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Introduction

The effectiveness of educational interventions often is 
evaluated using clustered randomized trials (CRTs) in which 
random assignment occurs at the group rather than individ-
ual level (Hedges & Hedberg, 2007; Raudenbush, 1997). 
Given the natural groupings of students within classrooms 
and schools as well as the practical and political challenges 
of individual-level random assignment in educational set-
tings, CRTs are a common tool for drawing causal inferences 
about educational policies, practices, and innovations.

When an intervention is randomly assigned, differences 
in outcomes between treated and untreated groups can be 
causally attributed to the intervention. However, randomized 
trials, even with group-level assignment, are not always fea-
sible. In such cases, researchers must turn to observational 
analyses. One alternative to a CRT is a clustered observa-
tional study (COS). In a COS, treatment assignment occurs 
at the group level but through some uncontrolled process.

Although the literature on observational studies for deriv-
ing causal inferences when treatment selection occurs at the 
individual level is well developed (Rubin, 2007, 2008), the 
same is not true regarding COSs. For COSs, the literature 
remains underdeveloped, with no consensus on best prac-
tices. This is surprising in the context of educational research, 
where treatment selection often occurs at the group level. In 
this article, we outline the key considerations and steps for 

designing and conducting a COS. We highlight differences 
between COSs and observational studies with individual-
level treatment selection, and we propose a framework for 
the design of COSs. In doing so, we review aspects of study 
design for observational studies and highlight how standard 
principles must be altered to handle clustered treatment 
assignment.

Our framework employs the counterfactual model for 
causal inference. We begin by advocating that investiga-
tors design COSs following the principle of target trial 
emulation—that is, according to the cluster randomized 
trial that they ideally would have conducted. Although the 
concept of target trial emulation is not new, we highlight 
considerations unique to the COS context and associated 
hierarchical data.

Next, we discuss the importance of understanding the pro-
cess through which sites were selected into treatment. We 
discuss why cluster—rather than individual-level—treatment 
assignment is often preferable for deriving causal inferences, 
as it can protect against selection bias even with non-random 
selection into treatment. We introduce notation, articulate 
assumptions necessary for causal inference in the context 
of a COS, and argue for the central role of analyses to 
understand the potential sensitivity of conclusions to an 
unobserved confounder. Next, we highlight possible 
approaches to statistical analysis. In this section, we discuss 
a new form of matching designed specifically for COSs. In 
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sum, our article aims to make a methodological contribution 
with respect to design rather than analysis. That is, we are not 
introducing a new statistical model—instead, we are intro-
ducing critical design aspects of COSs.

We illustrate the study design process and related con-
cepts with an evaluation of myON, a summer reading inter-
vention in Wake County, North Carolina. In particular, the 
COS design process requires gathering information on how 
the treatment was assigned and structuring the analysis to 
reflect this assignment process. We find no evidence that 
access to the myON tool improved student outcomes, but 
this does not diminish the value of the example. As with 
CRTs, when conducting a COS, all of the key elements of 
study design should occur prior to examining impacts. 
Furthermore, careful study design should lead policy makers 
to place more stock in results, even if estimated effects are 
not educationally meaningful.

Research Design Principles for Clustered Observational 
Studies

Here, we outline key considerations for designing COSs. 
We begin by discussing target trial emulation.

Target Trial Emulation

Target trial emulation calls for applying design principles 
from randomized trials to the analysis of observational data 
(Hernán & Robins, 2016). Under the target-trial approach, 
the investigator ties the design and analysis of the observa-
tional study to the experimental trial it emulates, and causal 
estimands of interest are derived from the hypothetical target 
trial. Whether the causal effect from this target trial can be 
estimated consistently using observational data depends on 
certain assumptions, known as identification assumptions. 
In observational studies, investigators typically assume that 
any differences between treated and control groups are 
observable—that no unobserved differences exist—and that 
covariate adjustment can handle observable differences. We 
discuss identification assumptions and covariate adjustment 
further below.

The purpose of target trial emulation is to improve the 
quality of observational studies through the application of 
trial design principles. In an experimental study, the sample 
and study design are clearly delineated to enable randomiza-
tion. In contrast, observational studies, particularly those 
formulated after program implementation, often necessitate 
investigation to inform decisions about and articulation of 
sample construction and study design. Imagining the hypo-
thetical experiment that would generate observational data 
under study (Cochran & Rubin, 1973; Rubin, 2008) initially 
seems simple. However, this can be challenging in practice 
since we might conceive of several different hypothetical 
experiments that generate a given dataset. Here, we outline 

two CRT study designs common in educational interven-
tions, corresponding to situations where (1) whole groups 
are assigned to a given treatment and (2) subsets of whole 
groups are assigned to a given treatment according to quali-
fying criteria.

Design 1: Clustered Treatment Assignment. Design 1 han-
dles cases where complete clusters (e.g., whole classrooms, 
schools) are selected for treatment, and all units within a clus-
ter either do or do not receive treatment. Under Design 1, we 
seek to mimic a CRT in which treatment assignment occurs at 
the cluster level, and all units within selected clusters receive 
(or are intended to receive) treatment. Under the COS ana-
logue, cluster-level covariates are critical, given that the 
assignment occurs at this level and is presumed to have been 
made based on cluster-level characteristics alone. This design 
would be appropriate for assessing the impact of school-wide 
reform efforts, such as Success for All (Borman et al., 2007).

Design 2: Clustered Treatment Assignment for Student Sub-
sets. CRTs often assume that the data include all units in 
each cluster or a random sub-sample of all units, such that 
the selected units are representative of the cluster as a whole 
(Donner & Klar, 2004; Torgerson, 2001). However, educa-
tional interventions are often allocated in a purposeful, tar-
geted (e.g., non-random) fashion within clusters. Under 
Design 2, the target trial is a CRT with nonrandom, student-
level selection into the treatment within clusters; clusters are 
assigned to treatment, but within selected clusters only some 
units receive treatment. This might occur, for example, if an 
intervention targeted students who are struggling academi-
cally. In such cases, the causal estimand is a group-level con-
trast for the subset of students within their schools who are 
at risk for treatment.

