̂k = τk − τ̂k = 𝛅′kϵ̂.

Proportional Reduction in Mean Squared Error

The proportional reduction in mean squared error provides a measure of the relative value of the linear predictor Y of the
true score ν in cases in which the true score ν has a positive variance σ2(ν). The proportional reduction in mean squared
error of Y is then

PRMSE (ν,Y) = 1 − MSE (ν,Y)
σ2 (ν)

. (20)

Here the variance σ2(ν) of the true score ν is the smallest mean squared error achievable by use of a constant linear
predictor z = z + 0′

K X of ν always equal to the real number z, for MSE(ν, z)=E([ν− z]2)=σ2(ν)+ [E(ν)− z]2 exceeds
σ2(ν) unless z =E(ν)=E(O). Thus PRMSE(ν, Y) measures the relative improvement in mean squared error from use of Y
to predict ν rather than use of a constant predictor. The measure PRMSE(ν, Y) is never greater than 1, and it equals 1 if,
and only if, Y =ν with probability 1. The inequality MSE (ν,Y) ≥ MSE

(
ν, ν̂

)
, with equality only if Y = ν̂, implies that

PRMSE
(
ν, ν̂

)
≥ PRMSE (ν,Y) , (21)
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with equality only if Y = ν̂. The special case of Y =E(O) then implies that PRMSE
(
ν, ν̂

)
is nonnegative.

A decomposition of mean squared error leads to a chain rule for proportional reduction in mean squared error. Because
the true score ν and its approximation ν̂ have the same expectation, the mean squared error MSE

(
ν, ν̂

)
is the variance

σ2 (η̂) of the prediction error η̂ = ν − ν̂. Because ν̂ is a linear function of X and Cov
(

X, η̂
)
= 0K , η̂ and ν̂ are uncorrelated

so that the variance σ2(ν) is the sum of the variance σ2 (η̂) of the prediction error and the variance σ2 (ν̂) of the best linear
predictor ν̂. It follows that

MSE
(
ν, ν̂

)
= σ2 (η̂) = σ2 (ν) − σ2 (ν̂) = σ2 (ν) − 𝛃′Cov (X) 𝛃. (22)

If the true score ν has a positive variance σ2(ν), then the proportional reduction in mean squared error relative to the
constant predictor E(ν)=E(O) of ν is

PRMSE
(
ν, ν̂

)
= 1 −

MSE
(
ν, ν̂

)
σ2 (ν)

= 1 −
σ2 (η̂)
σ2 (ν)

. (23)

Because σ2 (η̂) = σ2 (ν) − σ2 (ν̂),
σ2 (η̂)
σ2 (ν)

= 1 −
σ2 (ν̂)
σ2 (ν)

(24)

PRMSE
(
ν, ν̂

)
=

σ2 (ν̂)
σ2 (ν)

. (25)

In Equation 11, because η̂ = ν − ν̂ is uncorrelated with X, η̂ is uncorrelated with ν̂ − Y . Thus the following decompo-
sition of mean squared error applies:

MSE (ν,Y) = MSE
(
ν, ν̂

)
+ MSE

(
ν̂,Y

)
= σ2 (η̂) + MSE

(
ν̂,Y

)
. (26)

Thus the increase in mean squared error from prediction of ν by Y rather than the BLP ν̂ is the mean squared error from
prediction of the BLP by Y .

Equation 26 also leads to inequalities and decompositions for the proportional reduction in error. If the variance σ2 (ν̂)
of the BLP ν̂ is positive, then division by σ2(ν) shows that

1 − PRMSE (ν,Y) = 1 − PRMSE
(
ν, ν̂

)
+
[
1 − PRMSE

(
ν̂,Y

)]
PRMSE

(
ν, ν̂

)
= 1 − PRMSE

(
ν, ν̂

)
PRMSE

(
ν̂,Y

)
, (27)

so that
PRMSE (ν,Y) = PRMSE

(
ν, ν̂

)
PRMSE

(
ν̂,Y

)
. (28)

Prediction by Observed Score

An important special case involves use of the observed score O as an unbiased estimate of its true score ν. Here

MSE (ν,O) = σ2 (η) = σ2 (O)
[
1 − ρ2 (O)

]
. (29)

If the reliability ρ2(O) is positive, then

PRMSE (ν,O) = 1 −
σ2 (η)
σ2 (ν)

= 2 − 1
ρ2 (O)

, (30)

so that PRMSE(ν, O) is negative if 2ρ2(O)< 1 and PRMSE (ν,O) < PRMSE
(
ν, ν̂

)
if c is unequal to 𝛃. The only possible

way for c to equal 𝛃 is for Cov(𝛜)c to be 0K so that η is 0 with probability 1 and ρ2(O)= 1.

Example 8. In Example 2, σ2(X1)β1 =σ2(τ1) so that

β1 =
σ2 (τ1

)
σ2

(
X1

) = ρ2 (X1
)
, (31)
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α =
[
1 − ρ2 (X1

)]
E
(

X1
)
, (32)

τ̂1 = E
(

X1
)
+ ρ2 (X1

) [
X1 − E

(
X1

)]
, (33)

MSE
(
τ1, τ̂1

)
= σ2 (τ1

) [
1 − ρ2 (X1

)]
, (34)

and PRMSE
(
τ1, τ̂1

)
= ρ2 (X1

)
if σ2(τ1)> 0. For comparison, PRMSE(τ1, X1)= 2− 1/ρ2(X1). The only way for

PRMSE
(
τ1, τ̂1

)
to equal PRMSE(τ1, X1) is for σ2(ϵ1) to be 0, so that ρ2(X1)= 1. These results correspond to Kelley’s

(1923) formula.

In other words, for either the criterion of scoring accuracy based on selection of raters at random or the criterion of
assessment accuracy based on selection of one test form out of a collection of similar forms, if the variance of the error of
measurement is not 0, then the proportional reduction in mean squared error associated with using the observed score X1
as an estimate of its expected score τ1 is smaller than the proportional reduction in mean squared error associated with
the BLP for that expected score. In fact, if the reliability of the observed score drops below .5, the proportional reduction
in mean squared error associated with that observed score will be negative because its mean squared error is larger than
that associated with using the average score E(X1).

A fundamental aspect of BLP is that the intuitive approximation of a true score ν by an observed score O may not be
very efficient. This issue is most important if the observed score is not very reliable and the true scores τk, 1≤ k≤K, are
highly correlated. This problem is quite prevalent when subscores based on only a few items are used in an assessment.
This point is emphasized in the references at the beginning of the introduction.

