
Informatics in Education, 2020, Vol. 19, No. 4, 521–541
© 2020 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2020.23

521

Development of Program Comprehension Skills by
Novice Programmers – Longitudinal Eye Tracking Studies

Magdalena ANDRZEJEWSKA, Paweł KOTONIAK
Pedagogical University of Krakow, Institute of Computer Science, Cracow, Poland
e-mail: magdalena.andrzejewska@up.krakow.pl, pawel.kotoniak@student.up.krakow.pl

Received: June 2020

Abstract. The article discusses the findings of longitudinal studies (three stages spanning 6
months) which were to investigate the process of acquiring the ability to comprehension pro-
gram code by the computer science students having started to learn to program. The studies were
conducted with the use of a knowledge measurement test, the diagnostic survey, and eye track-
ing technology that enabled the recording of movement of the subjects’ eyes and an analysis
of the patterns of information processing during solving programming problems. The obtained
results have shown that the students solved the tasks most effectively in the last stage of the
research during which they obtained the highest indicator of correct answers in the significant-
ly shortest time. In the last stage of the research the dominant form of the algorithmic problem
analysis was code, in two previous it was flowchart. The eye tracking data have shown that re-
gardless of the research stage the code analysis was definitely connected with a greater number
of fixations, with very near values of time devoted to solving those two forms of the algorithm.
The participants who increased their competences in a scope of the program code analysis
had a significantly greater saccade amplitude average (SAA) and a significantly shorter fixa-
tion duration average (FDA) in the last stage of the research comparing to previous ones. The
results suggest that the FDA and SAA are parameters sensitive to the development of program
comprehension skills.

Keywords: novice programmers, program comprehension, eye tracking.

1. Introduction

Programming, the essential competence in computer science, is commonly considered
one of the most demanded but also difficult skills to master. The complexity of the
process of learning programming poses many challenges to teaching methodology. It is
shown that the main sources of difficulties regarding the programming teaching process
include: the didactic methods used by teachers, ways of learning by students, an insuf-
ficient level of base skills of students and their motivation, a multi-dimensional character
of programming skills and psychological-social factors connected with the perception of
programming (Gomes and Mendes, 2007). The phenomenon has long been the subject of

M. Andrzejewska, P. Kotoniak 522

interest of a broad range of researchers because the problems occurring in this field reoc-
cur and appear before each subsequent generation of students of information technology
and related disciplines (incl. Mc Cracken et al., 2001; Lister et al., 2004; Pears et al.,
2007; Clear et al., 2011; Konecki, 2014).

In psychological terms, programming is a cognitive activity requiring the utilisation
of various kinds of mental models (Brooks, 1983). A model of fundamental importance
is one related to solving problems, constructing and representing algorithms. Learning
programming, however, is not just about acquiring or developing one’s skills in the
domain of problem-solving. It also requires the learner to become familiar with many
abstract notions connected with programming mechanics, with the syntax of the pro-
gramming language, and with the semantics of the developed code (Robins, 2003).

Many studies show that not only creating new algorithms but also analysing ready
solutions – and especially implementing them in the programming language – pose a
great challenge to learners (Govender and Grayson, 2006; Moström, 2011; Mendes
et al., 2012). According to Lahtinen et al. (2005), the biggest difficulty for program-
mers-beginners is not the understanding of basic concepts but the ability to use them in
practice. In turn, in their research, Lister et al. (2004) found that students often lack the
skills and abilities essential to the process of code reading. According to researchers, it
is exactly this area that should be developed in the first place, as a domain preceding the
ability to write one’s own code and solve problems.

1.1. Flowchart Versus Code

One of the first skills acquired by novice programmers is algorithm analysis – the abil-
ity to read and write them failure to master the competences connected with a represen-
tation and a structure of algorithms is widely recognized as the basic reason for difficul-
ties accompanying programming learning (Gomes and Mendes, 2007). An important
subject matter at this stage is the answer to the question of which teaching strategy
used to present algorithms is more effective: a code-based one or a flowchart-based
one. Does the integration (simultaneous presentation) of the two algorithm forms affect
the process of learning programming? If so, in what way? A number of studies have
been conducted in this field, with different – sometimes even contradictory – results
obtained. For instance, the research conducted by Scanlan (1989) suggested a clear ad-
vantage (in the process of algorithm comprehension) of a flowchart over a pseudo-code.
Likewise, Carlisle et al. (2005) found that the majority of students wrote algorithms
successfully with the use of flowcharts and that the utilisation of a programming lan-
guage diverted their attention from the algorithm concept due to the difficulties related
to the application of the syntax of the language. The above conclusions stand in opposi-
tion to the findings of Ramsey et al. (1983) and Shneiderman et al. (1977), according to
whom flowcharts were just an alternative of representation of language syntax and did
not help in understanding algorithms, especially in the case of experienced program-
mers. Modern research techniques which expand our knowledge about brain function
and enable to have an insight in the neurobiological aspects of the learning process and

Development of Program Comprehension Skills by Novice Programmers ... 523

such experimental methods as eye tracking, which allow following cognitive mecha-
nisms and can provide objective information about the programming learning process,
can be helpful while resolving such dilemmas

1.2. Eye Tracking

Eye tracking is a technique consisting in recording of a visual activity of a human be-
ing. It is believed that eye tracking, which makes it possible to examine the functional
performance of the human eye, also provides the means to analyse the visual perception
and the cognitive processes related thereto, including, in particular, visual attention
(Duchowski, 2003). The main parameters measured by eye trackers during studies are
saccades and fixations. Fixations are motor actions of the eye, interpreted as fixing
one’s gaze on a certain location. We usually measure the duration and the number of
fixations. It has been found, for instance, that three fixations occur per second on aver-
age during reading, which means they last about 250–300 milliseconds each on average
(Rayner, 1998). Studies of attentional processes assume that fixations may act as a basis
for objective measurements of cognitive processes. It is thought that the average dura-
tion of a fixation is the indicator of the engagement of one’s visual attention or the depth
of processing of data, the source of which is visual stimuli (Just, and Carpenter 1976).
Saccades are rapid movements of the eyes, shifting the gaze from one point to another
point of a visual scene. The main characteristic of a saccade is its amplitude related to
the distance between subsequent fixation points. It is believed that an analysis of sac-
cade movements can make it possible to draw conclusions regarding decision-making
processes. Also, the length of a saccade is connected with the strategy of searching
through the visual scene. Saccades longer than 1.6° are typical of a global strategy.
Those shorter than 1.6° are considered part of a local strategy. Moreover, it has been
found that experts tend to use global strategies of image search, while beginners choose
local strategies by default (Francuz, 2013). Eye tracking technology is a set of objective
measurement tools that make it possible to identify the visual patterns of information
processing. The possibility to interpret them is a new theoretical-cognitive contribution
to the research into the learning process and allows the technology to be applied more
often in the exploration of many different education-related matters. These matters in-
clude: studies of the effectiveness of learning aids, verification of the existing theories
on cognitive processes and learning strategies, or exploring individual differences in
the process of learning and analysing the patterns of information processing – including
those typical of experts and beginners (Lai et al., 2013).