The critical distinction from Design 1 is that under Design 
2, final treatment assignment of an individual depends on 
school- and student-level characteristics. Selection of units 
for treatment within a cluster is analogous to nonrandom 
attrition. In a CRT, the investigator would need to correct for 
this selection bias. The same is true in a COS. That is, if the 
treatment is applied only to a subset of students within 
selected clusters, the analyst may need to model a second 
selection mechanism. This implies that in a COS analogue to 
Design 2, covariate adjustment must account for data at both 
the school and student levels. Next, we introduce our moti-
vating example and consider the target CRT with which it 
aligns.

Motivating Application: A Summer School Reading 
Intervention

In summer 2013, the Wake County Public School System 
(hereafter, WCPSS) selected myON, a computer-aided 
instruction program for implementation at selected summer 
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school sites with the goal of boosting summer school attend-
ees’ reading comprehension. myON is a web-based software 
product that provides students with access to books and sug-
gests titles based on their preferences and reading ability. 
Students at selected sites used the program for up to thirty 
minutes during the daily summer-school literacy block and 
could continue using it at home with a device and internet 
connection. At the time of its launch in WCPSS, the devel-
opers claimed that students using myON would improve 
comprehension through access to digital books that include 
“multimedia supports, real-time reporting and assessments 
and embedded close reading tools” (Capstone Digital, 2015). 
Given their prevalence and cost, rigorous, independent 
assessment of such curricular supplements is critical to 
sound investment decisions by educational agencies.

The study sample includes 3,434 summer school students 
from 49 different WCPSS elementary schools who attended 
summer school at one of 19 sites. Due to technical con-
straints, only some summer school sites used myON. As 
such, all students in a school were exposed to the software if 
they attended summer school at a selected site. In a COS 
designed to study the effects of myON, Design 2 is the rele-
vant target trial, because myON was assigned to schools but 
only students required to attend summer school were 
exposed to the treatment. Therefore, we are interested in 
contrasting outcomes for groups of summer school students 
who were and were not exposed to myON.

Our key outcome is student-level reading performance, 
measured using Curriculum Associates’ i-Ready Reading 
Assessments. Students sat for assessments in reading and 
mathematics at the beginning and end of summer school and 
results were reported in scale scores with a possible range of 
0 to 800 (Curriculum Associates, 2015). Students also 
received a reading Lexile score used for selecting an initial 
bundle of digital books within myON (MetaMetrics, 2012).

Notation

Target trial emulation applies to study design, broadly, as 
well as analytic notation, specifically. Here, we introduce 
notation applicable to CRTs and COSs. A defining feature of 
a clustered study is that individual units (e.g., students) are 
organized within clusters (e.g., schools) and assigned to a 
treatment or control condition at the cluster level. Generally, 
for applications with students nested within schools, each 
school j  contains nj >1  students. We enumerate these stu-
dents i n j=1, , . In the myON application, we take treat-
ment assignment as occurring at the school level (rather than 
summer school site level) for reasons discussed below. For 
the jth  school receiving treatment, we write Z j =1 , and if 
assigned to control, we write Z j = 0 . For each student 
within each school, we typically have observed, pretreat-
ment covariates, x ji , including variables measured at the 
student level and variables measured at the school level. In 

the myON data, for example, x ji  contains a measure of stu-
dent i ’s gender. It also includes the percentage of students 
in school j  who are proficient in reading; this proficiency 
measure takes the same value for all students in school j . 
Each student i  in school j  is described by both observed 
covariates and possibly an unobserved covariate u ji . We 
refer to data of this form as multilevel data, since we have 
information on both units and the clusters within which the 
units are nested. In a CRT, we assess balance on observed 
pretreatment characteristics, x ji , at the time of randomiza-
tion, and given the properties of randomization, we assume 
balance on the unobserved covariate u ji .

We define causal effects using the potential outcomes 
framework (Neyman, 1923, 1990; Rubin, 1974). Prior to 
treatment, each student has two potential responses: 
( , )y yTji Cji , where yTji  is observed for student i  in school j  
under Z j =1 , and yCji  is observed under Z j = 0 . This nota-
tion is the same for Designs 1 and 2. In the myON applica-
tion, yTji  is the reading test score that student i  in school j  
would exhibit if her school were assigned to implement 
myON, and yCji  is the test score she would exhibit otherwise. 
Writing potential outcomes this way allows for arbitrary pat-
terns of interference among students in the same school but 
not across schools. The observed outcomes are a function of 
potential outcomes and cluster-level treatment assignment:

Y Z y Z yji
obs

j Tji j Cji= (1 ) .+ −

With potential outcomes defined, we can define the causal 
estimand, the target counterfactual quantity of interest. In a 
COS in an educational setting, one reasonable estimand is 
the following student-level contrast: y yTji Cji− . In our case-
study context, this is the change in test scores for student i  
caused by school-level assignment to myON. Assuming a 
relevant superpopulation, we could focus on the average 
causal effect: E y yTji Cji[ ]− ; or the average causal effect for 
the treated: E y y ZTji Cji j[ | = 1]− . With either focal esti-
mand, the expectation is taken with regard to the superpopu-
lation. Of course, these counterfactual quantities are 
estimable with data only under a set of assumptions.

Assumptions

The first key assumption is the Stable Unit Treatment 
Value Assumption (SUTVA; Rubin, 1986). The notation 
above implies SUTVA. Here, we elaborate on what SUTVA 
indicates in a COS. SUTVA includes two components: (1) 
the treatment levels of Z j  (1 and 0) adequately represent all 
possible versions of the treatment and (2) one student’s out-
comes are not affected by other students’ exposures. Under 
the first component of SUTVA, we assume that while some 
variation may exist in the process through which students 
are exposed to myON, any variation in process corresponds 
to the same potential outcomes.
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SUTVA’s second component assumes that the treatment 
for one student does not spill over to any control student. A 
benefit of clustered (rather than individual) treatment assign-
ment is that it increases the plausibility of this component of 
SUTVA. In the COS (or CRT) context, spillover violating 
SUTVA would need to occur across treated and control 
schools, for example, if a treatment school student gave her 
myON account information to a control school student who 
subsequently used it. Although possible, this seems unlikely 
to be prevalent. Generally, judging the plausibility of the no-
spillover assumption requires qualitative implementation 
information. In the myON context, we assume that SUTVA 
holds.