A second aspect of BLP that also must be emphasized is that in cases in which a linear approximation Y = a+ b′X
of the true score ν is used rather than the intuitive approximation O, the performance of the approximation Y should
be evaluated in terms of the proportional reduction PRMSE(ν, Y) of mean squared error and not in terms of the reli-
ability ρ2(Y)=PRMSE(ξ, Y), where ξ= a+ b′ X. Unless Y is the BLP ν̂ of ν, a bias results because ν and ξ are differ-
ent random variables. This issue arises, for example, in the evaluation of TOEFL Writing in Example 3 by use of Y =
1
3

(
2X1 + X3

)
+ 1

2

(
X2 + X4

)
in the case of K = 4. Here ν= (τ1 +τ2)/2 and ξ = 1

3

(
2τ1 + τ3

)
+ 1

2

(
τ2 + τ4

)
. This differ-

ence between proportional reduction of mean squared error and reliability reflects a much more general issue. If f is a
real number and g is a positive real number, then reliability is scale invariant in the sense that ρ2(Y)=ρ2(f + gY), and
proportional reduction of mean squared error is scale invariant in the sense that PRMSE (f + gν, f + gY)=PRMSE(ν, Y).
Nonetheless, it is not generally true that PRMSE(ν, f + gY)=PRMSE(ν, Y) when either f is not 0 or g is not 1.

Penalized Best Linear Prediction

PBLP is a generalization of BLP normally employed to reduce subgroup bias. Such bias can unfairly advantage or disad-
vantage a distinct group of test takers. Here an additional polytomous random variable G is observed with positive integer
values h≤H for an integer H > 1. For any positive integer h≤H, the probability P(G= h) is positive that G= h. The choice
of variable depends on the specific assessment involved and the population that takes the assessment. In TOEFL iBT, native
language, native country, and current country of residence are important, for performance on an assessment of English
fluency can be affected by a native country’s quality of instruction in the English language, the extent to which students
are trained to take standardized tests, the similarity of English to the native language, and the extent of exposure to spo-
ken English. The issue is not simply a matter of general fluency. For example, countries differ in their relative emphases
on speaking English and their relative emphases on reading English. In many analyses for TOEFL related to fairness or
linking, a division of examinees into 19 groups has been employed in which region of test administration is the primary
variable, but in cases in which the test is administered in an English-speaking country, native language is also used. In
GRE General and in PRAXIS Core, the main concern has been disparate impact by race/ethnicity, and that variable has
been employed to examine subgroup biases.

Analysis in PBLP considers the conditional distributions of the vector X of observed scores, the vector 𝛕 of true
scores, and the vector ϵ of measurement errors given the random variable G. Because G= h with positive probability
for positive integers h≤H, these conditional distributions are uniquely defined. For a random variable Z with a finite
expectation, let E(Z|G= h) denote the conditional expectation of Z given h. For a K-dimensional random vector V
with elements Vk, 1≤ k≤K, with finite expectations, let the conditional expectation E(V|G= h) of V given G= h be the
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K-dimensional vector with elements E(Vk|G= h) for 1≤ k≤K. The random variable E(Z|G) then has value E(Z|G= h)
if G= h for a positive integer h≤H, and the random vector E(V|G) has value E(V|G= h) if G= h for a positive integer
h≤H. The expectation of E(Z|G) is E(Z), and the expectation of E(V|G) is E(V). PBLP involves the conditional expecta-
tions E (X|G) , E (𝛕|G), and E (ϵ|G) = E (X|G) − E (𝛕|G). It is assumed that the conditional expected measurement error
E(𝛜|G= h)= 0K for 1≤ h≤H so that E (X|G) = E (𝛕|G).

Conditional expectations lead to a standard decomposition of variances and covariance matrices. Let Z have finite
variance. The covariance of Z −E(Z|G) and E(Z|G) is 0 so that

σ2 (Z) = σ2 (Z − E (Z|G)) + σ2 (E (Z|G)) . (35)

A similar result applies to random vectors. Let V have a finite covariance matrix. Then the covariance matrix
Cov(V−E(V|G), E(V|G)) is the K ×K matrix with all elements 0 so that

Cov (V) = Cov (V − E (V|G)) + Cov (E (V|G)) . (36)

For use with PBLP, for any real d> 1, let

σ2
d (Z) = σ2 (Z − E (Z|G) + d1∕2E (Z|G))

= σ2 (Z − E (Z|G)) + dσ2 (E (Z|G))
= σ2 (Z) + (d − 1) σ2 (E (Z|G)) , (37)

and

Covd (V) = Cov
(

V − E (V|G) + d1∕2E (V|G))
= Cov (V − E (V|G)) + dCov (E (V|G))
= Cov (V) + (d − 1)Cov(E (V|G) . (38)

PBLP seeks to address a possible challenge in BLP involving subgroup effects. The conditional expectation variable
E(O|G)=E(ν|G) and the conditional expectation variable E

(
ν̂|G) can be somewhat different even though E(O)=E(ν)

and E
(
ν̂
)

are the same. In PBLP, a penalty function is imposed to reduce this disparity. For a finite penalty multiplier d≥ 1,
the penalty for a prediction of ν by the linear predictor Y of Equation 12 is (d− 1)MSE(E(ν|G), E(Y|G)). By assumption,
this penalty is equal to (d− 1)MSE(E(O|G), E(Y|G)). The penalized mean squared error for prediction of ν by Y is then

MSEd (ν,Y) = MSE (ν,Y) + (d − 1)MSE (E (O|G) ,E (Y|G))
= MSE

(
ν − E (ν|G) + d1∕2E (ν|G) ,Y − E (Y|G) + d1∕2E (Y|G)) . (39)

The penalized best linear predictor ν̂d based on X is selected to minimize the penalized mean squared error. The real
constant αd and K-dimensional vector 𝛃d with elements βkd, 1≤ k≤K, are selected so that ν̂d = αd + 𝛃′dX satisfies

MSEd
(
ν, ν̂d

)
≤ MSEd (ν,Y) (40)

for any linear predictor Y defined as in Equation 12. The case of d= 1 corresponds to no penalty so that ν̂1 = ν̂ and
MSE1

(
ν, ν̂1

)
= MSE

(
ν, ν̂

)
. In addition, if E(X|G= h)=E(X) for 1≤ h≤H, then ν̂d = ν̂ and MSEd

(
ν, ν̂d

)
= MSE

(
ν, ν̂

)
.

Regression Equations

Computation of αd and 𝛃d is very similar to computation of α and 𝛃. The equations

Covd (X) 𝛃d = Covd (𝛕) c (41)

and
αd = E (O) − 𝛃′dE (X) (42)

apply so that
ν̂d = E (O) + 𝛃′d [X − E (X)] , (43)
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has expectation E(O) and variance σ2 (ν̂d
)
= 𝛃′dCov (X) 𝛃d. The prediction error is η̂d = ν − ν̂d.

If
𝛕̂d = E (X) + Covd (𝛕)

[
Covd (X)

]−1 [X − E (X)] (44)

has elements τ̂kd, 1 ≤ k ≤ K, and ϵ̂d has elements ϵ̂kd for 1≤ k≤K, then ν̂ = c′𝛕̂d and η̂d = c′ϵ̂d.
Optimization of predictors by different criteria generally yields different results. Equation 26 leads to

MSE
(
ν, ν̂d

)
= MSE

(
ν, ν̂

)
+ MSE

(
ν̂, ν̂d

)
, (45)

so that, in terms of mean squared error, the PBLP ν̂d is never a better predictor of the true score ν than is the BLP ν̂,
and MSE

(
ν, ν̂d

)
> MSE

(
ν, ν̂

)
unless 𝛃d = 𝛃 and αd =α. The same argument based on ν−E(ν|G)+ d1/2E(ν|G) and ν̂d −

E
(
ν̂d|G) + d1∕2E

(
ν̂d|G) leads to

MSEd
(
ν, ν̂

)
= MSEd

(
ν, ν̂d

)
+ MSEd

(
ν̂d, ν̂

)
, (46)

so that the penalized mean squared error for prediction of the true score ν by the BLP ν̂ is greater than the penalized mean
squared error for prediction of ν by the PBLP ν̂d unless 𝛃d = 𝛃 and αd =α.

