
Gender differences in Predicting STEM 
Choice by Affective States and Behaviors 
in Online Mathematical Problem Solving: 
Positive-Affect-to-Success Hypothesis 
 

 
This study aims to identify effective affective states and behaviors of middle-school students’ online 
mathematics learning in predicting their choices to study science, technology, engineering, and mathematics 
(STEM) in higher education based on a positive-affect-to-success hypothesis. The dataset (591 students and 
316,974 actions) was obtained from the ASSISTments project. In the ASSISTments intelligent tutoring 
system, students completed mathematical problem-solving tasks, and the data was processed to infer their 
action-level affective states and behaviors, which were averaged to form student-level measures. The 
students’ future STEM choice was predicted by the student- and action-level affective states and behaviors 
using logistic regression (LR), ordinary least squares regressions with standardized scores (ORz), and random 
forest with permutation importance and SHAP values (RFPS). The results revealed that student- and action-
level gaming behavior consistently predict STEM choice. In addition to gaming, female students are more 
likely to study STEM if they are less bored and more off-task, and male students if more concentrated and 
less frustrated. ORz generates theoretically plausible results and identifies sufficiently distinguishable 
affective states and behaviors. Suggestions for educational practice and research are provided for adaptive 
teaching. 

Keywords: affect, gender differences, intelligent tutoring systems, mathematical problem solving, STEM 
choice

 

1. INTRODUCTION 

Science is about not only understanding but prediction. Using students’ past learning 
phenomena (e.g., past online learning) to predict long-term outcomes (e.g., future educational 
choices) is one of the greatest benefits of conducting relevant scientific research (e.g., cohort 
study). For traditional educational researchers, however, using middle-school students’ affective 
states and behaviors during online mathematical problem solving to predict students’ choice to 
study science, technology, engineering, and mathematics (STEM) in higher education is a 
scientific challenge. The challenges begin even before developing literature-based hypotheses 
and delving into data analysis. They start when identifying the subtle online process (affective 
states and behaviors) and linking it to the long-term effect (STEM choice) and continue 
throughout the research process. Yet these challenges can all be resolved. 

Firstly, the issue of identifying subtle online behavior has been resolved by recent 
advancements in computer science for learning purposes. On the one hand, educational 
researchers have developed methods to examine their data that mainly focus on student-level 
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affect as a relatively long-term tendency in approaching mathematical learning. On the other 
hand, advancements in online learning have led to the development of new relevant concepts 
and data-science methods to analyze the new forms of data (De Witte, Haelermans, & Rogge, 
2015; Kai, Almeda, Baker, Heffernan, & Heffernan, 2018). The main new form of data is action-
level data; that is, students’ direct or inferred behaviors recorded by information and 
communication technologies (e.g., intelligent tutoring systems and learning management 
systems) provide authentic data regarding learning processes (Tempelaar, Rienties, & Giesbers, 
2015). Related research advancements in data analysis methodologies have also emerged, 
including educational data mining and learning analytics (Baker & Inventado, 2014). For 
example, students’ online learning actions can be accessed, detected, and computed to form 
psychological constructs such as learning affect by affective computing (Baker, D’Mello, 
Rodrigo, & Graesser, 2010). 