Are SUTVA violations a concern under Design 2? Since 
only a subset of students within schools are treated, spill-
overs might occur from treated to untreated students within 
treated schools. Although possible, violating SUTVA is not a 
concern. Why? The causal effect of interest is between 
treated and control schools. Therefore, the relevant spillover 
is between treated and controls schools even if only some 
students are treated within a school. When Design 2 is the 
target trial, one might be substantively interested in such 
within-school spillover, but this is a different causal ques-
tion. The analysis of treatment effects under interference is 
the focus of recent methodological work, for example, 
Aronow and Samii (2017) and Basse and Feller (2018). In 
the myON context, such within-school spillover is unlikely, 
as untreated students in treated schools do not attend sum-
mer school.

The next key assumption is the “selection-on-observables” 
assumption which pertains to the treatment assignment pro-
cess. This assumption has two parts. First, we assume that 
there is some set of covariates such that treatment assign-
ment is random conditional on these covariates (Barnow 
et al., 1980). Formally,

πj = Pr(Zj 
= 1|yTji , yCji , xji , uji) = Pr(Zj = 1|xji).

That is, after conditioning on observed characteristics, x ji , a 
given school’s probability of assignment to treatment is 
related neither to the potential outcomes of its students 
( , )y yTji Cji  nor to unobservables ( )u ji . We assume there are 
no unobservable differences between the treated and control 
groups. This assumption requires investigators to ask: How 
could two schools that are identical on all meaningful back-
ground characteristics nonetheless receive different treat-
ments? Critically, the selection-on-observables assumption 
is nonrefutable; it cannot be verified with observed data 
(Manski, 2007). Therefore, any COS should include sensi-
tivity analyses to consider the sensitivity of results to a pos-
sible unobserved confounder. We discuss sensitivity analysis 
in Section 3.4. Although this assumption may seem implau-
sible, in many examples, treatment assignment depends on 
observed data only (Dehejia & Wahba, 1999; Fralick et al., 

2018; Hernán & Robins, 2016; Keele et al., 2020; Wong 
et al., 2017).

The second part of the selection-on-observables assump-
tion pertains to “common support.” Formally, we assume 
that all clusters have some probability of being treated or 
untreated such that 0 < π

j
 < 1. That is, for no cluster is treat-

ment either guaranteed or prohibited. In practice, large pre-
treatment covariate imbalances between treated and 
untreated clusters and/or units is a telltale signal of problems 
with common support. Such imbalances often arise when 
treated units differ substantially from control units. When 
this occurs, trimming may be necessary (e.g., removing 
some observations from the analytic sample), either at the 
unit or cluster level, to enforce common support and improve 
balance.

Trimming is not without consequence, however, as it 
changes the causal estimand. After trimming, the causal esti-
mand describes the causal effect for the population for which 
the effect of treatment is marginal: units that may or may not 
receive the treatment. Changing the estimand in this way 
may be unproblematic if the data do not represent a well-
defined population (Rosenbaum, 2012).

Under these assumptions, we use one or more statistical 
adjustment methods to estimate treatment effects, as we dis-
cuss below.

Explicating the Assignment Process

The modern literature on observational studies empha-
sizes the role of the treatment-assignment mechanism 
(Rubin, 2008). Indeed, the assignment mechanism is critical 
to COS design. Since an observational study’s key assump-
tion pertains to whether treatment assignment is based on 
observed data, understanding how treatment assignment 
operates is critical. Next, we review important aspects of 
clustered treatment assignment, including the advantages 
that cluster-level treatment assignment affords in observa-
tional studies.

In any observational study, the investigator should under-
stand and explicate the treatment assignment process. We 
recommend the following steps. First, understand whether 
the assignment process can be described as a “natural exper-
iment.” Nonexperimental, but haphazard or arbitrary assign-
ment is often characterized as a natural experiment—the 
hope being that natural circumstances give rise to an argu-
ably random assignment process (Murnane & Willett, 2010). 
Although haphazard treatment assignment can require con-
siderable judgment and contextual knowledge to justify, the 
goal is to reduce the bias associated with treatment self-
selection. For many natural experiments, analysts still rely 
on covariate adjustment. When covariate controls are intro-
duced, the analyst is still relying, at least in part, on the 
selection-on-observables assumption. In this way, observa-
tional studies and natural experiments are related. In fact, the 
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principles we outline for COSs apply to natural 
experiments.

Second, if a study in not a natural experiment, the inves-
tigator should identify the decision-makers responsible for 
treatment allocation; any factors used to determine assign-
ment (Rubin, 2008); and whether the assignment process is 
such that decision makers controlled treatment allocation for 
others within some defined population. In education applica-
tions with grouped treatments, this third feature is common 
and preferable, the advantage being that the selection pro-
cess is more likely to be based on observed information. 
Although self-selected treatment assignment may reflect 
observed factors, it is more likely influenced, at least par-
tially, by unobserved factors, such as a child’s motivation or 
family’s expectation regarding the treatment’s benefits.

For COSs in educational settings, outside decision mak-
ers who are not directly exposed to the treatment often con-
trol treatment assignment. For example, district officials 
often make decisions about selecting schools for treatments. 
This selection structure offers a key advantage. In general, 
it should be possible to identify who participated in the 
treatment-assignment process and the factors used in deci-
sion making. Qualitative information typically is critical in 
this process. For example, WCPSS centrally allocated 
myON to selected summer school sites based on factors, 
including internet bandwidth, computer access, and regional 
distribution.1 Thus, all summer school students who attended 
an elementary school close to a selected summer school site 
used myON. Schools had no input into program allocation. 
Thus, treatment assignment primarily was a function of 
school-level data available to district administrators, rather 
than, for example, teachers’ interest in myON. Thus, the 
selection-on-observables assumption appears reasonable in 
this context.

Third, understanding the assignment process allows the 
investigator to identify the study’s target trial analogue. In 
our application, beyond the selection of schools, a second-
ary, student-level selection process occurred, whereby stu-
dents were identified for summer school based on their 
standardized test performance, per state policy. Thus, we 
must consider this second assignment mechanism. Because 
student-level selection was governed by state guidelines, 
student populations should not differ systematically across 
treatment and comparison schools. Taken together, we 
should expect imbalances in school-level but not necessarily 
student-level covariates when we compare baseline charac-
teristics between treatment and comparison schools. As 
illustrated below, our data follow this pattern.