Measuring Subgroup Bias

To further consider subgroup bias, let

Δd (h) = E (O|G = h) − E
(
ν̂d|G = h

)
=
[
E (O|G = h) − E (O)

]
− 𝛃′d

[
E (X|G = h) − E (X)

]
(47)

for positive integers h≤H, and let Δd(G) be the random variable with value Δd(h) if G= h. Then E(Δd(G))= 0 so that
E([Δd(G)]2)=σ2(Δd(G)). In the case of d= 1, Δ1 (G) = E (O|G) − E

(
ν̂|G). In terms of penalized mean squared error,

MSEd
(
ν, ν̂d

)
= MSE

(
ν, ν̂d

)
+ (d − 1) σ2 (Δd (G)

)
, (48)

while
MSEd

(
ν, ν̂

)
= MSE

(
ν, ν̂

)
+ (d − 1) σ2 (Δ1 (G)

)
. (49)

The inequality restrictions on MSEd
(
ν, ν̂

)
, MSEd

(
ν, ν̂d

)
, MSE

(
ν, ν̂

)
, and MSE

(
ν, ν̂d

)
imply that σ2(Δ1(G)) is at

least as large as σ2(Δd(G)), with strict inequality if σ2(Δ1(G)) is not zero. This strict inequality occurs unless the BLP ν̂
had no issue at all so that E(O|G= h) was equal to E

(
ν̂|G = h

)
for 1≤ h≤H.

In the case of prediction of ν by the constant E(O)=E(ν), the penalized mean squared error MSEd(ν, E(O)) is σ2
d (ν),

and
MSEd

(
ν, ν̂d

)
= σ2

d

(
ηd
)
= σ2

d (ν) − σ2
d

(
ν̂d
)
. (50)

If σ2
d (ν) is positive, as is certainly true if the variance σ2(ν) of the true score ν is positive, then the corresponding

proportional reduction in mean squared error is

PRMSEd
(
ν, ν̂d

)
= 1 −

σ2
d

(
ηd
)

σ2
d (ν)

=
σ2

d

(
ν̂d
)

σ2
d (ν)

. (51)

The chain equation
PRMSEd (ν,Y) = PRMSEd

(
ν, ν̂

)
PRMSEd

(
ν̂,Y

)
(52)

follows from Equation 28 if Y is defined as in Equation 12.
If the covariance matrix Cov(E(X|G)) of the conditional expectation E(X|G) is positive-definite, then, as d approaches

∞, d
(

c − 𝛃d
)
, dαd, and d

(
O − ν̂d

)
have finite limits so that d2σ2(Δd(G)) has a finite limit, and MSEd

(
ν, ν̂d

)
and

MSE
(
ν, ν̂d

)
both approachσ2(O)[1−ρ2(O)]. In addition, PRMSEd

(
ν, ν̂d

)
and PRMSE

(
ν, ν̂d

)
both approach 2− 1/ρ2(O),

which, as noted in Equation 30, is the PRMSE associated with use of the observed score O as an estimate of the true score
ν. This result concerning the covariance matrix of E(X|G) can only hold if H, the number of possible values of G, is no
greater than the dimension K of X.
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In practice, it is important to verify that PRMSE
(
ν, ν̂d

)
is relatively close to PRMSE

(
ν, ν̂

)
, although some reduction

does occur unless 𝛃d = 𝛃 and αd =α, for PRMSE
(
ν, ν̂d

)
= PRMSE

(
ν, ν̂

)
PRMSE

(
ν̂, ν̂d

)
. It is also important to consider

the size of σ2(Δd(G)) and to examine the individual differences Δd(h) for 1≤ h≤H.
For some understanding of relative sizes of group effects in cases in which the variance σ2 (ν̂d

)
of ν̂d is positive, it can

be helpful to apply a linear linking to ν̂d. Let σ(O) be the standard deviation of O, and let σ
(
ν̂d
)

be the standard deviation
of ν̂d. Let

ν̂ds = E (O) +
σ (O)
σ
(
ν̂d
) [

ν̂d − E (O)
]
, (53)

so that ν̂ds has the same expectation and variance as O. Then, for cases in which 𝛃d is not 0K , the scaled measure

Δds (h) = E (O|G = h) − E
(
ν̂ds|G = h

)
= [E (O|G = h) − E (O) −

σ (O)
σ
(
ν̂d
) [

E
(
ν̂d|G = h

)
− E (O)

]
(54)

is also informative. This measure can help distinguish between general shrinkage toward the expectation E(O) and other
important effects of subgroups. If c = 𝛅k for a positive integer k≤K, then ν̂ds can be denoted by τ̂kds.

It is reasonable to try a variety of choices of d to compare results. The ultimate choice of the penalty multiplier d – 1
depends on relative priorities between fairness and accuracy that depend on the assessment, its legal considerations, and
the magnitude of the issue. It is possible that a satisfactory balance between these competing criteria is unachievable. For
example, it may be the case that O is not reliable enough for a satisfactory assessment but modest values of d that yield
more satisfactory proportional reductions in mean squared error lead to excessive subgroup differences.

Example 9. Examples 2 and 8 provide a simple illustration of issues for the very simple case in which the number K of
elements of X is 1 and the true score τ1 is to be predicted. In this case, the slope

β1d =
σ2 (X1

)
ρ2 (X1

)
+ (d − 1) σ2 (E

(
X1|G))

σ2
(

X1
)
+ (d − 1) σ2

(
E
(

X1|G)) (55)

is a weighted linear combination of the reliability ρ2(X1) of X1 and the constant 1 and

αd =
(

1 − β1d
)

E
(

X1
)
, (56)

so that
τ̂1d = E

(
X1

)
+ β1d

[
X1 − E

(
X1

)]
(57)

has variance β2
1dσ

2 (X1
)

. The value of β1d is at least as large as the reliability β1 =ρ2(X1) of X1, and the variance of the
PBLP τ̂1d is at least as large as the variance of the BLP τ̂1. If E(X1|G= h)=E(X1) for 1≤ h≤H, then β1d =β1 =ρ2(X1),
αd =α, and τ̂1d = τ̂1. Otherwise, β1d is nonnegative, greater than β1, and no greater than 1, with β1d = 1 if, and only if,
ρ2(X1)= 1. As a function of d, β1d is strictly increasing. As d approaches ∞, d(1−β1d), dαd, and d

[
X1 − ν̂d

)
] have finite

limits. The variance σ2(Δd(G)) is (1−β1d)2σ2(E(X1|G)) so that the mean squared error

MSE
(
τ1, τ̂1d

)
= σ2 (τ1

) [
1 − ρ2 (X1

)]
+
[
β1d − ρ2 (X1

)]2 σ2 (X1
)
. (58)

The value of MSEd
(
τ1, τ̂1d

)
is the sum of MSE

(
τ1, τ̂1d

)
and (d− 1)(1−β1d)2σ2(E(X1|G)). As d approaches ∞,

(d− 1)σ2(Δd(G)) converges to 0, and MSE
(
τ1, τ̂1d

)
converges to σ2(X1)[1−ρ2(X1)].