1.3. Program Comprehension and Eye Tracking

The current studies conducted with the use of eye tracking technology, which – thanks
to the analysis of the relevant cognitive process (concerning visual attention) – help us
understand the process of acquisition of the ability to program, pertain to a range of
aspects of program code analysis (Obaidellah et al., 2018).

M. Andrzejewska, P. Kotoniak 524

Crosby and Stelovsky (1990) compared the behaviour of beginner and experienced
programmers in order to check how experience affected the code scanning patterns in
the process of code comprehension. Also Bednarik and Tukiainen (2006) identified dif-
ferences in program comprehension strategies between expert and novice programmers
when reading a program in conjunction with an execution visualization tool. Uwano
et al. (2006) noticed that in the process of searching for bugs in programs, most of their
research subjects first read an entire code and only later focused on selected parts there-
of. The time spent on the initial scanning of the code had an impact on the effectiveness
of bug detection. Sharif et al. (2012) proved that the said time affects the visual effort
required to identify bugs, and experienced programmers spent less time than beginners
on initial code scanning before proceeding with an actual search for errors.

Results of eye tracking studies have also shown that the process of reading a source
code differs fundamentally from reading a text written in a natural language. These
differences disappear, however, if the program code becomes similar to a text written
in a natural language (Busjan et al., 2011; Binkley et al., 2013) and experts read the
code less linearly than beginners (Busjahn et al., 2015). The study of gaze behaviour
when reading program code was also dealt with during the First International Workshop
on Eye Movements in Programming Education (Bednarik et al., 2014), as a result a
scheme for illustrating the differences between reading code and reading natural text
was developed.

There have also been studies aimed to answer the question of how code formatting,
including the colour scheme adopted for the syntax, affects the effectiveness of analysis
(e.g. ability to find syntax errors) and comprehension (e.g. determining the outcome of
program execution) of the code. It has been found that coloured syntax shortens the time
to perform a task and facilitates its analysis (Dimitri, 2015; Beelders and Plessis, 2016)
and that the effect weakens with the growth of the level of experience with programming
(Sarkar, 2015). Also, a right spatial structure of the source code makes it easier to under-
stand it quicker, regardless of the adopted naming style for its identifiers (Binkley et al.,
2013). Studies on solving algorithmic problems with the use of eye tacking have been
rare so far. Andrzejewska et al. (2016) have confirmed that the use of a formal notation
of a programming language to present algorithms is becoming a challenge for beginners
in the process of solving even relatively simple programming problems.

2. Method

2.1. Aim of the Study and Research Questions

The eye tracking studies conducted so far have not yet explored the development of the
ability of logical analysis of program source code within the first months of learning
programming, which seems to be a crucial period, during which significant progress in
code reading and comprehension should be made. It is interesting to see whether the
application of eye tracking technology makes it possible to extend and supplement the
other methods diagnosing the issue in question.

Development of Program Comprehension Skills by Novice Programmers ... 525

The goal of this study was to examine how students developed their ability of logical
analysis of program source code (reading and understanding) at the initial stage of learn-
ing programming. The paper aims, in particular, to answer the following main research
questions:

(RQ1) ● Are there significant differences in the behavioural, subjective, and eye
tracking factors when doing program comprehension tasks between the stages of
the research?

(RQ2) ● Does the form of algorithm presentation (code vs. flowchart) significantly
affect the performance of the task and the eye tracking parameters during the two
stages of the research?

(RQ3) ● (a) Does the selection of a flowchart signify a smaller progress in the
development of the ability to understand the code, and (b) What eye tracking mea-
sures are sensitive to the development of students’ program comprehension?

2.2. Experiment Design

The independent variables were: a research stage – three stages spanning six months
(Stage 1 using only traditional materials, Stage 2 and Stage 3 using an eye tracking
device; task – three types of programming problems; a task form – two forms of present-
ing a programming problem in Task 3 (a code vs. a flowchart); a group – the research
subjects were assigned to one of three groups depending on the chosen form of solving
the Task 3 in Stage 2 and Stage 3.

The dependent variables were divided into behavioural, subjective and eye track-
ing variables. The behavioural indicators of program comprehension are: achievement,
which relates to the rate of correct answers (0 – incorrect, 1 – partly correct, 2 – cor-
rect); time (ms), which refers to the number of milliseconds spent answering each task;
exam test results (%) obtained by students for the C programming language after the
first and second learning semesters. The subjective indicator is the students’ percep-
tion of the difficulty of the tasks measured in a post-survey study. Students rated the
difficulty level related to the analysed tasks on the Likert scale from 1 (very easy) to 5
(very difficult).

With regard to eye tracking parameters, we focused on: fixation count (FC: number
of fixations); fixation duration average (ms) (FDA: the sum of duration of all fixa-
tions divided by the number of fixations); saccade amplitude average (°) (SAA: the
sum of all saccade amplitudes divided by the number of saccades); scanpath length
(px) (SL: the sum of the lengths (distance from start to end) of all saccades); dwell
time (ms) (DT: the sum of the duration of all fixations and saccades that hit the area
of interest – AOI); revisits (the number of glances towards the AOI if saccades came
from outside).

The analyses of the collected data were conducted mainly by means of a repeated or
mixed-design model of ANOVA (analysis of variance), followed by a pairwise compari-
son with Bonferroni correction (post-hoc tests).

M. Andrzejewska, P. Kotoniak 526

2.3. Research Stages and Participants

The research was carried out at intervals in three stages. The participants were recruited
from the population of first-year computer science students. The first stage of the research
was conducted at the beginning of the semester in which the subjects started learning to
program (i.e. after about 6 weeks). Its important goal was to select those students who
had never programmed before. 51 students participated in the stage in question. This
stage required participants fill in a questionnaire and to solve the tasks. The questions
included in the questionnaire made it possible to determine who had already learned
programming in C or another language before taking up the studies. Such persons were
excluded and the 35 remaining participants were included into the further stages of the
research. Among those, 31 decided to take part in the second stage of the research, which
was conducted with the use of an eye tracker about 3 weeks later.

The last – third – stage of the research took place six months later, near the end of the
second semester of the course in programming. Unfortunately, in the meantime 7 research
subjects did not pass the first semester. In addition to that, 3 other persons resigned from
taking part in the last stage of the research project. Ultimately, the study group consisted
of 21 participants, 17 men and 4 women, aged 19 to 24 (M = 19.80, SD = 1.20). The mea-
surement data collected in both stages of eye tracking studies were analysed for their qual-
ity and no artefacts were found that would require excluding further research subjects.