Next, Hansen et al. (2014) demonstrate the advantages 
of cluster-level treatment assignment in observational stud-
ies. Specifically, group-level treatment assignment can 
reduce the potential for selection bias. For technical details, 
we refer readers to Hansen et al. (2014) but here convey the 
intuition. myON is a commercial product; one might 

imagine a salesperson motivated to bias evidence in favor 
of the product. The most effective way to do so would be to 
form a treatment group of individually-selected, higher-
performing students who would exhibit stronger reading 
performance regardless of whether they used myON. If the 
salesperson is required to select entire schools for myON, 
however, the mix of students within schools will make it 
more difficult to guarantee better outcomes under myON. 
By selecting intact groups, the salesperson is less able to 
target high performers who would bias results in myON’s 
favor. Therefore, group-level assignment helps to limit bias 
from purposeful treatment selection. A limitation is that the 
analyst cannot quantify how much bias is eliminated.

Statistical Analysis

Whatever the advantages of COSs, they remain observa-
tional studies. Thus, treated and control groups commonly 
will differ on baseline covariates, and the analyst will need 
to use a method of statistical adjustment to remove overt bias 
and increase comparability. Here, we highlight conventional 
and more modern approaches to statistical adjustment for 
COSs.

Statistical Adjustment Methods

In education, random-effects regression models are fre-
quently used for statistical adjustment. In a COS that relies 
on the selection-on-observables assumption, covariates are 
added to the model to remove overt biases—observable dif-
ferences between the treated and untreated clusters. A limita-
tion of relying on regression-based strategies in a COS is 
that they can elide over any lack of actual overlap between 
treatment and comparison schools in covariate distributions. 
Areas outside of common support can be particularly prob-
lematic, since they require extrapolation and, in turn, results 
may suffer from model dependence. That is, conclusions 
may depend on the regression model’s functional form.

It is not that regression-based analysis is not useful for 
COSs. Rather than turning directly to covariate-controlled 
regressions for assessing treatment effects, we advocate first 
taking steps to ensure balance and common support. Then, 
having obtained an analytic sample where balance and com-
mon support hold, regression can be used for treatment 
effect estimation. We discuss this further below.

Propensity score methods are one alternative to regres-
sion modeling. In a COS, the statistical adjustment strategy 
needs to account for the data’s multilevel structure. With 
propensity score methods, this is done by estimating the pro-
pensity score using, for example, a random effects logistic 
regression model (Arpino & Mealli 2011; Hong & 
Raudenbush, 2006; Li et al., 2013). However, multilevel 
models often fail to converge when used to estimate propen-
sity scores (Zubizarreta & Keele, 2016). Therefore, although 
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propensity score methods are a reasonable strategy when the 
treatment is allocated at the individual level, the same is not 
always true with cluster-level assignment. When model con-
vergence issues hamper fitting propensity score models with 
hierarchical data, little can be done.

Matching. Matching provides another adjustment method 
designed to mimic a randomized trial by constructing a set of 
treated and control units that are comparable on observed, 
pretreatment characteristics. Matching methods primarily 
have been developed to handle individual-level treatment 
assignment, and a large literature has articulated best prac-
tice in this context (Rosenbaum, 2020). Matching studies 
have been used to evaluate socially-relevant interventions 
(Stuart, 2010), and methodological research has investigated 
the extent to which matching yields impact estimates similar 
to those achieved through experimental design (Cook et al., 
2008; Dehejia & Wahba, 1999).

Just as we can use individual-level matching to mimic an 
individual-level RCT, we can conceive of matching to mimic 
a CRT by creating comparable treatment and comparison 
clusters. Despite COSs being a natural analogue to the ana-
lytic workhorse of CRTs, strategies for matching with 
grouped treatments are less well developed. Extant work has 
focused on multilevel data structures but with applications 
where clusters are relevant in some way but not for grouped 
treatments. For example, Steiner et al. (2013) consider 
matching with multilevel data but assume individual-level 
assignment. Stuart (2007) discusses group-level matching 
using group-level data only. Stuart and Rubin (2008) also 
focus on matching with multilevel data, but advocate build-
ing a comparison group from multiple sources when a single 
comparison site is not a sufficient match for a given treated 
group (Stuart & Rubin, 2008). This approach considers 
matching only on student-level characteristics, rendering it 
less relevant to COSs in which school-level covariates are 
critical.

Recently, Zubizarreta and Keele (2016) and Pimentel 
et al. (2018) have developed matching methods specifically 
for COSs. The resulting matching method mimics a CRT by 
creating comparable treated and comparison clusters and 
units within clusters to remove overt bias at the individual 
and group levels.

In the context of COSs, we endorse matching methods for 
several reasons. First, matching tends to be more robust to a 
variety of data configurations—especially when treated and 
control covariate distributions do not have good overlap 
(Imbens, 2015). Second, matching methods allow for covari-
ate prioritization to increase treatment-control comparability 
on covariates of critical importance from a scientific stand-
point. For example, an investigator can opt to balance base-
line test scores more closely than other covariates such as 
school size. Third, the investigator can trim the sample to 
yield the set of observations with the highest levels of 
comparability.

Our primary goal is to consider COS design. Nevertheless, 
here, we briefly summarize the mechanics of multilevel 
matching, as we illustrate an application in the case study 
below. We contrast this process with strategies for imple-
menting standard, single-level matches. In a standard match, 
the user selects covariates on which to match, and these 
covariates are used in one of two ways. One option is for the 
analyst to first estimate a propensity score model and then 
match units on estimated propensity scores. Alternatively, 
the covariates may be used to generate a distance matrix—
typically based on a Mahalanobis distance—which captures 
the multidimensional distance between each possible treat-
ment-comparison matched pair. In a basic pair match, treated 
and comparison units are matched to minimize these dis-
tances. Either of these matching variants can be applied to 
COS data if only school-level covariates are used. However, 
with multilevel data available, we seek to incorporate stu-
dent-level information into the school match, even when our 
goal is to match at the school level only.

To implement a multilevel match, the analyst must specify 
several parameters. First, the analyst must identify the stu-
dent- and school-level covariates to be used in the matching 
algorithm. The analyst also must specify the design. Here, we 
select between Design 1 (matching only at the school level) 
and Design 2 (matching at the school and student levels). 
Next, the analyst can specify the balance priority for the 
school-level covariates such that the algorithm will seek to 
balance higher priority covariates before lower priority 
covariates. Based on this information, the software computes 
all possible treated-to-comparison student-level distance 
matrices and the size of all these possible matches. These 
results are then used to compute a new school-level dis-
tance matrix that is based on these student-level matches 
and the school-level covariates. That is, potential school-
level matches are assessed based on both the similarity of 
school-level measures and the similarity of the students 
within the schools. The algorithm then uses this distance 
matrix to produce an “optimal” match solution, meaning that 
it selects a mapping to minimize the sum of the distances 
between treatment and comparison observations (Rosenbaum, 
1989). With a match complete, balance statistics are com-
puted. If necessary, further improvements in balance can be 
achieved through altering the balance priority for school 
covariates, adding a propensity score caliper based on school-
level covariates, or dropping schools that most contribute to 
imbalances. We illustrate this process below and refer inter-
ested readers to Keele et al. (2020) for a nontechnical review 
and to Zubizarreta and Keele (2016), Pimentel et al. (2018), 
and Pimentel et al. (2015) for technical discussions of multi-
level matching for COS designs.