In this example, for 1≤ h≤H, Δd(h)= (1−β1d)[E(X1|G= h)−E(X1)] but Δds(h)= 0. The difference in results arises
because the subgroup bias reflects only the normal reduction in variability of τ̂1d relative to X1.

PBLP is not simply a matter of scaling the observed O, as in Example 9, when the true score ν of the observed score
O is approximated by ν̂d and no constant multiplier f exists such that 𝛃d = f c so that the weight βkd the PBLP assigns to
variable Xk is not proportional for 1≤ k≤K to the weight ck assigned to Xk in the case of the observed score O. In such
cases, the use of information other than O to approximate the true score ν has potential consequences in terms of fairness
that PBLP seeks to address by balancing accuracy and subgroup bias. In addition to the formal aspects of BLP and PBLP, it
is always important to consider the relevance of each variable Xk to the construct of interest. Features used in e-rater and
SpeechRater must be relevant on substantive grounds to the evaluation of writing or speaking and not merely predictive
of human scores.
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Estimation for Best Linear Prediction and Penalized Best Linear Prediction

Practical estimation for BLP and PBLP is challenging because the vectors 𝛕 and ϵ are not observed so that a simple regres-
sion analysis cannot be employed. In the simplest cases, the pairs

(
𝛕i, ϵi

)
, 1 ≤ i ≤ n, n>K, are mutually independent

and have the same distribution as the pair (𝛕, ϵ). The vectors Xi = 𝛕i + ϵi are observed for 1≤ i≤ n. For positive inte-
gers k≤K, element k of Xi is Xik, element k of 𝛕i is τik, and element k of 𝛜i is ϵik. No particular difficulty exists as far as
estimation of summary parameters dependent on X. If bars are used for estimates of parameters, then the sample mean

E (X) = n−1
n∑

i=1
Xi (59)

provides an unbiased estimate of E(X). For 1≤ k≤K, element k of E (X) is E
(

Xk
)

. If Oi = c′ Xi for 1≤ i≤ n, then the
sample mean

E (O) = n−1
n∑

i=1
Oi (60)

is an unbiased estimate of E(O). For consistency with some of the analysis of assessment accuracy, it is convenient to use
the biased covariance estimate

Cov (X) = n−1
n∑

i=1

[
Xi − E (X)

] [
Xi − E (X)

]′
(61)

for Cov(X) and the biased variance estimate

σ2 (O) = n−1
n∑

i=1

[
Oi − E (O)

]2
(62)

for σ2(O). For 1≤ j≤K and 1≤ k≤K, row j and column k of Cov (X) is Cov
(

Xj,Xk

)
. For 1 ≤ h ≤ H, E

(
δh (G)

)
is an

unbiased estimate of P(G= h). Let E (X|G = h) be E (X) if E
(
δh (G)

)
= 0, and let

E (X|G = h) =
E
(
δh (G)X

)
E
(
δh (G)

) (63)

if E
(
δh (G)

)
> 0. Then E (X|G = h) estimates E(X|G= h). Element k of E (X|G = h) is E

(
Xk|G = h

)
for 1≤ k≤K. Let

E (O|G = h) be E (O) if E
(
δh (G)

)
= 0, and let

E (O|G = h) =
E
(
δh (G)O

)
E
(
δh (G)

) (64)

if E
(
δh (G)

)
> 0. Then E (O|G = h) estimates E(O|G= h).

Let

Cov (E (X|G)) = H∑
h=1

E
(
δh (G)

) [
E (X|G = h) − E (X)

] [
E (X|G = h) − E (X)

]′
(65)

estimate Cov(E(X|G)), and let

σ2 (E (O|G)) = H∑
h=1

E
(
δh (G)

) [
E (O|G = h) − E (O)

]2
(66)

estimate σ2(E(O|G)). Let
Covd (X|G) = Cov (X) + (d − 1)Cov (E (X|G)) (67)

estimate Covd(E(X).
Further estimation requires far more difficult analysis because the observations Xi, 1≤ i≤ n, do not generally pro-

vide an estimate of Cov (𝛕). In the section Scoring Accuracy, estimation procedures are explored for scoring accuracy.
In the section Assessment Accuracy, estimation is studied for assessment accuracy. For the moment, it is worth noting
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that, given an estimate Cov (𝛕) of Cov (𝛕), the remaining estimates are readily found. Let σ2 (ν) = c′Cov (𝛕) c estimate
σ2(ν). Let

Cov (X) 𝛃 = Cov (𝛕) (68)

determine the estimate 𝛃 of 𝛃. If Cov (X) is nonsingular, then the definition of 𝛃 is clear. In general, 𝛃 can be defined by
selecting the solution of Equation 68 that minimizes ‖‖‖𝛃‖‖‖2

= 𝛃′𝛃 (Rao & Mitra, 1972). Let

α = E (O) − 𝛃′E (X) (69)

estimate α, and let
ν = α + 𝛃′X = E (O) + 𝛃′

[
X − E (X)

]
(70)

estimate ν̂. Let
σ2 (ν̂) = 𝛃′Cov (X) 𝛃 (71)

estimate σ2 (ν̂). Let τk = ν if c = 𝛅k for a positive integer k≤K, and let 𝛕 be the vector of dimension K with elements τk
for 1≤ k≤K. In the typical case of Cov (X) nonsingular,

𝛕 = E (X) + Cov (𝛕)
[

Cov (X)
]−1 [

X − E (X)
]

(72)

has elements τk for 1≤ k≤K. Thus 𝛕 estimates 𝛕̂, and τk estimates τ̂k.
Let

MSE
(
ν, ν̂

)
= σ2 (ν) − σ2 (ν̂) (73)

estimate MSE
(
ν, ν̂

)
. If σ2 (ν) is positive, let

PRMSE
(
ν, ν̂

)
= 1 −

MSE
(
ν, ν̂

)
σ2 (ν)

=
σ2 (ν̂)
σ2 (ν)

(74)

estimate PRMSE
(
ν, ν̂

)
. More generally, if Y is defined as in Equation 12, then

MSE (ν,Y) = MSE
(
ν, ν̂

)
+ MSE

(
ν̂,Y

)
(75)

estimates MSE(ν, Y), where

MSE
(
ν̂,Y

)
=
[

a − α −
(

b − 𝛃
)′

E (X)
]2

+
(

b − 𝛃
)′

Cov (X)
(

b − 𝛃
)
. (76)

If σ2 (ν) is positive, let

PRMSE (ν,Y) = 1 − MSE (ν,Y)
σ2 (ν)