2.4. Eye Tracking Device and Procedure

Apparatus. Our studies were conducted with the use of the iViewX Hi-Speed eye track-
er manufactured by SensoMotoric Instrument (SMI). It is an apparatus designed to carry
out non-invasive high sampling rate (i.e. 500/1,250 Hz) studies, categorised as a high-
performance stationary device, used mostly in laboratory conditions.

The workstation includes a computer used to manage the entire conducted experi-
ment, a computer screen, and an eye tracking module. The device has been designed to al-
low the person using it to keep their head still without their field of vision being limited.

During the experiment, the images were presented on an LCD screen on a 23” diago-
nal screen with a full HD resolution of 1920 x 1080. A 9-point calibration was performed
before each session. The experiment was performed with the use of software called SMI
Experiment Suite™ 360. The experiment scheme was designed using the SMI Experi-
ment Center™ 3.4, and the data was recorded with the use of SMI iView X™. The re-
sults were processed using SMI BeGaze™ 2.4
The eye tracking session. Each eye tracking session was conducted individually. At the
beginning, the participant became familiar with the course of the research procedure.
Next, the device was calibrated, and the participant was presented a chart with a set of
instructions and a number of charts shown one after another, each with a task to be per-
formed. The final part of the session involved a validation procedure aimed at verifying
the correctness of the collected results. After leaving the workstation, students filled in
a short questionnaire

Development of Program Comprehension Skills by Novice Programmers ... 527

2.5. Data Collection Instruments

During the first stage the students filled in a questionnaire which included questions about
their demographic details (age, sex) and about their perceived level of skills and experi-
ence in programming. Additionally, they solved 3 programming tasks, almost identical
to those which were used in the further stages of the research. On the answer sheet, they
noted the start and finish times of each task, and assessed the difficulty of each of them
at the end. In the second and third stage of the eye tracking studies the students solved
3 tasks, and then they filled a short questionnaire with questions asking them about the
problems they encountered during the analysis of the programs and about their perceived
level of difficulty of the tasks. Both eye tracking studies involved the same tasks and
questionnaires, and the tasks were presented in the same order. The examination test
results (expressed as a percentage) which the students obtained after the first and second
semester of two subjects learning conducted in the C programming language (Introduc-
tion to programming, Procedural programming) were also used as the data.
Programming tasks. Research subjects analysed and determined the result of execution
of 3 programming tasks. The first two tasks (Task 1 and Task 2) were short but complete
codes of programs developed in the C language. Task 3 presented the same algorithm
expressed using a flowchart (right side of the task chart) or a complete program code
(left side of the task chart). This task required the research subjects to first choose one
of the two methods of algorithm presentation and then analyse the chosen option. Task 1
required an analysis of a for loop code; the loop made 3 iterations. Each step of the loop
required the research subjects to calculate a simple expression based on the multiplica-
tion and subtraction of the current value of the variable in the loop. Task 2 required an
analysis of a while loop; the loop made 5 iterations. Each step of the loop executed
a conditional instruction, which calculated a simple conditional expression verifying if
the value of the variable in the loop was even. The levels of difficulty of tasks 1 and 2
were similar. Both tasks required remembering a modified value of only one variable at
each step of the loop. Task 3 required an analysis of a while loop, which made 3 itera-
tions for the provided input data. Each step of the loop involved executing two simple
instructions which modified the value of two variables. The task was the most difficult
of all three as it required remembering intermediate values of the said 2 variables and
the value of the input data.

3. Results

3.1. (RQ1) Are there significant differences in the behavioural, subjective, and eye
tracking factors when doing program comprehension tasks between the stages of
the research?

The answer to this question involved the use of the following metrics: time, the rate
of the correct answers, the perceived task difficulty, the fixation count (FC), the fixa-

M. Andrzejewska, P. Kotoniak 528

tion duration average (FDA), the saccade amplitude average (SAA), and the scanpath
length (SL). With regard to behavioural factors (time and the rate of correct answers), a
repeated measures ANOVA with two within-subject independent variables (3 stages x 3
tasks) was performed.

As for the time, the analysis of variance revealed significant differences between the
stages [F(2, 40) = 8.803, p = 0.001]. The time spent to solve tasks in the first two stages
was similar in the case of both stages and much longer than in the case of Stage 3 (Stage1
M = 148.57 s, Stage 2 M = 142.32 s, Stage 3 M = 115.05 s). Post-hoc comparisons
showed that the differences between Stage 3 and Stage 1 (p=0.001) and between Stage
3 and Stage 2 (p = 0.008) were significant. The analysis of variance revealed neither
a significant main effect of the performed tasks [F(2, 40) = 2.125, p = 0.133] (Task1
M = 131.26 s, Task 2 M = 128.53 s, Task 3 M = 146.15 s) nor an effect of interaction
between the tasks and stages [F(4, 80) = 0.867, p = 0.488)].

Task 3 was analysed the longest, which is the expected result since the task required
the largest number of activities. Yet, Table 1 shows that at Stage 2, Task 3 was analysed
slightly shorter than Task 2, which might be an effect of fatigue and a decision not to
analyse the task in so much detail at the stage in question.

When it comes to the students’ achievements, the data revealed a significant main
effect of particular stages [F(2, 38) = 8.24, p = 0.001]. The rate of correct answers was
significantly higher for Stage 3 of the research (Stage 3 M = 1.55) compared to the
two previous stages (Stage 1 M = 1.23, Stage 2 M = 0.92). A post-hoc analysis showed
significant (p = 0.001) differences to exist between Stage 2 and Stage 3. Better results
obtained in Stage 1 as compared to Stage 2 can be explained by the fact that in the case
of Stage 1, the students could solve the problem using a sheet of paper to write down
their calculations. In the case of Stage 2, they had to “memorise” all intermediate values
of the variables and make calculations in their heads.

In addition the type of the task had a significant main effect on the accuracy of the
answers to the performed tasks [F(2, 38) = 6.48, p = 0.004]. Pairwise comparisons
proved that the lowest indicator obtained for Task 2 (M = 0.92) differed significantly
from both Task 1 (M = 1.37, p = 0.017) and Task 3 (M = 1.42, p = 0.007). But the stages
x tasks interaction effect was not significant [F(4, 76) = 1,22, p = 0.309]. The most
difficult task (one with the lowest rate of correct answers at each stage (see Table 1)
appeared to be Task 2, which was expected to be the easiest task. It seems that the most
likely reason behind the above was the subjects’ wrong interpretation of the conditional

Table 1
Means of the behavioural dependent variables for interaction effect (3 stages and 3 tasks)

Task Time Correct Answers
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

1 140.00 147.63 106.16 1.40 1.10 1.60
2 137.14 136.74 111.71 1.05 0.40 1.30
3 168.57 142.60 127.28 1.25 1.25 1.75

Development of Program Comprehension Skills by Novice Programmers ... 529

expression in the instruction, i.e. if (!(i%2)). Students often find it difficult to
calculate the value of expressions in the C language using logical operators combined
with arithmetic operators.