Although random-effects regression models alone are not 
our preferred method for COS analysis, they can be fruit-
fully combined with matching. After matching, the analyst 
can regress the outcome on the treatment indicator using a 
random-intercepts model. Regression modeling is also 
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useful in that post-matching covariate adjustment with 
regression can handle imbalances that remain after match-
ing. That is, any covariates that are not fully balanced can 
also be included in the post-match regression model to fur-
ther reduce bias (Imbens, 2015). As such, regression models 
are a useful analytic tool once matching is complete.

Overlap

As discussed above, a key assumption for a COS is com-
mon support or overlap of baseline covariate distributions. 
When little overlap exists between treated and control covari-
ate distributions, trimming units via matching is one method 
to enforce overlap. Care should be taken, however, as after 
trimming, the causal estimand is more local; it applies only to 
a subset of all treated units. In a COS, trimming even a small 
number of treated schools may mean losing a large percent-
age of treated units. In other words, trimming even a small 
number of clusters may make the treatment effect estimate 
very local. In such cases, no simple remedy exists, since we 
should not estimate treatment effects using treated and con-
trol observations that are not comparable.

Inference

A key principle of inference for COSs is that the analyst 
must correct estimates of statistical uncertainty to account 
for clustering. Failure to do so will result in standard errors 
that are, at times, grossly underestimated given that the cor-
relation among students in the same cluster has not been 
accounted for (Angrist & Pischke, 2009; Hayes & Moulton, 
2009). Generally, the investigator should account for cluster-
ing at the level at which the treatment has been assigned 
(Abadie et al., 2017). Standard errors can be corrected using 
a generalization of clustered standard errors developed by 
Liang and Zeger (1986) or via random-effects regression 
modeling.

When matching methods are used, regression-based cor-
rections can account for clustering. After matching, the ana-
lyst should include a clustering correction for schools and 
the paired school clusters (Abadie & Spiess, 2019), account-
ing for clustering both within schools and within matched 
school pairs. This method requires a sufficiently large num-
ber of clusters for valid inferences. To account for clustering 
while avoiding the large sample assumptions on which 
regression relies, one can alternatively use randomization 
inference methods (Hansen et al., 2014). For example, within 
matched pairs, the analyst randomly reassigns treatment sta-
tus and estimates a treatment effect. Doing this repeatedly 
allows the construction of a null distribution of treatment 
effects against which to evaluate the treatment effect esti-
mated for actual assignment. The resulting inferences are 
valid for any sample size. However, randomization infer-
ence methods test the sharp null hypothesis which asserts a 
zero treatment effect for all schools and students. This 

differs from the more usual null hypothesis asserting an 
average effect of zero. In general, when sample sizes are 
small (e.g., 20-30 total clusters), randomization inference is 
useful for understanding whether inferences depend on the 
assumption of large sample sizes.

Sensitivity Analysis

All observational studies should include a sensitivity 
analysis. Sensitivity analyses often are based on a partial 
identification strategy, where bounds are placed on quanti-
ties of interest while a key assumption is relaxed. A sensitiv-
ity analysis is designed to quantify the degree to which a key 
identifying assumption must be violated for an original con-
clusion to be reversed. If a causal inference is sensitive, a 
slight violation of the assumption may lead to different con-
clusions. Here, we outline a sensitivity analysis, based on 
randomization inference, that probes the selection-on-
observables assumption and is compatible with a matched 
study (Rosenbaum, 2002, ch. 4)

To begin, recall that under selection on observables, we 
assume that any two matched clusters have the same under-
lying probability of treatment. That is, the coin flip is fair 
within this pair. Of course, this assumption is strong, and 
matched clusters may still differ on an unobserved con-
founder, u ji , that drives treatment selection. Sensitivity 
analyses allow us to quantify how strong an influence such 
an unobserved confounder would need to have on selection 
to alter substantive conclusions.

For example, we might hypothesize that, despite match-
ing, an unobserved covariate renders selection probabilities 
unequal. If that hypothesized inequality (which Rosenbaum 
denotes as Γ ) were by a factor of two, then in our random-
ization inference, we would permute treatment assignment 

with probabilities 1

3
 and 2

3
 within each matched pair. By 

first considering treated clusters to be twice as likely (and 
then half as likely) to receive treatment, we can calculate 
bounds on quantities such as the treatment effect point esti-
mate or associated p-value based on a conjectured level of 
confounding.

Generally, one can vary the Γ  parameter to ask what 
level of confounding would reverse study conclusions. For 
example, we can observe at what value of Γ  the upper 
bound on a p-value exceeds the conventional 0.05 threshold. 
We can summarize the sensitivity analysis with the Γ  
changepoint—the Γ  value at which a focal estimate is no 
longer statistically significant. If this Γ  value is large, we 
can conclude that inferences are insensitive to hidden bias 
related to unobserved characteristics. If the Γ  value is small, 
it suggests that inferences are vulnerable to hidden 
confounders.

Although our discussion has focused on the level of Γ  
that would negate a significant treatment effect, this proce-
dure also can be used to consider the level of confounding 
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that would mask a treatment effect from being detected, as 
we illustrate below.

Case Study

Here, we demonstrate concepts with the myON applica-
tion. Our data contain 3,434 summer school students from 
49 elementary schools. These 49 schools were grouped into 
19 different summer school sites, eight of which received 
myON. Our first analytic decision relates to whether we 
define clusters as elementary schools or summer school 
sites.