(77)

estimate PRMSE(ν, Y).
Similar arguments apply to PBLP. Let

Covd (𝛕) = Cov (𝛕) + (d − 1)Cov (E (X|G)) (78)

estimate Covd (𝛕). Then
Covd (X) 𝛃d = Covd (𝛕) c (79)

estimates 𝛃d. If Covd (X) is singular, then 𝛃d minimizes ‖‖‖𝛃d
‖‖‖2

among solutions of Equation 79. Then

αd = E (O) − 𝛃′dE (X) (80)

estimates αd and νd = αd + 𝛃′X estimates ν̂d so that

νd = E (O) + 𝛃′d
[

X − E (X)
]
. (81)
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Let σ2 (ν̂d
)
= 𝛃′dCov (X) 𝛃d estimate σ2 (ν̂d

)
. Let τkd = ν if c = 𝛅k for a positive integer k≤K, and let 𝛕d be the vector

of dimension K with elements τkd for 1≤ k≤K. In the typical case of Covd (X) nonsingular,

𝛕d = E (X) + Covd (𝛕)
[

Covd (X)
]−1 [

X − E (X)
]

(82)

has elements τkd for 1≤ k≤K. Thus 𝛕d estimates 𝛕̂d, and τkd estimates τ̂kd.
Let

E
(
ν̂d|G = h

)
= E (O) + 𝛃′d

[
E (X|G = h) − E (O)

]
(83)

estimate E
(
ν̂d|G = h

)
for positive integers h≤H. Let

σ2 (E
(
ν̂d|G)) = H∑

h=1
E
(
δh (G)

) [
E
(
ν̂d|G = h

)]2
(84)

estimate σ2 (E
(
ν̂d|G)). Let

Δd (h) = E (O|G = h) − E
(
ν̂d|G = h

)
(85)

estimate Δd(h) for positive integers h≤H. Let

σ2 (Δd (G)
)
=

H∑
h=1

E
(
δh (G)

) [
Δd (h)

]2
(86)

estimate σ2(Δd(G)).
Let

σ2
d (ν) = σ2 (ν) + (d − 1) σ2 (E (O|G)) (87)

estimate σ2
d (ν), and let

MSEd
(
ν, ν̂d

)
=
[
σ2 (ν) − σ2 (ν̂d

)]
+ (d − 1)

[
σ2 (E (O|G)) − σ2 (E

(
ν̂d|G))] (88)

estimate MSEd
(
ν, ν̂d

)
. If Y is defined as in Equation 12, then

MSEd (ν,Y) = MSEd
(
ν, ν̂d

)
+ MSEd

(
ν̂d,Y

)
(89)

estimates MSEd(ν, Y), where

MSEd
(
ν̂d,Y

)
= d

[
a − αd −

(
b − 𝛃d

)′
E (X)

]2

+
(

b − 𝛃
)′

Covd (X)
(

b − 𝛃
)
. (90)

If σ2
d (ν) is positive, let

PRMSEd
(
ν, ν̂d

)
=

σ2 (ν̂d
)
+ (d − 1) σ2 (E

(
ν̂d|G))

σ2
d (ν)

(91)

estimate PRMSEd
(
ν, ν̂d

)
, and let

PRMSEd (ν,Y) = 1 −
MSEd

(
ν̂d,Y

)
σ2

d (ν)
(92)

estimate PRMSEd(ν, Y).
Let σ (O), the nonnegative square root of σ2 (O), estimate σ(O), and let σ

(
ν̂d
)

, the nonnegative square root of σ2 (ν̂d
)

,
estimate σ

(
ν̂d
)

. If σ
(
ν̂d
)
> 0, then estimate Δds(h), 1≤ h≤H, by

Δds (h) = [E (O|G = h) − E (O) −
σ (O)
σ
(
ν̂d
) [

E
(
ν̂d|G = h

)
− E (O)

]
. (93)

Estimates proposed are intuitive estimates that are consistent for the quantities estimated. They can be expected to be
increasingly accurate as sample sizes increase. The proposed estimates suffice for all analyses of BLP and PBLP as long as
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the assumption of simple random sampling is reasonable. In cases of simple random sampling, grouped jackknifing may
be employed to estimate the accuracy of estimates. In practice, sampling may be much more complex so that sampling
weights may be needed and accuracy of estimates may be reduced. Evaluation of accuracy of estimates is also affected.
Thus users of the methodology for estimation should consider how sampling has been conducted.

Scoring Accuracy

The criterion of scoring accuracy involves the error in prediction of the expected score given the specific constructed
responses in the assessment that require human scoring. Let J be a positive integer no greater than K, and let Xk, 1≤ k≤ J,
be scores based on human scoring. In typical cases, for positive integers j and k no greater than K, Cov(ϵj, ϵk) is 0 unless
j= k≤K, and σ2(ϵk)> 0 for k≤K. Thus the error of measurement ϵk has positive variance for Xk if k≤ J, measurement
errors ϵj and ϵk are uncorrelated if j and k are distinct positive integers no greater than J, and errors of measurement ϵk
are 0 if k is a positive integer no greater than K but greater than J.

In the TOEFL, GRE, and PRAXIS assessments used as examples, the Xk, k≤ J, are human holistic scores for either essay
responses or spoken responses. The assumption made is that scoring errors on constructed responses do not correlate
with scoring errors on other constructed responses. It is also assumed that scoring errors on selected responses do not
exist due to automated scoring of such items. In the case of scoring accuracy, all that is required to estimate Cov(ϵ) is
to estimate σ2(ϵk) for k≤ J. Because Cov (𝛕) = Cov (X) − Cov (ϵ), the covariance matrix of 𝛕 can then be estimated. Let
σ2 (ϵk

)
be the nonnegative estimate of σ2(ϵk) for 1≤ k≤ J. Then the estimate Cov (ϵ) of Cov(𝛜) is the diagonal matrix with

row k and column k equal to 0 for any integer k such that J < k≤K and equal to σ2 (ϵk
)

if 1≤ k≤ J. It then follows that
Cov (𝛕) = Cov (X) − Cov (ϵ) estimates Cov (𝛕).

To avoid an estimated covariance matrix that is not nonnegative definite can require a reduction in normal estimates
of σ2 (ϵk

)
for 1≤ k≤ J. Such a case has never been encountered in practice, but the issue is noted here for completeness.

Such a case would in practice require changes in the sampling procedures used for estimation of variances of measurement
errors for scoring or a major investigation into scoring quality for constructed responses.

Agreement Samples

Agreement samples arise when a constructed task response is normally scored by only one human rater. This situation
arises in all examples considered in this report. In such a case, to estimate rater variability, a random sample of responses
must be drawn, and responses in the sample must be scored by a second human rater. It is very important to emphasize
the use of a random sample rather than a sample that may have been obtained by checking constructed responses with
unusual discrepancies between the scores assigned by a human rater and predicted by computer-generated features.