Secondly, justifying students’ online learning processes leading to STEM choice may need 
support from a theoretical basis, conceptual reasoning, and educational practices. For the 
theoretical basis, the positive-affect-to-success (PAS) hypothesis assumes that “positive affect 
engenders success,” as suggested by Lyubomirsky, King, and Diener (2005, p. 803) and vice 
versa. The positive affects include long-term positive affective traits (i.e., happiness) and short-
term frequently experienced positive affective states (e.g., joy, interest, and pride), although 
happy people occasionally have negative affective states (e.g., anger, anxiety, and sadness) 
when receiving negative feedback about their performance. The occasional negative affective 
states in response to negative feedback, however, play a functional role for happy people to 
focus on solving current problems aiming to return to their generally long-term trait of positive 
affects (or happiness) and, in turn, for success, an experience like playing a challenging but 
solvable game (Gee, 2005a, 2005b). For conceptual reasoning, students’ STEM choice can serve 
as a criterion or learning outcome for educational researchers to identify effective affective and 
behavioral factors in mathematical problem solving. It is because affective states and behaviors 
are interwoven with cognitive processes in mathematical learning (McLeod, 1994), and 
mathematics are the basis for studying in STEM (Chiu, 2007), which may link to future STEM 
choice (Meece, Wigfield, & Eccles, 1990; Chiu, 2017). For educational practice, linking 
students’ online-learning action-level data to student-level data (e.g., future related educational 
choices) may serve as a basis for understanding students’ longitudinal learning processes 
(Banerjee, 2016) and identify effective factors for educational intervention. When affect 
becomes the focus, gender differences are of concern because there is a stronger relationship 
between affect and both achievement and participation in advanced STEM studies for female 
students than for male students (Glynn, Taasoobshirazi, & Brickman, 2007; Zeldin & Pajares, 
2000). 

The ASSISTments project provides necessary measures for the present investigation: (1) To 
predict students’ higher-education STEM choices using students’ affective states and behaviors 
in online mathematical problem solving in middle school, (2) to explore whether there are 
gender differences in the prediction patterns, and (3) to use typical data analysis methods from 
both the fields of education and data science. The following literature review will first provide 
the theoretical basis for the affective states and behavioral measures in the ASSISTments 
dataset. The second section focuses on empirical studies of factors predicting STEM choice. In 
the final section, the literature review focuses on gender differences. The rationales for selecting 
suitable data analysis methods are presented in Section 2.3 on data analysis. 
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1.1. AFFECTIVE STATES AND BEHAVIORS IN ASSISTMENTS 

The affective states and behavior measures in the ASSISTments dataset were initially developed 
on the basis of the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP; Ocumpaugh, 
Baker, & Rodrigo, 2015; Shute et al., 2015). The BROMP uses a dual coding scheme, by which 
observers record one of the students’ affective states and one of the students’ affective behaviors 
at one particular point of time (i.e., at the action level) if any. The BROMP records were 
synchronized to the log-file data of how students solved problems online. As a later development, 
the present data on students’ affective states and behaviors were inferred by automated detecting, 
modeling, or computing on the basis of student actions in using the ASSISTments intelligent 
tutoring platform, where students solved mathematical problems and obtained hints or 
scaffolding questions if requested (San Pedro, Baker, Gowda, & Heffernan, 2013b; Pardos, 
Baker, San Pedro, Gowda, & Gowda, 2014). The ASSISTments dataset contains four constructs 
on affective states (i.e., boredom, concentration, confusion, and frustration) and two constructs 
on affective behaviors (i.e., being off-task and gaming the system). The meanings of the six 
constructs and their relationships with related learning outcomes are depicted as follows. 

Boredom. Being bored is an aversive state that draws students’ attention and engagement 
away from participating in productive activities, is attributed to external settings, and relates to 
affective states such as anxiety, sadness, emptiness, and perception of slow time passing 
(Eastwood, Frischen, Fenske, & Smilek, 2012). Boredom relates to low student mathematical 
skill or knowledge (San Pedro et al., 2013b). 

Concentration. (Engaged) concentration refers to paying full attention to learning tasks (e.g., 
furrowing one’s brow while working) regardless of being on-task, off-task, or multitasking 
(Ocumpaugh et al., 2015). Concentration is a state of flow in psychology (Nakamura & 
Csikszentmihalyi, 2002) and was named flow in earlier affective computing research (D’Mello, 
Picard, & Graesser, 2007). Concentration in online mathematical learning during middle school 
positively relates to STEM vocational self-efficacy in high school, which is a predictor for future 
STEM career choice (Ocumpaugh, San Pedro, Lai, Baker, & Borgen, 2016). Concentration also 
relates to high mathematical knowledge (San Pedro et al., 2013b; Pardos et al., 2014). 