To examine the subjective factor, a repeated measures ANOVA with one within-
subject independent variable (3 stages) was performed. The analysis revealed signifi-
cant differences with respect to the students’ perception of the difficulty level of tasks
between the particular stages [F(2, 38) = 14.671, p < 0.001]. According to the research
subjects, the performed tasks were easiest at Stage 3 (M = 1.95); a post-hoc test showed
that the opinion differed considerably in the case of both Stage 1 (M = 2.60, p < 0.001)
and Stage 2 (M = 2.65, p < 0.001).

To analyse the eye movements parameters, a repeated measures ANOVA with two
within-subject independent variables (2 stages x 3 tasks) was performed. The analysis
focused mainly on parameters connected with fixations and saccades: fixation count
(FC), scanpath length (SL), fixation duration average (FDA), and saccade amplitude
average (SAA).

The data in Table 2 shows that in the case of the fixation number and scanpath length,
there occurred a significant main effect between the particular stages. The research sub-
jects displayed a significantly greater (p = 0.003) number of fixations and covered a sig-
nificantly longer (p = 0.005) scanpath in Stage 2 (see Table 3). A significant main effect
(for SL) or a main effect on the border of significance (for FC) can also be seen between
the particular tasks. Post-hoc tests showed that the SL in Task 3 differed significantly
from the SL in both Task 1 (p < 0.001) and Task 2 (p < 0.001). The obtained finding is

Fig. 4. Fixation Duration Average FDA (2 stages and 3 tasks and 3
groups).

Fig. 5. Saccade Amplitude Average (2 stages and 2 tasks

 STAGE 2
 STAGE 3

1 2 3

TASKS

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5
Sa

cc
ad

e
Am

pl
itu

de
 A

ve
ra

ge
 S

AA
 (°

)

 GROUP A
 GROUP B
 GROUP CTASK 1

STAGE
2

3
150

200

250

300

350

400

450

500

FI
XA

TI
ON

 D
UR

AT
IO

N
AV

ER
AG

E
FD

A
(m

s)

TASK 2

STAGE
2

3

TASK 3

STAGE
2

3

 TASK 1
 TASK 2GROUP A

STAGE
2

3
1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

SA
C

C
AD

E
AM

PL
IT

U
D

E
AV

ER
AG

E
SA

A(
°)

GROUP B

STAGE
2

3

GROUP C

STAGE
2

3

Fig. 1. Saccade Amplitude Average SAA (2 stages and 3 tasks).

M. Andrzejewska, P. Kotoniak 530

not surprising. Both these parameters (FC and SL) are usually positively and strongly
correlated with the duration of task performance (see Table 1).

Significant main effects for tasks were also discovered in the case of the fixation
duration average (FDA), which was the longest for Task 1, and of the saccade ampli-
tude average, with the highest value for Task 3 (see Table 3). A post-hoc analysis of the
FDA revealed a significant (p = 0.001) difference between Task 3 and Task 1, and in the
case of SAA, it showed significant differences to occur between Task 3 and both Task 1
(p < 0.001) and Task 2 (p = 0.002).

The longest FDA in Task 1 occurred in the case of both Stage 2 and Stage 3 of the
research (see Table 4), which is most likely related to the greatest involvement of the
research subjects in this task – which can be referred to as the “first task effect”.

We suppose that the highest values of the SAA in Task 3 stem from the nature of the
task, i.e. the feature of a flowchart, whose component arrangement translates into greater

Table 2
Repeated ANOVA for the eye movements dependent variables (2 stages and 3 tasks),

main and interaction effects

Effect Scanpath (px) FDA (s) SAA (°) FC
F p F p F p F p

Stages 9.752 0.005 < 1 > 0.05 < 1 > 0.05 11.730 0.003
Tasks 21.011 0.000 7.843 0.001 17.218 0.000 3.031 0.059
Stages x Tasks < 1 > 0.05 < 1 > 0.05 3.679 0.034 1.551 0.225

Table 3
Means of the eye movements dependent variables for main effect (2 stages and 3 tasks)

Scanpath (px) FDA (s) SAA (°) FC
M M M M

Stages 2 59188.16 298.97 4.12 408.21
3 47805.14 294.19 4.21 335.89

Tasks 1 44438.24 311.78 3.69 350.55
2 48562.45 296.86 4.07 359.95
3 67489.26 281.09 4.74 405.64

Table 4
Means of the eye movements dependent variables for interaction effect (2 stages and 3 tasks)

Task Scanpath (px) FDA (s) SAA (°) FC
Stage 2 Stage 3 Stage 2 Stage 3 Stage 2 Stage 3 Stage 2 Stage 3

1 51042,05 37834,43 314,46 309,10 3,49 3,90 403,81 297,29
2 53380,81 43744,10 297,73 295,99 3,88 4,26 399,48 320,43
3 73141,62 61836,90 284,71 277,47 5,00 4,49 421,33 389,95

Development of Program Comprehension Skills by Novice Programmers ... 531

saccade amplitudes. The significant stages x tasks interaction effect, which can also be
seen in Fig. 1, comes from the fact that at Stage 3, a greater number of research subjects
solving Task 3 chose the version expressed in the form of a code, and at Stage 2, most
chose a flowchart. This resulted in significantly lower SAA values in the case of Task 3
at the last stage of the research. It is reasonable to assume that the difference in the SAA
values as found between Task 1 and Task 2 (see Table 4) also result from the fact that
the graphic form of the code written with the use of the for-loop syntax (Task 1) is more
concise compared to the syntax of the while loop (Task 2).

3.2. (RQ2) Does the form of algorithm presentation (code vs. flowchart) signifi-
cantly affect the performance of Task 3 and the eye tracking parameters during the
two stages of the research?

During Stage 1 and Stage 2, the number of the research subjects who decided to solve
Task 3 with the use of either a code or a flowchart was the same, amounting to: code
N = 8 (38%), flowchart N = 13 (62%). During Stage 3, 7 students from among those
who opted for a flowchart before, decided to solve the task on the basis of a code, hence
the populations of groups opting for either a code or a flowchart at that stage were as
follows: code N = 15 (71%), flowchart N = 6 (29%) (see Table 7).

The rate of correct answers, dwell time (DT), revisits, and fixation count (FC), mean-
ing eye tracking metrics connected with the highlighted areas of interest representing
the code and the flowchart, were used to answer question RQ2. A mixed-design model
ANOVA (2 stages x 2 forms) was performed.

When analysing the data given in Table 5, we can see a significant main effect occur-
ring between particular stages within the body of the solutions of Task 3. The research
subjects arrived at significantly (p = 0.013) higher rates of correct answers in Stage 3 of
the research (see Table 6).