The basic procedure is quite straightforward for a positive integer k≤ J. A simple random subsample Ik of nk > 0 pos-
itive integers no greater than n is drawn without replacement from the set n of positive integers no greater than n. In
typical cases, nk/n is relatively small, say, .05. For each i in Ik, a second human score X′

ik is observed. It is assumed that
ϵ′ik =X′

ik −τik has expectation 0 and that variance σ2(ϵk) and ϵ′ik and ϵik are uncorrelated. The estimate of σ2(ϵk) is then

σ2 (ϵk
)
=
(

2nk
)−1 ∑ (

Xik − X′
ik

)2
. (94)

For examples of application of agreement samples to scoring accuracy for the testing programs under study, see Yao
et al. (2019a, 2019b) and Zhang et al. (2019).

Double Human Scoring

Although not currently encountered in the assessments examined, a traditional approach has each score Xk, 1≤ k≤ J,
equal to the average of two human scores X′

k and X′′
k such that ϵ′k=X′

k −τk and ϵ′′k = X′′
k −τk have expectation 0, are uncor-

related, and have common variance 2σ2(ϵ′k), so that the measurement error ϵk = (ϵ′k +ϵ′ ′k)/2 has variance σ2(ϵ′k)/2. For
1≤ i≤ n, Xik is the average of X′

ik and X′′
ik, where the pairs (X′

ik, X′′
ik), 1≤ i≤ n, are mutually independent and have the same

distribution as (X′
k, X′′

k ). In this case the estimate of σ2(ϵk) is

σ2 (ϵk
)
= (4n)−1

n∑
i=1

(
X′′

ik − X′
ik

)2
. (95)
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Agreement samples can be employed to estimate the scoring accuracy that would be achieved were double human scor-
ing used rather than single human scoring. This approach is illustrated in Yao et al. (2019a, 2019b) and Zhang et al. (2019).

Assessment Accuracy

Assessment accuracy is closely related to traditional notions of test reliability. Here the vector 𝛕 of true assessment scores
is the expectation of the observed score X given the test taker on a randomly selected test from a collection of parallel
assessments. Here the covariance matrix Cov(𝛜) is not easily estimated under normal circumstances. Two options are
examined here. One is closely related to Cronbach’s alpha (Cronbach, 1951). The other involves use of repeater data. For
the type of data considered, available software related to IRT does not yet appear to be adequate for operational use.

Cronbach’s Alpha

Cronbach’s alpha is a traditional approach to assessment accuracy that does not require actual observation of a parallel
assessment; however, this approach only applies under quite restrictive conditions, and the application here is somewhat
unconventional. As noted in Examples 10, 11, and 12, the approach applies relatively well to GRE Analytical Writing and
TOEFL Speaking but not to TOEFL Writing.

To begin, consider a generalization of Cronbach’s alpha for use with vectors. Let X be a sum of observed vectors Za,
1≤ a≤A, such that each Za has a finite covariance matrix Cov(Za). Let Za, 1≤ a≤A, in turn have a decomposition
Za = 𝛇a + 𝛄a, where each 𝛇a has a finite covariance matrix Cov

(
𝛇a
)

and each 𝛄a has a finite covariance matrix Cov
(
𝛄a
)

.
The true assessment score 𝛕 is the sum of the vectors 𝛇a for 1≤ a≤A, and the measurement error ϵ is the sum of the
vectors 𝛄a for 1≤ a≤A. It is assumed that the errors 𝛄a, 1 ≤ a ≤ A, are mutually uncorrelated, and it is assumed that 𝛇a
and 𝛄b are uncorrelated for positive integers a and b no greater than K.

To study sampling, let Z* be the K ×A matrix with columns Za for 1≤ a≤A. In terms of sampling, for 1≤ i≤ n, let
Zi*, 1≤ i≤ n, be mutually independent K ×A matrices with the same distribution as Z*, and let Zai be column a of Zi* for
1≤ i≤ n and 1≤ a≤A.

With the approach of Cronbach’s alpha (Yao et al., 2019a), Cov (𝛕) is estimated by

Cov (𝛕) = A
A − 1

[
Cov (X) −

A∑
a=1

Cov
(

Za
)]

= A
A − 1

A∑
a=2

a−1∑
b=1

[
Cov

(
Za,Zb

)
+ Cov

(
Zb,Za

)]
. (96)

Here

Cov
(

Za,Zb
)
= 1

n

n∑
i=1

[
Zai − E

(
Za

)] [
Zai − E

(
Za

)]′
(97)

estimates Cov(Za, Zb) so that Cov (𝛕) estimates

Cov∗ (𝛕) =
A

A − 1

A∑
a=2

a−1∑
b=1

[
Cov

(
Za,Zb

)
+ Cov

(
Zb,Za

)]
. (98)

For positive and distinct integers a and b no greater than A,

Cov
(

Za,Zb
)
= Cov

(
𝛇a, 𝛇b

)
. (99)

Therefore

Cov∗ (𝛕) =
A

A − 1

A∑
a=2

a−1∑
b=1

[
Cov

(
𝛇a, 𝛇b

)
+ Cov

(
𝛇b, 𝛇a

)]
. (100)

The challenge with using Cov (𝛕) is that

Cov (𝛕) =
A∑

a=1

A∑
b=1

Cov
(
𝛇a, 𝛇b

)
(101)
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rather than Cov∗ (𝛕), so the relationship of Cov∗ (𝛕) and Cov (𝛕) must be considered.
To compare the two expressions, observe that

Cov
(
𝛇a, 𝛇b

)
+ Cov

(
𝛇b, 𝛇a

)
= Cov

(
𝛇a
)
+ Cov

(
𝛇b
)
− Cov

(
𝛇a − 𝛇b, 𝛇a − 𝛇b

)
(102)

for all positive integers a and b no greater than A. Therefore

Cov∗ (𝛕) = A
A∑

a=1
Cov

(
𝛇a
)
− A

2 (A − 1)

A∑
a=1

A∑
b=1

Cov
(
𝛇a − 𝛇b

)
(103)

Cov (𝛕) = A
A∑

a=1
Cov

(
𝛇a
)
− 1

2

A∑
a=1

A∑
b=1

Cov
(
𝛇a − 𝛇b

)
. (104)

It follows that the difference

Cov (𝛕) − Cov∗ (𝛕) =
1

2 (A − 1)

A∑
a=1

A∑
b=1

Cov
(
𝛇a − 𝛇b

)
. (105)

Then Cov (𝛕) − Cov∗ (𝛕) is nonnegative definite so that Cov (𝛕) may provide an underestimate of Cov (𝛕) in the sense
that, for a K-dimensional vector z, σ2 (z′𝛕

)
= z′Cov (𝛕) z estimates σ2

∗
(

z′𝛕
)
≤ σ2 (z′𝛕

)
. The bias issue disappears if 𝛇a −

E
(
𝛇a
)

and 𝛇1 − E
(
𝛇1
)
] are equal with probability 1 for each positive integer a such that 2≤ a≤A.