Confusion. Confusion occurs when students have difficulty in understanding learning tasks 
of noticeable concerns, which may be observed as facial expression, verbal requests for 
explanations, or body language for help (Ocumpaugh et al., 2015). Confusion during online 
mathematics learning in middle school relates negatively to STEM vocational interest in high 
school (Ocumpaugh et al., 2016). Prolonged confusion in computer programming relates to low 
course grades (Lee, Rodrigo, Baker, Sugay, & Coronel, 2011). 

Frustration. Frustration is manifested by students’ expression of annoyance, sorrow, and 
distress, which, however, may be cognitively interpreted and expressed differently or reversely 
in different situations (Ocumpaugh et al., 2015). For example, challenging but solvable tasks 
may lead to pleasurable frustration and engage students (Gee, 2005a). Real-time frustration 
experience through interacting with the computer on easy tasks elicited smiles for 90% of post-
graduate students in a US study (Hoque, McDuff, & Picard, 2012). Frustration relates to 
extremely high or low mathematical skill or knowledge (San Pedro et al., 2013b). A surprising 
finding is that frustration positively relates to higher online problem-solving test scores (Pardos 
et al., 2014). 

Off-task. Being off-task refers to engaging in behaviors other than the assigned learning 
tasks on the intelligent tutoring system (Baker & Rossi, 2013). However, off-task behaviors may 
not mean boredom and may re-engage students perhaps because there are many forms of off-
task behaviors, some apparently disruptive (e.g., threatening other students and sleeping) and 
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some not (e.g., staring into space, interacting with peers, playing with objects like pencils, and 
seeking teachers’ attention by putting heads on desks; Ocumpaugh et al., 2015, pp. 36 and 39). 
Given the diverse forms of off-task behaviors, it is hard to infer whether or not off-task behavior 
as a whole predicts STEM choice, as evidenced by a research finding that there are unstable 
relationships between off-task behavior and test scores during online problem solving (Pardos 
et al., 2014). 

Gaming. Gaming the system refers to students playing around with the system but not 
engaging with learning tasks (Ocumpaugh et al., 2015). Example gaming behaviors include 
sustained guessing (Baker et al. 2010), requesting hints, or responding too quickly depending 
on the degree of task difficulty, with successful problem-solvers gaming on easy tasks and 
unsuccessful problem-solvers gaming on difficult tasks (Baker & Rossi, 2013). Given that 
gaming the system has a confounding factor (i.e., task difficulty), it is hard to hypothesize 
gaming’s direction in predicting STEM choice even if gaming itself is negative in meaning, but 
one study has found a negative relationship between gaming behavior and online problem-
solving scores (Pardos et al., 2014). 

In summary, the above literature review on ASSISTments and affective computing suggests 
the six constructs have the following characteristics: (A) Concentration is positive in semantic 
meaning, and the other five constructs are negative. (B) The constructs are assessed by criteria 
of traditional educational learning outcomes such as student knowledge (task difficulty or 
correctness), engagement, interest, and self-efficacy. (C) According to the PAS hypothesis, the 
positive affective state (i.e., concentration) will positively predict STEM choice and the negative 
affective states (i.e., boredom, confusion, and frustration) negatively predict STEM choice 
(Lyubomirsky et al., 2005). The two behaviors are relatively uncertain because of diverse 
meanings and confounding factors. (D) As stated in the PAS hypothesis (in Section 1), happy 
people occasionally have a negative affect when facing negative feedback about their 
performances; the occasional negative affect actually positively relates to long-term happiness 
and then success. This is evidenced by the phenomenon that a brief period of confusion and 
frustration positively relate to learning gains, but lengthy-period confusion and frustration 
negatively relate to learning gains (Liu, Pataranutaporn, Ocumpaugh, & Baker, 2013). 