The students who opted for a code, performed, in general, worse. But the values for
both presentation forms were similar for Stage 3. A significant (p = 0.028) difference in
achievements was revealed between the particular stages in the scope of the code-based
analysis (see Table 7).

No significant main effect was discovered in the case of the dwell time (DT) spent
on solving Task 3 (see Table 5). Looking at Table 6, we can notice that the students

Table 5
Mixed-design ANOVA for the dependent variables (2 stages and 2 forms),

main and interaction effects

Effect Correct Answer Dwell Time (s) Fixation Count Revisits
F p F p F p F p

Stages 7.001 0.012 < 1 > 0.05 1.260 0.269 < 1 > 0.05
Forms 1.056 0.311 < 1 > 0.05 4.073 0.051 < 1 > 0.05
Stages x Forms 1.788 0.189 < 1 > 0.05 < 1 > 0.05 < 1 > 0.05

M. Andrzejewska, P. Kotoniak 532

analysed their task during Stage 2 generally longer, but at that stage, unlike in the
case of Stage 3, they spent more time on analysing the code than the flowchart (see
Table 7).

Also in the case of the eye tracking parameters connected with AOI, meaning FC
and Revisits, there were no significant main effects of interaction between the stages
and the forms of Task 3 (see Table 5). But it is important to bear in mind that the main
stages effect for FC was on the border of significant, and the number of fixations was
much higher in Stage 2.

Regardless of the study stage, a much lower number of fixations was observed for
persons who used a flowchart to solve the task (see Table 7). The difference stems
probably from the mechanism of code analysis, which is read quite like written natural
languages, with frequent fixations. Analysing an algorithm in the form of a flowchart
determines the direction of the gaze (we make a saccade). It seems that following the
structure of a flowchart does not require the same number of fixations as in the case of
processing a code. An important thing to mention here is that in the case of Stage 3, the
research subjects analysing the code made more fixations and spent less time solving
the task compared to those analysing the flowchart (see Table 7).

The Revisits parameter pertains to the number of return saccades, which in the case
of this task are related to the need to return to the area of instruction, to the task con-
taining the numerical data (values of input variables) necessary to solve the problem.
The value of the parameter was two times higher in Stage 2, and always slightly lower
for the code-based format, regardless of the stage. Those solving the task based on a
flowchart analysis returned probably more often to the content of the problem to check
the values of the input variables.

Table 6
Means of the dependent variables for main effect (2 stages and 2 forms)

Correct Answer Dwell Time (s) Fixation Count Revisits
M M M M

Stages 2 1.13 88.32 271.00 25.20
3 1.70 82.13 243.18 23.15

Forms Code 1.30 85.86 282.10 22.88
Flowchart 1.53 84.59 232.08 25.47

Table 7
Means of the dependent variables for interaction effect (2 stages and 2 forms of algorithm)

Stage N (%) Correct Answer Dwell Time (s) Fixation Count Revisits
FC Code FC Code FC Code FC Code FC Code

2 13(62) 8(38) 1.38 0.88 85.75 90.87 241.00 301.00 26.77 23.63
3 6(29) 15(71) 1.67 1.73 83.42 80.84 223.17 263.20 24.17 22.13

Development of Program Comprehension Skills by Novice Programmers ... 533

The spatial distribution of visual attention during the analysis of Task 3 is also illus-
trated by the heat maps included in Fig. 2, where we can see the discussed differences
between Stage 2 and Stage 3 of the research project.

3.3. (RQ3) (a) does the selection of a flowchart signify a smaller progress in the de-
velopment of the ability to understand the code, and (b) what eye tracking measures
are sensitive to the development of students’ program comprehension?

Based on the choices the research subjects made regarding the preferred form of solv-
ing Task 3, they were divided into 3 groups: Group A (N = 8) – persons who chose the
code at every stage of the research, Group B (N = 7) – persons who chose the flowchart
at Stage 1 and Stage 2, and the code at Stage 3, Group C (N = 6) – persons who always
chose the flowchart. It is likely that the flowchart was chosen by persons who find it eas-
ier to interpret algorithms presented in this form, meaning persons who did not made any
considerable progress in learning between the particular stages of the research. Group B
made probably the biggest – and Group C – the smallest – progress in the development
of their program comprehension skills between Stage 2 and Stage 3.

The C programming language examination results (test results) obtained by the stu-
dents after the first and second semesters of learning, the rate of correct answer, and the
subjective difficulty assessment were used to answer question RQ3 (a).

A repeated measures model ANOVA with one within-subject and one between-sub-
ject independent variable (2 stages x 3 groups) was also performed.

Fig. 2. Heat maps Task 3 (left: Stage 2, right: Stage 3).

Table 8
Repeated ANOVA for the dependent variables (2 stages and 3 groups), main and interaction effects

Effect Test Results Correct Answers Difficulty FDA (ms) SAA
F p F p F p F p F p

Groups < 1 > 0.05 8.988 0.002 < 1 > 0.05 1,188 0.328 2.077 0.154
Stages x Groups 1.098 0.355 < 1 > 0.05 < 1 > 0.05 5.833 0.011 3.476 0.053

M. Andrzejewska, P. Kotoniak 534

When analysing the data in Table 8, we can see that a significant main effect occurred
only for the rate of correct answer. In general and at each stage, Group A performed bet-
ter than the other two groups (see Table 9). Post-hoc tests pointed to the significance of
that difference compared to Group B (p = 0.004) and Group C (p = 0.010). But another
important fact is that in Stage 3, Group B performed better than Group C, unlike in
Stage 2 (see Table 10).

Similar relationships surfaced for the test results variable. According to Table 10,
Group B’s test results were worse after the first semester of learning than those of both
other groups (performing only slightly worse than Group C; the difference was bigger
compared to Group A). Yet, the distribution of the test results after the second semester
was different. Firstly, Group B performed better than in the first semester. In a situation
in which both Group A and Group C performed worse than before, Group B managed to
match the performance of Group A. The relationships are also illustrated in Fig. 3.

When analysing the subjective difficulty, it is necessary to notice that all groups
considered their tasks easier at Stage 3 than at Stage 2, with Group B reporting the big-
gest difference in the perceived difficulty of the tasks (which amounted to -0.86) (see
Table10).

The fixation duration average (FDA) and the saccade amplitude average (SAA) met-
rics were taken into consideration to answer question (RQ3) (b).

A repeated measures model ANOVA with two within-subject and one between-sub-
ject independent variable was performed for the following dependent variables: FDA
(2 stages x 3 tasks x 3 groups) and SAA (2 stages x 2 tasks x 3 groups). The analysis of
the SAA variable considers only 2 tasks because Group B changed their preferences at
Stage 3 and solved the other form of the task.