For several reasons, we treat intact elementary schools as 
our clusters. First, we can reasonably infer that although sum-
mer school sites were selected for myON, this process explic-
itly assigned schools to treatment or control. Second, defining 
clusters at the school level leads to a larger number of clusters 
and improves statistical power. Finally, our statistical adjust-
ment strategy employs optimal matching methods designed 
for COSs by Zubizarreta and Keele (2016) and Pimentel 
et al. (2018). We benefit from having a greater number of 
treatment and comparison clusters, as this increases the like-
lihood of obtaining good cluster-level matches. Thus, our 
treatment-comparison contrast is between assigning groups 
of students to summer-school sites that do or do not use 
myON, under the assumption that schools were otherwise 
comparable; 1,371 summer-school students from 20 schools 
used myON.

Next, we consider the appropriate target trial. While 
entire schools were selected for treatment, the intervention 
applied only to students required to attend summer school. 
Although control schools were not selected for myON, the 
summer school selection process was identical across all 
schools. In theory, summer school students should be similar 
across treated and control schools. Nevertheless, the student-
level selection process points to Design 2 as the relevant tar-
get trial.

Given this, we investigate balance at the school and stu-
dent levels. Table 1 contains means for the treated and con-
trol groups and standardized differences before any statistical 
adjustments.2 From Table 1, the imbalances on student-level 
covariates, including pretreatment test scores, are small, 
indicating that the summer school selection process is uni-
form across treated and control schools.

Table 1 also contains balance statistics for school-level 
covariates. All school-level measures were calculated by the 
school district and thus are based on all enrollees from the 
previous school year—not just the students who attended 
summer school. For school-level covariates, clear differences 
are evident between treated and control schools. Treated 
schools, on average, have higher test scores, lower staff turn-
over, and a lower percentage of teachers who are non-White. 
Treated schools also have a higher share of teachers who are 
novices (i.e., 3 or fewer years of experience).

When comparing the student- and school-level covariates 
in Table 1, mean differences of a similar magnitude translate 

TABLE 1
Balance on Student- and School-Level Covariates Before Matching

Student covariates Treated mean before Control mean before Standardized difference

Reading pretest score 437.00 437.90 −0.02
Math pretest score 60.25 60.56 −0.02
Male (0/1) 0.36 0.40 −0.09
Special education (0/1) 0.47 0.43 0.09
Hispanic (0/1) 0.53 0.52 0.02
African American (0/1) 0.22 0.22 0.00
School covariates
 Composite proficiency 60.74 58.56 0.21
 Proficient in reading 58.48 57.27 0.11
 Proficient in math 60.68 58.41 0.20
 Free/reduced lunch eligible 0.50 0.51 −0.10
 English language learners 0.13 0.15 −0.29
 Novice teachers 0.19 0.17 0.28
 Staff turnover 0.11 0.12 −0.28
 Non-White teachers 0.14 0.18 −0.26
 Title I school 0.90 0.93 −0.11
 Schools 20 29  
 Summer school students 1,371 2,063  

Note. Sandardized difference for a given variable is computed as the mean difference between treatment and comparison schools or students divided by the 
pooled standard deviation.
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to very different standardized mean differences at the stu-
dent and school levels. This is partially because the standard 
deviations used to scale mean differences are larger at the 
student level, as there is more variation within than across 
schools. In Table 1, given that, for example, there is little 
variation in the share of English language learners (ELLs) 
within each school, the mean difference of 2 percentage 
points translates to a standardized mean difference of −0.29. 
This is also a function of the school-level selection process, 
whereas student-level selection operates similarly across 
schools.

Next, we use matching to address baseline imbalances. 
The matching process is typically iterative; the analyst per-
forms a match, assesses the resulting balance, and then fine-
tunes the matching procedure until balance is deemed 
acceptable. Just as outcome measures are not available at 
the time of randomization in an experimental study, the ana-
lyst should not examine outcomes when implementing 
matching. The CRT analogue to this process is conducting a 
randomization, assessing balance on baseline measures, and 
rerandomizing if baseline equivalence is not satisfied 
(Morgan & Rubin, 2012).

Instead of presenting results from the match with the best 
balance, we present a series to illustrate the iterative nature 
of the matching process. In doing so, we highlight additional 
tools for improving balance: balance prioritization, calipers, 
and subsetting. We refer readers to Keele et al. (2020) for 
further discussion of these tools. For matching, we use the R 
package matchMulti built specifically for matching with 
COS designs (Keele & Pimentel, 2016).

Our first match is based on the match algorithm defaults. 
At the defaults, no covariate is given priority, and no treated 
schools are dropped. The resulting sample includes 40 
schools, with 20 treatment schools pair-matched to a control 
school without replacement. Table 2 (column 2) reports on 

this match in which some but not all of the standardized dif-
ferences improve. In Match 2, we add covariate prioritiza-
tion with which we select sets of covariates to prioritize in 
terms of balance. Such prioritization is useful, because sci-
ence and context may justify preferring closer balance on 
certain measures.

For covariate prioritization, we define two covariate sets. 
Set 1 includes the school-level test score measures. Set 2 
includes the proportion of ELLs and the proportion of non-
White teachers. Under balance prioritization, the matching 
algorithm works to balance the set 1 covariates first, fol-
lowed by the set 2 covariates. The remaining covariates 
receive lowest priority for balance. In Match 2, balance on 
the test score measures is improved, however improvements 
for the set 2 covariates are minimal.

Next, we applied a school-level caliper. The matchMulti 
package includes a function that calculates a school-level 
propensity score, which is the estimated probability of treat-
ment selection based on baseline measures. We can impose 
a caliper on this estimated propensity score as another tool 
to improve balance. We set the caliper to 0.20, which for-
bids school-level matches differing by more than 0.20 of a 
standard deviation on the estimated propensity score. We 
also add a third covariate balance prioritization set which 
includes the proportion of novice teachers and the staff 
turnover rate. Match 3, which contains the results from this 
match, is generally better, although balance is worse on the 
proportion of novice teachers. Note that this match dis-
carded some treated schools, since for these schools, the 
caliper constraint could not be satisfied. Once the use of a 
caliper discards schools, optimal subsetting is a better tool 
for match refinement. This is because with optimal subset-
ting, one can achieve similarly good balance without losing 
as many treatment sites as might be lost with a caliper 
strategy.