In general, the discrepancy between Cov (𝛕) and Cov∗ (𝛕) is much less of a problem if the number A of summands is
large because of the divisor 2(A− 1) in Equation 105. In addition, if the dimension K is sufficiently large, it may be possible
to stratify the summands Za into strata such that, for a within a stratum, the differences 𝛇a − E

(
𝛇a
)

are very similar. This
approach is used in stratified alpha (Cronbach et al., 1965). The challenge for constructed-response scoring is that it is
often not possible to have values of A that exceed 2 owing to time constraints and owing to cost constraints on tests that
restrict the number of constructed responses used.

In the case of transformations, Cronbach’s alpha remains relevant. If G is an L×K matrix and g is an L-dimensional
vector for some positive integer L, then the covariance matrix of the true assessment score 𝛖 = g + G𝛕 of Y= g+GX can
be estimated by

Cov (𝛖) = GCov (𝛕)G′. (106)

A more general result can be useful in the case of nonlinear transformations that are continuously differentiable. Let
Y= f(X) for a continuously differentiable function f of dimension L on the K-dimensional vectors, and let 𝛖 be the true
score for Y. Let ∇f be the L×K matrix of partial derivatives of f. Then

Cov (𝛖) = [∇f(E (X)]Cov (𝛕)
[
∇f(E (X)

]′
(107)

estimates Cov (𝛖). This result is most appropriate if X has a small covariance matrix or if ∇f is continuously differentiable
and does not vary much over the range of X. This result can be useful in treating some scaled scores obtained by nonlinear
transformations of raw scores.

IRT can be employed in place of Cronbach’s alpha to estimate the true score 𝛕 in a variety of cases that can include
scaled scores (Haberman, 2013; Kolen et al., 1996).1

Unfortunately, this approach is quite difficult to apply to cases with test sections with only two constructed responses,
and the approach does not apply directly to continuous measurements like those encountered in automated scoring.

One technical issue can arise. It is possible that Cov (ϵ) = Cov (X) − Cov (𝛕) is not nonnegative definite. Such a case
raises major questions concerning sampling and concerning appropriateness of methodology based on Cronbach’s alpha
for the application. As a consequence, formal treatment of this situation is not pursued here.

Example 10. In GRE Analytical Writing, two prompts are used. The first is an issue prompt that requires generation of
an argument concerning a specified general issue, and the second is an argument prompt that requires analysis of a given
argument. Although the prompts are not identical, their empirical behavior is quite similar so that Cronbach’s alpha does
provide a basis for analysis. In current practice, 1 human score and 10 computer-generated features are available for each
prompt response. Here K = 11 and A= 2. For prompt a, a= 1 or 2, Element 1 of Za is the human score for that prompt
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response, and the remaining 10 elements of Za are the corresponding computer-generated numerical features for the
response. The vector X=Z1 +Z2. The value c = 1

2
𝛅1 in this application.

As in Example 4, it is also possible to use a human score and an e-rater score for each prompt. Here K = 2, c is 1∕2𝛅1, Za
has as first element the human score for prompt a and as second element the e-rater score for that prompt, and X=Z1 +Z2.
In the actual scoring procedure of GRE, Y is the arithmetic average of the two elements of X rather than ν̂ = τ̂1. The loss
in precision from use of Y can be measured with Equations 75 and 77.

Example 11. In TOEFL iBT Speaking, four prompts are used. Although the prompts are not identical in nature, behavior
is again sufficiently similar to use the approach of Cronbach’s alpha. Here 1 human score and 28 computer-generated
numerical feature scores are used for each prompt response. Here K = 29 and A= 4. For prompt a, 1≤ a≤ 4, the first
element of Za is the human score for the prompt, and the remaining elements are the corresponding computer-generated
numerical features for the response. The sum of the Za is X, and c = 𝛅1. An alternative has K = 2, the first element of Za
equal to the human score, and the other element of Za equal to the SpeechRater score. For some d> 1, a PBLP predictor
ν̂d is used based on the selected Za, 1≤ a≤ 4. To evaluate the effect of PBLP based on just SpeechRater and human scores
versus PBLP based on feature scores and human scores, define ν̂d based on K = 29, and let Y = a+ b′ X be defined based
on the corresponding ν̂d based on K = 2. This procedure is feasible because the SpeechRater score is a linear function of
the feature scores. For an analysis with six rather than four prompts, see Zhang et al. (2019).

Repeater Data

Repeater data provide a direct approach to the error of prediction of a score in a parallel assessment; however, this approach
must treat selection bias in almost all realistic situations. This approach requires data from multiple test administrations at
multiple times, for a test taker cannot be observed more than once at the same time. In most cases that have been examined,
to each observation i, 1≤ i≤ n, corresponds an integer code Ri that uniquely identifies the test taker. This code is typically a
customer number used to keep track of test takers who take a test more than once. The key feature of the code Ri is that, for
1≤ i< j≤ n, Ri =Rj if, and only if, the test taker for response vector Xi is also the test taker for response vector Xj. Without
loss of generality, assume that sorting of data has been used such that when Ri =Rj and i< j, response Xi corresponds to
an earlier administration than response Xj. Of interest for repeater analysis are test takers in the sample who took the test
at least twice. Let , the repeater set, be the set of integers r such that Ri = r for more than one positive integer i≤ n. For
r in , let i(r, 1) be the smallest positive integer i such that Ri = r so that i(r, 1) is the earliest observation of the test taker
with code r. Let i(r, 2) be the second observation on the test taker with code r so that i(r, 2) exceeds i(r, 1) but no code
Ri = r for i(r, 1)< i< i(r, 2). Analysis would be straightforward if the observations Xi(r, 1) from the first occasion and Xi(r, 2)
from the second occasion were to have the same distribution as X; however, in practice, membership in  is likely to be
related to the observed response vectors, for test takers usually do not take an examination more than once unless they
have reason to believe that they can improve their performance sufficiently to warrant the time and monetary expense
involved in repeating an assessment. In addition, the act of taking an assessment can improve knowledge of how to take
the assessment so that improvement in performance is often encountered on the second assessment. One approach to this
problem based on Haberman (1984) involves minimum discriminant information adjustment (MDIA). This approach
requires that  have at least (3K + 2)(K + 1)/2 members.

With MDIA, a positive weight wr is assigned to each r in . The wr , r in , satisfy the condition that the logarithm
logwr is a linear combination of the following quantities: (a) the constant 1; (b) the elements Xi(r, 1)k, 1≤ k≤K, of the
vector Xi(r, 1) from the first testing; (c) the elements Xi(r, 2)k, 1≤ k≤K, of the vector Xi(r, 2) from the second testing; (d)
the products Xi(r, 1)kXi(r, 1)m, 1≤ k≤m≤K, from the first testing; (e) the products Xi(r, 2)kXi(r, 2)m, 1≤ k≤m≤K, from
the second testing; and (f) the differences of products Xi(r, 1)kXi(r, 2)m −Xi(r, 2)kXi(r, 1)m, 1≤ k<m≤K. In addition, the wr
satisfy the following linear constraints: ∑

r∈
wr = 1, (108)

∑
r∈

wrXi(r,1) =
∑
r∈

wrXi(r,2) = E
(

Xk
)
, 1 ≤ k ≤ K, (109)
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∑
r∈

wrXi(r,1)kXi(r,1)m =
∑
r∈

wrXi(r,2)kXi(r,2)m = E
(

XkXm
)
, 1 ≤ k ≤ m ≤ K, (110)