Table 9
Means of the dependent variables for main effect (3 groups)

Test Results Correct Answers Difficulty FDA (ms) SAA (°)
M M M M M

I A 0.54 1.55 2.29 322.1 3.53
B 0.51 1.05 2.43 326.1 4.66
C 0.47 1.08 2.17 359.3 3.45

Table 10
Means of the dependent variables for interaction effect (2 stages and 3 groups)

I Stage Test Results Correct Answers Difficulty FDA (ms) SAA (°)

A 2 0.58 1.14 2.57 315.22 3.45
3 0.51 1.95 2.00 328.93 3.60

B 2 0.50 0.71 2.86 350.36 4.14
3 0.51 1.38 2.00 301.75 5.17

C 2 0.51 0,89 2.50 352.10 3.46
3 0.43 1.28 1.83 366.43 3.42

Development of Program Comprehension Skills by Novice Programmers ... 535

In the case of the discussed eye tracking parameters, a significant stages x groups
interaction effect was observed for the FDA variable (see Table 8). When analysing
Table 10, we can see that Group A displayed the shortest and similar FDAs in both Stage
2 and Stage 3. Group B displayed a significantly (p = 0.044) longer FDA in Stage 2 than
in Stage 3. Group C displayed the longest and almost equal FDAs in both stages.

The effect of stages x tasks x groups interaction [F(4, 36) = 1.269, p = 0.300] did not
appear to be significant, but if we look at Fig. 4, we will notice that Group B displayed
shorter FDAs for each task in Stage 3 compared to Stage 2.

Keywords; “computational thinking”
and “experimental” or “empirical”

40 reviews from Web of Science and

68 studies from ERIC databases
Studies were eliminated if they did
not conform to the study criteria

Common codes
& themes were created

Web of Science and ERIC
Databases searched

for studies

108 studies obtained

29 studies determined
after pre-analysis

Researchers analyzed
studies separately

Fig. 4. Fixation Duration Average FDA (2 stages and 3 tasks and 3
groups).

Fig. 5. Saccade Amplitude Average (2 stages and 2 tasks

 GROUP A
 GROUP B
 GROUP CTASK 1

STAGE
2

3
150

200

250

300

350

400

450

500

FI
XA

TI
ON

 D
UR

AT
IO

N
AV

ER
AG

E
FD

A
(m

s)

TASK 2

STAGE
2

3

TASK 3

STAGE
2

3

 TASK 1
 TASK 2GROUP A

STAGE
2

3
1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

SA
C

C
AD

E
AM

PL
IT

U
D

E
AV

ER
AG

E
SA

A(
°)

GROUP B

STAGE
2

3

GROUP C

STAGE
2

3

Fig. 4. Fixation Duration Average FDA (2 stages and 3 tasks and 3 groups).

 STAGE 2
 STAGE 3

A B C

GROUPS

0,2

0,3

0,4

0,5

0,6

0,7

0,8

TE
S

T
R

E
S

U
LT

S

Fig. 3. Test results (2 stages and 3 groups).

M. Andrzejewska, P. Kotoniak 536

In the case of the SAA variable, the effect of the stages x groups interaction was
on the border of significance. Group B displayed much higher values of the parameter
than the other two groups (see Table 9) – in general and at both stages of the research.
The performed post-hoc test showed that the results for Group B differed significantly
between the particular stages (p = 0.047).

The effect of stages x tasks x groups interaction [F(2, 18) = 0.462, p = 0.637] was not
significant, but if we analyse Fig. 5, we will notice that Group B displayed much higher
SAAs for both tasks in Stage 3 compared to Stage 2. We do not see such a change in the
case of the two other groups.

The analysis of our behavioural data shows that Group B made the biggest progress
in their program comprehension ability and appeared to be the group with a significant
increase in the SAA value, which may imply that this parameter is sensitive to the devel-
opment of one’s skills in the field in question.

4. Discussion

As for RQ1, we found that students solved tasks in the third stage of the research more
effectively compared to the other two stages. A significant difference occurred between
Stage 2, where the research subjects had the lowest score in the correct answer category,
and Stage 3, where they scored the highest in the said category. Moreover, the time spent
to solve tasks in Stage 3 was significantly shorter than in the case of the other two stages,
where the task solving time was similar. In the final stage, the subjective perception of the
difficulty of the tasks was also the lowest. The obtained results confirm that the students
improved the level of their skills and those are findings which were to be expected.

Keywords; “computational thinking”
and “experimental” or “empirical”

40 reviews from Web of Science and

68 studies from ERIC databases
Studies were eliminated if they did
not conform to the study criteria

Common codes
& themes were created

Web of Science and ERIC
Databases searched

for studies

108 studies obtained

29 studies determined
after pre-analysis

Researchers analyzed
studies separately

Fig. 5. Saccade Amplitude Average (2 stages and 2 tasks

 TASK 1
 TASK 2GROUP A

STAGE
2

3
1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

SA
C

C
AD

E
AM

PL
IT

U
D

E
AV

ER
AG

E
SA

A(
°)

GROUP B

STAGE
2

3

GROUP C

STAGE
2

3

Fig. 5. Saccade Amplitude Average (2 stages and 2 tasks and 3 groups).

Development of Program Comprehension Skills by Novice Programmers ... 537

A preliminary analysis of eye movement parameters showed that the values of these
parameters were related to behavioural indicators (e.g. the time spent to solve tasks) or
the graphic presentation of tasks. A greater number of fixations and a longer scanpath
length can be seen in the case of Task 3 and at Stage 2 of the study as it was more time-
consuming. The longest FDA, regardless of the research stage, was recorded for Task
1, and most likely suggests the greatest level of involvement of the research subjects in
solving the task in question. The highest value of SAA, in turn, were recorded for Task
3, and it seems that this results from the feature of the flowchart, whose structure of
components translates into greater amplitudes of saccades with respect to the program
code. Our results are consistent with the reports from other studies which suggest that
the parameters of glances are strongly connected with a character of tasks and even
more sensitive to task- related aspects than to levels of expertise (Sharma, 2011).

As for RQ2, we can see that the most often chosen form of analysis of algorithmic
problem at Stage 3 of the research is the code, with the flowchart selected mainly in the
two previous stages. At Stage 2, the choice of the flowchart was connected with a higher
rate of correct answers, unlike in the case of Stage 3, where the values for both forms
were very similar. Also, we can see a significant increase in the rate of correct answers
during code analysis at the said stage comparing to Stage 2. Thus like in the case of
the studies conducted by Scanlan (1982), Carlise et al. (2005) and Andrzejewska et al.
(2016) the flowchart turned out a preferred and more effective form of the algorithm
presentation at the initial phase of learning to program.