TABLE 2
Balance on School-Level Covariates for Four Different Sets of Match Parameters

Covariate Unmatched
Match 1:  

Default settings
Match 2: Covariate 

prioritization
Match 3: 

School caliper
Match 4: Optimal 

subsetting

Composite proficiency 0.21 0.27 0.12 −0.01 −0.06
Proficient in reading 0.11 0.18 0.04 0.08 −0.01
Proficient in math 0.20 0.28 0.13 −0.01 −0.06
Free/reduced lunch eligible −0.10 −0.05 −0.03 −0.03 0.14
English language learners −0.29 −0.14 −0.14 −0.02 0.13
Novice teachers 0.28 0.12 0.21 0.30 0.15
Staff turnover −0.28 −0.16 −0.25 0.11 0.03
Non-White teachers −0.26 −0.38 −0.30 −0.02 0.05
Title I school −0.11 −0.18 0.00 0.00 0.00
Schools 49 40 40 30 32
Summer school students 3,434 2,888 2,751 1,210 1,378

Note. Cell entries are standardized differences.
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With multilevel data, optimal subsetting can be used to 
trim clusters, units, or both. Given sample sizes, however, 
trimming is typically necessary only at the school level. In 
applying optimal subsetting, the analyst specifies a minimum 
number of treated clusters (or units) that must be included. 
By iteratively adjusting this number downward, treated 
schools are dropped one-by-one until balance improves. For 
example, if there are 20 treated schools and the optimal sub-
set number is 19, the algorithm will discard the treated school 
with the poorest match. In general, we recommend dropping 
schools one-by-one until balance is acceptable.

We improve balance on the proportion of novice teachers 
by dropping four treated schools via optimal subsetting and 
rematching. The resulting match (Match 4) excludes the 
four treated schools with the largest covariate imbalances. 
For this match, the casual estimand differs; treatment effect 
estimates will apply to a subset of treated schools—not the 
entire treated population. We might ask whether the esti-
mand is too local, since we lost 20% of the treated schools. 
Is this still a population of interest? We cannot answer this 
question using statistics. In practice, we advise examining 
descriptive statistics for the remaining treated population to 
understand whether and how it differs from the full treated 
population.

Next, we plot the distribution of covariate standardized 
differences for each match (Figure 1) and observe clear pat-
terns. First, the default match settings do improve balance 
overall (Match 1), but a few covariates remain highly imbal-
anced. Second, Match 3 is well-balanced with the exception 
of one covariate. This tells us that the trimming removed 
schools with a larger proportion of novice teachers and that 
the schools in Match 4 differ from the overall treated popula-
tion mostly with respect to this covariate.

Finally, balance in student-level covariates remains roughly 
the same across the matches (Table 3). Taken together, there 
is little evidence that treatment selection was a function of 
student-level characteristics for summer school participants.

Outcome Estimates

Next, we assess the effectiveness of myON for improving 
performance on the end-of-summer i-Ready reading assess-
ment in our matched sample. With matching complete, we 
can estimate treatment effects. We use multilevel models 
with a random intercept, clustering at the school and matched 
school-pair levels and regressing the outcome on the treat-
ment indicator.

One advantage of regression-based estimation is that the 
analyst can add baseline covariates to the model. It is useful 
to include covariates that did not balance sufficiently in the 
match. For example, in Match 3, we were unable to reduce 
the standardized differences below 0.10 for the percentage 
of novice teachers and the staff turnover rate. To more com-
pletely remove bias from the imbalance in these covariates, 
we include them in the treatment effect model.

Table 4 reports unadjusted estimates as well as those pro-
duced from regression adjustment alone, matching alone 
(for Matches 3 and 4), and matching in combination with 
regression adjustment (again with Matches 3 and 4). Two 

TABLE 3
Balance on Student-Level Covariates

Student-level characteristic Unmatched Match 1 Match 4

Reading pretest score −0.02 −0.03 0.01
Math pretest score −0.02 −0.03 −0.01
Male (0/1) −0.09 −0.05 −0.11
Special education (0/1) 0.09 0.06 0.11
Hispanic (0/1) 0.02 0.01 0.02
African American (0/1) −0.00 0.02 −0.00

•

FIGURE 1. Boxplots of the distribution of absolute standardized 
differences for school-level covariates.

TABLE 4
Outcome Estimates for the Treatment Effect of the myON Reading 
Program

Adjustment method Treatment effect estimate

Unadjusted 0.03
[−0.08, 0.14]

Regression 0.05
[−0.03, 0.13]

Match 3 0.04
[−0.09, 0.16]

Match 3 + regression 0.04
[−0.12, 0.21]

Match 4 0.04
[−0.07, 0.16]

Match 4 + regression 0.07
[−0.06, 0.21]

Note. Quantities in brackets are 95% confidence intervals. Outcomes are 
standardized test scores.
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facts are clear from the results. First, little difference exists 
between the unadjusted and adjusted estimates. This sug-
gests either that little self-selection is present, or if selection 
bias is present, it is not a function of the observed data. 
Second, when selection biases are not a function of observed 
data, the effect of the adjustment methods will be minimal. 
This is true here. Estimates based on regression alone, 
matching, and matching plus regression all produce similar 
estimates. Across all methods, effect sizes are small, and the 
associated 95% confidence intervals include zero—results 
that conflict with claims made by the myON developers.3 
Finally, we note that the causal estimand for Match 4 differs 
from the others. In Match 4, we dropped four treated schools, 
so the Match 4 results do not apply to the entire treated pop-
ulation. However, that difference appears unimportant, given 
the similarity of substantive conclusions between Match 4 
and the other matches.

In this example, the treatment effect estimates do not vary 
across statistical adjustment strategies. Is this evidence that 
these choices are inconsequential? Design choices—
including the type of match—should be made without ref-
erence to outcomes. Such choices may be of consequence in 
other applications. In general, if we use regression alone, we 
cannot be sure that inferences are not overly dependent on the 
model to extrapolate between treatment and control sites with 
poor overlap. The inferences we derive and our confidence in 
them have more to do with the strength of our design process 
and less to do with how results may change across the differ-
ent strategies. Sensitivity analyses can increase our confi-
dence further.

Sensitivity Analysis

We can use sensitivity analyses to determine whether it 
would take a weak or strong unobserved confounder to ren-
der a significant treatment effect no longer significant. In the 
myON example, however, treatment effect estimates are 
small, and confidence intervals include zero, so we fail to 
reject the null hypothesis of no treatment effect. Given the 
null results, one might conclude that sensitivity analyses are 
not needed. Here, we illustrate how to explore the possibility 
that bias from a hidden confounder masks an educationally 
meaningful effect. That is, an unobserved confounder may 
leave us to conclude that there is no effect when such an 
effect actually exists. We can explore this possibility using a 
test of equivalence with a sensitivity analysis (Rosenbaum, 
2008, 2010; Rosenbaum & Silber, 2009).