∑
r∈

wrXi(r,1)kXi(r,2)m =
∑
r∈

wrXi(r,2)kXi(r,1)m, 1 ≤ k < m ≤ K. (111)

The requirements on the weights wr uniquely determine them. If K = 1, then Equation 111 disappears and the
linear combination requirement on logwr does not include the product differences Xi(r, 1)kXi(r, 2)m −Xi(r, 2)kXi(r, 1)m for
1≤ k<m≤K. Let N() be the number of codes of test takers in the repeater set , and let ur = 1/N(), r in , define
uniform weights on . Then the weights wr , r in , minimize the discriminant information

∑
r∈ wr log

(
wr∕ur

)
subject

to Equations 108, 109, 110, and 111. In some sense, the weights wr are chosen to be as close as possible to uniform weights
subject to the constraints of Equations 108, 109, 110, and 111. A program in Fortran 95 to perform the computations is
available within ETS (Haberman, 2014) and is available outside of ETS for noncommercial use. The program uses the
Newton–Raphson algorithm associated with log-linear models to find the weights wr .

The weights wr , r in , are defined as long as some positive real numbers vr , r in , exist such that∑
r∈

rj = 1, (112)

∑
r∈

vrXi(r,1) =
∑
r∈

vrXi(r,2) = E
(

Xk
)
, 1 ≤ k ≤ K, (113)

∑
r∈

vrXi(r,1)kXi(r,1)m =
∑
r∈

vrXi(r,2)kXi(r,2)m = E
(

XkXm
)
, 1 ≤ k ≤ m ≤ K, (114)

∑
r∈

vrXi(r,1)kXi(r,2)m =
∑
r∈

vrXi(r,2)kXi(r,1)m, 1 ≤ k < m ≤ K. (115)

Given the weights wr , r in , the estimated covariance matrix of the vector 𝛕 of true assessment scores is

Cov (𝛕) =
∑
r∈

wr

[
Xi(r,1)j − E (X)

] [
Xi(r,2)j − E (X)

]′
. (116)

It is always the case that Cov (ϵ) = Cov (X) − Cov (𝛕) is nonnegative definite.
The use of MDIA can be unsatisfactory even if the wr , r in , are defined if the coefficient of variation of the wr is quite

large and the number of members of  is small or of moderate size. This result arises from general results concerning
asymptotic variances of estimates of expectations by use of MDIA (Haberman, 1984). The issue arises if membership in
 is quite strongly related to the corresponding two response vectors. Applications of MDIA can sometimes be more
complex and involve the variables Gi, 1≤ i≤ n, as well as Xi. In the examples considered in Yao et al. (2019a, 2019b), the
values of N() were 168,595 for TOEFL Writing, 4,739 for GRE Writing, and 23,673 for PRAXIS Writing. The respective
coefficients of variation were 3.77, 1.05, and 1.54 so that MDIA was satisfactory. In these cases, although repeater samples
indeed differ in characteristics from complete samples, the differences were not sufficiently dramatic, given the large
number of repeaters observed, to cause a major problem. Serious problems are most likely to arise in cases in which test
takers just need to perform above a low cut point, and the vast preponderance meet the cut point the first time they take
the test. In such a case, the repeaters are a very highly selected group, for a test taker is highly unlikely to take a test twice
if the initial performance was satisfactory for the purpose of the test.

Example 12. Consider the TOEFL scaled section scores of Example 7. Here repeater data can be employed. It is important
to note that in prediction of specific true assessment section scores, all section scores are applied, and in prediction of the
total score, observed section scores need not receive equal weight. Repeater data can also be applied to the raw scores and
item scores in TOEFL Writing even though use of the methodology based on Cronbach’s alpha is not satisfactory because
of quite different behavior of the responses to the two prompts.

Example 13. Consider the case of TOEFL Writing introduced in Example 3. For the data used in Yao et al. (2019a, 2019b),
the proportional reduction in mean squared error only decreases from .81 for BLP (d= 1) to .80 for PBLP with d= 5. At
the same time σ2(E

(
Δd (G)

)
decreases from .0038 to .0014. One cautionary note is that the largest absolute value ofΔds (h)
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decreases only from .137 to .096. Use of d= 100 involves a more substantial change in results. Here proportional reduction
in mean squared error is down to .76, and σ2(E

(
Δd (G)

)
is only .0001. The largest absolute value of Δds (h) is .067. It is

worth noting that use of two human scorers for each prompt without any use of computer-generated features leads to a
maximum value of ∣ Δ1s (h) ∣ of .007 and to a proportional reduction in mean squared error with BLP of .83, which is
more satisfactory than any result with both one human rater and nine e-rater features.

Use of repeater data has the great virtue of flexibility, although imperfect attempts to correct for selection bias are a
consistent danger. For evaluation of assessment reliability for cases with few items, it is often the case that few good alter-
natives exist. Analysis with repeater data may reveal weaknesses in an assessment not evident from examination of scoring
accuracy. For example, in TOEFL Writing using BLP with one human score and nine essay features, the estimated propor-
tional reduction in mean squared error for BLP for assessment accuracy of .81 was much lower than the corresponding
value of .89 for scoring accuracy.

Conclusions

This report outlines the procedures required to apply BLP and PBLP in assessments. These methods permit more effi-
cient use of information from an assessment and more careful examination of fairness problems. The theoretical basis
of BLP and PBLP is described in the sections Best Linear Prediction and Penalized Best Linear Prediction. The problem
of different definitions of true scores is explored in the sections Scoring Accuracy and Assessment Accuracy. Estimation
procedures are provided in the section Estimation for Best Linear Prediction and Penalized Best Linear Prediction.

It must be emphasized that many details can require attention in practice. Sampling discussed in this report has been
simple random sampling; however, complex sampling does arise in assessments. Monitoring of results over time is always
important. Testing populations can change substantially over time so that an analysis one year may no longer be appro-
priate 5 years later.

This report does not consider several issues important in practice. Linking is important, and a change from use of the
observed score O to use of νd requires changes in linking approaches that depend on the specific assessment. Rounding
and truncation can add quite substantial effects on results. This issue, although not familiar in psychometrics, has been
discussed for more than 100 years (Sheppard, 1898). More recent discussions include Dempster and Rubin (1983), Kolassa
(1989), and Kolassa and McCullagh (1990). As a general rule, rounding and truncation of intermediate results should be
avoided as much as possible until final scores must be reported.

This report deals with cases in which the relevant expectations and covariance matrices can be estimated accurately,
that is, sample sizes are large and dimensions of vectors and matrices are modest in size and not related to sample size.
To apply BLP and PBLP to testing programs with small cohorts of test takers and methods to score constructed responses
that involve very high dimensions and irregular statistical properties is a far more difficult enterprise than the problems
considered in this report.
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Note
1 Further cases can be found in revisions of Haberman (2013) at https://github.com/EducationalTestingService/MIRT/blob/

master/Documents/irtprogram.pdf
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