The obtained eye tracking data showed that regardless of the stage of research,
code analysis involved a much greater (bordering on significance) number of fixa-
tions, with very similar values of the time spent by the research subjects to solve the
two forms of the presented algorithm. Our conclusion is that it is connected with the
nature of the action of code processing. A code is read like a text written in a natural
language, especially by programming beginners. This explanation is coherent with the
results of Busjahn et al. (2015) study, who notice that novices read the code in a more
linear way than experts.

We have also noticed that in the case of both Stage 2 and students who chose a
flowchart, there have been more frequent revisits to the area of task which contained
the initial values of variables, required to make calculations in Task 3. We suppose
that it results from cognitive overload connected with a need to store those data in
the memory at simultaneously monitoring the control flow and executing operations
in the successive loop steps, which is more difficult for students with lower program-
ming skills. Similar to our findings also Obaidellah et al. (2020) observed an increase
in the number of fixation regressions that were associated with transitions between
the pseudocode and problem description areas, as the difficulty of the problems in-
creases.

As for RQ3 (a), it seems that the choice of the form of analysis of Task 3 is an
objective indicator of the development of competence in the field of programming
language syntax comprehension. The performed data analysis showed that the indi-
viduals who opted for a code in each of the eye tracking studies (Group A) did actually

M. Andrzejewska, P. Kotoniak 538

achieve a higher rate of correct answers compared to other research subjects. They
also performed best in the examination test. An important fact is that those individu-
als who changed their preferences regarding the chosen form of solving Task 3 and
opted for a code at Stage 3 (Group B) displayed the biggest growth differences in
the area of the discussed variables, and reached the performance level of Group A in
the examination test at Stage 3. In the case of individuals who decided to opt for a
flowchart (Group C), we see the lowest growth in the rate of correct answers and a
deterioration of their examination performance. In the light of the above, it seems to
us that Group B has made the biggest progress in the development of their program
comprehension skills.

As for RQ3 (b), Group A and Group C, who did not display any considerable chang-
es in the level of their program code analysis ability, did not display changes in the field
of the FDA between the particular stages either. Furthermore, the parameter in question
assumed the lowest values in Group A, and the highest values in Group C. In the case of
Group B, it displayed a significantly shorter FDA at Stage 3 compared to the previous
stage of the research. Similar relationships were found for SAA. Group B displayed a
significantly higher SAA in Stage 3 of the research, and no changes were observed in
the case of the other two groups. The obtained findings suggest that FDA and SAA are
parameters sensitive to the development of program code understanding. This observa-
tion is consistent with reports from the studies where patterns of reading of the program
code by novice and non-novice programmers were compared and it has been found out
that non-novices have more transitions that span multiple lines, so their patterns are
characterized by longer saccades (Peterson et al., 2019).

5. Threats to Validity and Study Limitations

Our study suffers from some limitations that should be taken into consideration. First-
ly, the population of our sample at the third stage of the experiment was rather small.
Although the results of some eye tracking measurements revealed significant trends,
a larger sample would certainly increase the statistical power of the study. The size
of the sample was small mainly because some persons qualified for the initial stages
of the research discontinued their education. The potential changes of the sample size
are a factor that needs to be always taken into account when designing longitudinal
studies. In the case of this research project, however, the situation was all the more
difficult because its participants were only persons who had just started learning pro-
gramming and were strongly exposed to failure in their education. The small sample
size translated into a low statistical power of the results, where the research subjects
were divided into 3 groups. But the three-conditional research projects did produce
a number of interesting findings. In the case of eye tracking studies, the final sample
size is usually also determined by the difficulties related to the quality of the obtained
measurement data, affected e.g. by the precision of calibration of the testing device.
Fortunately, it was possible to avoid discarding any such cases in this experiment.

Development of Program Comprehension Skills by Novice Programmers ... 539

Secondly, we could also have formulated some remarks about the design employed
in this study. In the case of experiments utilising eye tracking technology, given the
design of the user interface, it is hard to process a multi-level code, meaning a code
whose size makes it stretch beyond a single screen. Our study made use of very short
programs – in a limited quantity. This is because experience shows that such studies,
while being non-invasive, are very exhausting for research subjects and thus if they
last long, the risk of errors being made grows significantly. This could be of crucial
importance to this experiment because the task charts were displayed in the same order
and the research subjects, after performing the first two tasks, proceeded to the analysis
of the following task someone tired, especially during Stage 2. In the case of Task 3, it
should be also noticed that both areas of interest – the code and the flowchart – were
featured on one chart, which could have caused some artefacts regarding the eye track-
ing measurement data.

Thirdly, when it comes to the perceived subjective difficulty of tasks, it would be a
good idea to provide for a more precise and therefore more reliable measurement and
apply a more sensitive scale – e.g. 1 to 10 instead of the current 5-point Likert scale.
Moreover, we assessed the difficulty of all tasks on a one-off basis after the end of each
stage. It would be more interesting to see the opinions on each task individually, which
would also let us control the answer to the question about the most difficult task as per-
ceived by the research subjects.

Moreover the results of two exam test that were considered the dependent variable
(Stage 2 and Stage 3 of the research) have taken place approximately 1 month after the
eye tracking session. Perhaps it would be better to carry out such an extended test at
exactly the same time instead.

6. Conclusions

The main objective of our research project was to answer the question of how students
develop their ability of logical analysis of program source code (reading and understand-
ing) at the initial stage of learning programming. We employed an eye tracking approach
that provided objective information on how the research subjects processed program
codes, and – more importantly – how the eye movement data linked with the behavioural
data, which allowed us, in turn, to draw conclusions regarding the sensitivity of eye
movement parameters in the context of developing one’s code analysis skills.

This issue could be explored further. Future studies would benefit from the utilisation
of more complex codes – offering more difficulty levels, as well as from a more numer-
ous sample, one more diversified in terms of the previous experience with programming.
This would make it possible to obtain a fuller view of the analysed issue.

The obtained findings contribute to the exploration of the cognitive processes be-
hind learning to program and expand the body of knowledge in this domain in the
theoretical aspect, but may also find application in the field of computer science in-
structional design.

M. Andrzejewska, P. Kotoniak 540

References

Andrzejewska, M., Stolińska, A., Błasiak, W., Peczkowski, P., Rosiek, R., Rożek, B., Sajka, M., Wcisło, D.
(2016). Eye-tracking verification of the strategy used to analyse algorithms expressed in a flowchart and
pseudocode. Interactive Learning Environments, 24(8), 1981–1995.

Bednarik, R., Busjahn T., Schulte, C. (Eds.) (2014). Eye Movements in Programming Education: Analyzing the
Expert’s Gaze. Technical report, University of Eastern Finland, Joensuu, Finland.

Bednarik, R., Tukiainen, M. (2006). An eye-tracking methodology for characterizing program comprehension
processes. In: Proceedings of Symposium on Eye-Tracking Research and Applications (ETRA), 125–132.

Beelders, T.R., du Plessis, J-P.L. (2016). Syntax highlighting as an influencing factor when reading and com-
prehending source code. Journal of Eye Movement Research, 9(1), 1–11.

Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B. (2013). The impact of identifier style
on effort and comprehension. Empirical Software Engineering, 18(2), 219–276.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International Journal of
Man-Machine Studies,18(6), 543–554.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J., Schulte, C., Sharif, B., Tamm, S. (2015). Eye
movements in code reading: Relaxing the linear order. In: Proceedings of the IEEE 23rd International
Conference on Program Comprehension. 255–265.

Busjahn, T., Shulte, C., Busjahn, A. (2011). Analysis of code reading to gain more insight in program com-
prehension. In: Proceedings of the 11th Koli Calling International Conference on Computing Education
Research, 1–9.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., Hadfield, S. M. (2005). Raptor: a visual programming envi-
ronment for teaching algorithmic problem solving. In: Proceedings of the 36th SIGCSE Technical Sympo-
sium on Computer Science Education. St. Louis, Missouri, USA, 176–180.

Clear, T., Whalley, J., Robbins, P., Philpott, A., Eckerdal, A., Laakso, M., Lister, R. (2011). Report on the final
BRACElet workshop. Journal of Applied Computing and Information Technology, 15(1).

Crosby, M.E, Stelovsky, J.(1990). How do we read algorithms? A case study. Computer, 23(1), 25–35.
Dimitri, G.M. (2015). The impact of syntax highlighting in Sonic Pi. In: Proceedings of the 26th Annual Con-

ference of the Psychology of Programming Interest Group (PPIG 2015). 59–68.
Duchowski, A.T. (2003). Eye Tracking Methodology: Theory and Practice. Springer-Verlag, London.
Francuz, P. (2013). Imagia. W kierunku neurokognitywnej teorii obrazu. Wydawnictwo KUL, Lublin.
Gomes, A., Mendes, A. J. (2007). Learning to program – difficulties and solutions, Proceedings of the ICEE

2007 – International Conference on Engineering Education.
http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

Govender, I., Grayson, D., (2006). Learning to program and learning to teach programming: A closer look.
In: (Eds.) Pearson, E., Bohman, P., Proceedings of ED-MEDIA 2006-World Conference on Educational
Multimedia, Hypermedia & Telecommunications, Orlando, 1687–1693.

Just, M.A., Carpenter, P.A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8, 441–480.
Konecki, M. (2014). Problems in programming education and means of their improvement. In: Katalinic, B.

(Eds.), DAAAM International Scientific Book 2014, DAAAM International, Vienna, 459–470.
Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. ACM

SIGCSE Bulletin, 37(3), 14–18.
Lai, M.L., Tsai, M.J., Yang, F.Y, Hsu, C.Y., Liu, T.C., Lee, S.W., Lee, M.H, Chiou, G.L., Liang, J.C, Tsai, C.C.

(2013). A review using eye-tracking technology in exploring learning from 2000 to 2012. Educational
Research Review, 10, 90 –115.

Lister, R., Adams, S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E., Sand-
ers, K., Seppälä, O., Simon, B., Thomas, L.(2004). A Multi-National Study of Reading and Tracing Skills
in Novice Programmers. SIGCSE Bulletin, 36(4), 119–150.

McCracken, M., Kolikant, Y.B-D., Almstrum, V., Laxer, C., Diaz, D., Thomas, L., Guzdial, M., Utting, I.,
Hagan, D., Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin, 33(4),125–140.

Mendes, A. J., Paquete, L., Cardoso, A., Gomes, A. (2012). Increasing student commitment in introductory
programming learning. Frontiers in Education Conference Proceedings, 1–6.

Moström, J.E. (2011). A Study of Student Problems in Learning to Program. Department of Computing Sci-
ence Umea University, Umea.

Obaidellah, U., Blascheck, T., Guarnera D.T., Maletic, J.I. (2020). A Fine-grained Assessment on Novice
Programmers’ Gaze Patterns on Pseudocode Problems. In: Proceedings of the ACM Symposium on Eye
Tracking Research and Applications (ETRA), Article No.: 56, 1–5.

Development of Program Comprehension Skills by Novice Programmers ... 541

Obaidellah, U., Al Haek, M., Cheng, P. C.-H. (2018). A survey on the usage of eye-tracking in computer pro-
gramming. ACM Computing Surveys, 51(1), 1–58.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., Paterson, J. (2007). A
survey of literature on the teaching of introductory programming. SIGCSE Bulletin, 39(4), 204–223.

Peterson, C.S., Saddler, J., Blascheck, T., Sharif, B. (2019). Visually Analyzing Students’ Gaze on C++ Code
Snippets. In: Proceedings of the 6th International Workshop on Eye Movements in Programming (EMIP
2019). IEEE, Piscataway, NJ, USA.

Ramsey, R., Atwood, M., Van Doren, J. (1993). Flowcharts versus program design languages: An experimental
comparison. Communications of the ACM, 26(6), 445–449.

Rayner, K. (1998). Eye Movements in Reading and Information Processing: 20 Years of Research. Psychologi-
cal Bulletin, 124(3), 372–422.

Robins, A., Rountree, J., Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13,137–172.

Sarkar, A. (2015). The impact of syntax colouring on program comprehension. In: Proceedings of the 26th
Annual Conference of the Psychology of Programming Interest Group (PPIG 2015). 49–58.

Sharma, K., Jermann, P., Nüssli, M.A., Dillenbourg, P. (2011). Gaze Evidence of Different Activities of Pro-
gram Understanding. In: Proceedings of the 24th Psychology of Programming Interest Group Conference
(PPIG 2011).

Scanlan, D.A. (1989). Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE
Software, 6(5), 28–36.

Sharif, B., Falcone, M., Maletic, J. I. (2012). An eye-tracking study on the role of scan time in finding source
code defects. In: Proceedings of Symposium on Eye-Tracking Research and Applications (ETRA), 381–
384.

Shneiderman, B., Mayer R., McKay, D., Heller, P. (1977). Experimental investigations of the utility of detailed
flowcharts in programming. Communications of the ACM, 20(6), 373–380.

Uwano, H., Nakamura, M., Monden, A., Matsumoto, K. I. (2006). Analyzing individual performance of source
code review using reviewers’ eye movement. In: Proceedings of Symposium on Eye-Tracking Research and
Applications (ETRA), 133–140.

M. Andrzejewska – doctor of pedagogical sciences, master in computer science, an
assistant professor at the Institute of Computer Science and head of Department of Edu-
cational Research and New Media at Pedagogical University of Krakow. Her research
interests are in the areas of learning and teaching programming, using eye tracking tech-
nique to study of cognitive processes in learning and problem solving.

P. Kotoniak – graduate student of computer science at Pedagogical University of Kra-
kow. He has research interests within human-computer interaction and eye tracking
methods. Every day he works as a full stack developer in Bravelab company.