1.2. ONLINE AFFECTIVE STATES AND BEHAVIORS PREDICTING STEM CHOICE 

There appear to be few empirical studies predicting students’ STEM choice by students’ action-
level affective states and behaviors during online mathematical problem solving. The most 
relevant study is the research conducted by San Pedro, Ocumpaugh, Baker, and Heffernan 
(2014). They used independent t-test and logistic regression to identify effective factors 
distinguishing STEM and non-STEM college majors using student-level data on online 
mathematical learning from ASSISTments. The only significant and stable independent variable 
among the six constructs (Section 1.1) over the two algorithms (t-test and logistic regression) 
was gaming in a negative direction. (The other effective factor is student knowledge.) Another 
related study, using ASSISTments data and similar algorithms, indicated that students’ college 
enrollment could be “positively” predicted by boredom and confusion, controlling for 
mathematics knowledge, number of first actions, and carelessness (San Pedro, Baker, Bowers, 
& Heffernan, 2013a), which is hard to interpret given the negative essence of boredom and 
confusion (cf. Section 1.1). A note to make is that the two studies actually used student-level 
data by averaging action-level data on each construct for each student. 

Predicting students’ STEM achievements and choices has long been a research interest for 
educational researchers, who, however, only focus on student-level factors. Qualitative research 
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in education has identified factors relating to students’ STEM choice by interviewing STEM 
students and their teachers or parents. The most important factors are student affect, such as 
interest, curiosity, identity, and values. The next are school, family, and informal learning 
experiences (Cerinsek, Hribar, Glodez, & Dolinsek, 2013; Maltese & Tai, 2010). From a 
psycho-socio-cultural perspective, students’ STEM choice relates to affective factors within 
different cultural contexts, such as interest or optimism with learning materials or tasks, 
confidence or self-efficacy with grades, resilience or control with learning strategies, value with 
authorities in the society, and hope or goal with educational designs (Chiu, 2017). A quantitative 
study using structural equation modeling finds similar results: Interest plays a major, mediating 
role and is influenced by peers, family, educators, and prior knowledge; interest, in turn, 
influences self-efficacy and career outcome expectancy and then knowledge and career 
orientation for STEM (Nugent, Barker, Welch, Grandgenett, Wu, & Nelson, 2015). 

1.3. GENDER DIFFERENCES IN FACTORS PREDICTING STEM CHOICE 

There appear to be no studies to date focusing on gender differences in the patterns of factors 
predicting STEM choice. Most related studies focus on gender differences in STEM 
achievement, which has long been viewed as the major reason for the persistent 
underrepresentation of females in STEM. Recent cross-cultural or meta-analysis studies, 
however, indicate that social-cultural factors address gender differences in STEM choices and 
achievements (Else-Quest, Hyde, & Linn, 2010). A salient example is that from pre-K to high 
school, gender differences in STEM achievement are small and subject to gender equality in a 
certain culture or society, with gender-equal societies having fewer gender differences in STEM 
achievements or mainly mathematics achievement (Guiso, Monte, Sapienza, & Zingales, 2008). 
The diminishing gender differences in STEM or mathematics achievements lend support to the 
gender similarities hypothesis, which contends that gender similarities tell more stories than 
gender differences (Hyde, 2005). 

For the present study, it is interesting to extend the debate to whether there are more gender 
differences or similarities in problem-solving affective states and behaviors, which can serve as 
key precedents for achievements (Zhu, 2007). In terms of affective states, traditional educational 
research normally uses the term “affects” and defines “affects” as beliefs, attitudes, and 
emotions toward a particular school subject (e.g., mathematics), social context (e.g., learning 
environment), or learning task (e.g., geometric proof); detailed affective measures include self-
concept (e.g., “I am able to solve a problem”), interest (e.g., “I enjoy solving problems”), and 
anxiety (e.g., “I feel anxious about making mistakes when solving problems”; Clifford, 1988; 
McLeod, 1992). Educational research indicates that boys generally have more positive attitudes, 
affects, or emotions toward STEM than girls do (Barkatsas, Kasimatis, & Gialamas, 2009) with 
only some exceptions, especially for primary school students (Yüksel-Şahin, 2008). Males’ 
more positive affects (e.g., higher self-efficacy and lower anxiety) in turn may lead to higher 
mathematics achievements (Pajares & Miller, 1994) or directly lead to STEM choice controlling 
for achievements (Carli, Alawa, Lee, Zhao, & Kim, 2016; Organization for Economic 
Cooperation and Development [OECD], 2014). These studies appear to suggest that affects may 
play different roles in predicting STEM choices for different genders. Whether the affect and 
related behavior measures included in the ASSISTments dataset can serve the function 
suggested by educational literature is worth investigating. 