Because we did not discuss it above, we first review tests 
of equivalence. Under a test of equivalence, the null hypoth-
esis asserts that the absolute value of the treatment effect is 
greater than some δ, an effect size set by the researcher. That 
is, H≠

( ) :| |>δ τ δ  for some specified δ > 0 . Here, we set δ  to 
0.20 standard deviations, as 0.20 is generally considered a 
meaningful effect size in education research (Kraft, 2020). 

Therefore, the relevant null hypothesis is that the treatment 
effect, denoted τ , is greater than 0.20 or less than −0.20. 
Rejecting the null hypothesis provides a basis for asserting 
with 95% confidence that τ  is between −0.20 and 0.20. That 
is, | |<τ δ . H≠

( )δ  is the union of two exclusive hypotheses: 
H
���
0
( )
:

δ
τ δ≤ −  and H

���
0
( )
:

δ
τ δ≥ , and H≠

( )δ  is rejected if both 

p-values H
���
0
( )δ

 and H
���
0
( )δ

 are rejected (Rosenbaum & Silber, 
2009). We can apply the two tests without correction for mul-
tiple testing, setting α = 0.05  for each test, since we test two 
mutually exclusive hypotheses. Thus, we test whether our 
study’s estimate differs from other possible treatment effects 
represented by δ . With a test of equivalence, we cannot dem-
onstrate a total absence of effect, but instead we test that our 
estimated effect is not as large as δ  (in a positive or negative 
direction). Under a test of equivalence, the closer the esti-
mated treatment effect is to zero, the farther it will be from δ  
and the smaller the p-values will be.

Next, we implement a test of equivalence for the myON 
analysis Match 4, first assuming no unobserved confound-

ing. We test H
���
0
( )δ

 and obtain a one-sided p-value of 0.011. 
We then test H

���
0
( )δ

and obtain a one-sided p-value of 0.027. 
The overall test of equivalence is based on the larger of these 
two p-values. We reject the null that the estimated treatment 
effect is equivalent to an educationally significant effect.

Were our study a CRT, we could be confident that the 
results were not due to unobserved treatment-control group 
differences. In a COS, however, we may reject the null 
hypothesis of equivalence due to hidden confounding. The 
test above is conducted under the assumption of no hidden 
bias (e.g., Γ  = 1). However, with sensitivity analyses we 
can explore whether and to what extent the test of equiva-
lence is sensitive to potential biases from non-random treat-
ment assignment (e.g., bias from a confounder).

To do so, we repeat the test of equivalence, but use Γ  
values that are larger than 1. When Γ  is greater than 1, we 
obtain upper and lower bounds on the p-values derived 
above. We then find the Γ  changepoint—the Γ  value at 
which the upper-bound on the p-value is greater than 0.05. 
This is the level of confounding that would need to be pres-
ent for our test result to no longer be statistically significant. 
In the myON study, we find that when Γ  is as small as 1.3, 
the upper bound on the p-value for the test of equivalence is 
0.049; Γ  is on an odds ratio scale implying that if there were 
a binary unobserved confounder that caused the odds of 
treatment to differ by 30%, this could explain the result from 
the test of equivalence.

Is this a large or small Γ  value? To provide a benchmark, 
we regress treatment status on the observed covariates using 
a logit model and calculate odds ratios for the covariates to 
compare to those from the sensitivity analysis. If the covari-
ate odds ratios are smaller than the Γ  value, the hidden con-
founder would need to have an effect on the odds of treatment 
larger than that of the observed covariates. We would inter-
pret this as a robust result, since the effect of the unobserved 



Page et al.

12

confounder would need to be larger than that of the observed 
data. However, if the Γ  value is smaller, then the unob-
served confounder could be similar to observed confound-
ers. In our case study, if we increase composite school test 
scores by one-tenth of a standard deviation, for example, 
that increases the odds of being treated by 1.42. Since a Γ  
value of 1.3 is less than 1.42, we conclude that an unob-
served confounder could easily mask an educationally 
meaningful effect.

Discussion

Although randomized trials are considered the “gold stan-
dard” for conducting educational effectiveness research, they 
are not always feasible. Furthermore, an investigator may 
have questions about the efficacy of an intervention after it 
has been implemented in a nonrandom manner. In educational 
contexts, such nonrandom allocation often occurs at the clus-
ter (e.g., school or classroom) rather than individual level.

In such instances, thoughtfully designed COSs together 
with sensitivity analyses are an important tool in the educa-
tion analyst’s arsenal. Thoughtful design is key to conduct-
ing a high-quality COS. We outline principles for COS 
design and advocate designing COSs with their CRT ana-
logue as a guide. Analysts should focus on the assignment 
mechanism and identify the factors that guided treatment 
allocation. We further advocate multilevel matching strate-
gies for achieving treatment-control balance and common 
support prior to the application of regression or other strate-
gies to estimate treatment effects.

The weakness of a COS, of course, is that even with 
thoughtful design and analysis, one can never definitively 
know whether a critical unobserved confounder is driving an 
impact estimate or whether such an unobserved measure is 
masking true effects. Nevertheless, sensitivity analyses allow 
the analyst to consider how large such confounders would 
need to be to operate in either of these ways, and whether a 
confounder of such a magnitude is reasonable within the con-
text under consideration. In sum, there is much to be learned 
from thoughtfully designed and implemented COSs.
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Notes

1. District personnel provided documentation regarding 
myON’s site-selection process and launch.

2. The standardized difference for a variable is computed as the 
mean difference between treatment and comparison schools or stu-
dents, divided by the pooled standard deviation (Cochran & Rubin, 
1973; Rosenbaum & Rubin, 1985; Silber et al., 2001). A standard-
ized difference of less than one-tenth of a standard deviation is 
considered acceptable, since a randomized experiment might yield 
discrepancies of this size (Cochran & Rubin, 1973; Silber et al., 
2001; Rosenbaum, 2010; Rosenbaum & Rubin, 1985).

3. For example, myON documentation suggests that students 
using myON can increase their Lexile scores by more than 20% 
(Capstone Digital, 2015). Ortlieb et al. (2014) find that while myON 
can potentially improve reading achievement when used together 
with traditional books, it has no positive impacts as a stand-alone 
product.
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