In terms of affect-related or affective behaviors, the negative relationships between off-task 
behavior and mathematics achievement were stronger for boys than for girls, especially for low-
level mathematical tasks (e.g., computation; Peterson & Fennema, 1985). Competitive 
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mathematics activities positively engage male low-achievers but negatively engage female low-
achievers; in contrast, cooperative mathematics activities positively engage female low-
achievers but negatively engage male high-achievers (Koehler, 1990). These results suggest that 
engaging in socially off-task activities may be irrelevant to or even supportive of learning for 
girls. 

1.4. THE PRESENT STUDY 

The above literature review suggests that, in predicting STEM choice, student- and action-level 
affective states and behaviors may perform differently for students as a whole and for both 
female and male students. Linking action-level data from online learning (i.e., affective states 
and behaviors during problem solving) with future student-level data (i.e., STEM choice) invites 
different data analysis methods from the fields of both education and data science. This 
methodology triangulation (i.e., multiple algorithm uses for the same phenomenon) can increase 
the understanding, accuracy, validity, and credibility of research results (Hussein, 2015). 

This study used data from the ASSISTments project, which provided necessary measures for 
the present investigation (cf. Sections 2.1 and 2.2). As suggested by related literature (Section 
1.1), desirable affective states (e.g., concentration) positively predict STEM choice and 
undesirable affective states (e.g., boredom) negatively predict STEM choice. The prediction 
directions are relatively uncertain for the two behaviors (i.e., off-task and gaming). As such, it 
was difficult to propose a hypothesis for the two affective behaviors. 

Given the above condition, this study poses two research questions (RQs), with RQ1 having 
one embedded hypothesis, as suggested by the PAS. The affective states are boredom, 
concentration, confusion, and frustration, and the behaviors are being off-task and gaming the 
system, terms used in ASSISTments (Section 1.1). 
 
RQ1: What student- and action-level affective states and behaviors in online mathematical 
problem solving predict STEM choice? [Hypothesis: Positive affective states (e.g., 
concentration) predict STEM choice positively, and negative affective states (e.g., boredom, 
confusion, and frustration) predict it negatively.] 
RQ2: Are there gender differences in the prediction pattern? 

2. METHOD 

2.1. DATA SOURCE AND PARTICIPANTS 

The data was obtained from the ASSISTments project. ASSISTments is a free online tutoring 
platform that provides students with mathematical problems designed by their teachers. Students 
solve the problems in school or as homework, and when students do not correctly solve 
problems, students can request hints and scaffolding questions to support their learning 
(Botelho, Baker, & Heffernan, 2017). While ASSISTments assists student learning, it can also 
assess student performance and record student actions (Heffernan & Heffernan, 2014). The 
dataset used in this study came from middle school students working on ASSISTments during 
2004–2005 (58% of the total student actions) and 2005–2006 (42% of the total student actions). 

The project also collected offline data on the students’ gender and whether the students 
studied STEM in higher education (i.e., variable name: isSTEM). This study only used 
observations where isSTEM had no missing data. This data selection procedure resulted in a 
final dataset of 591 students and their 316,974 action records in solving the mathematical 
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problems. Among the 591 students, there were 247 females and 237 males, with the others as 
missing data. The action numbers were 132,684 for females and 131,087 for males. 

2.2. MEASURES 

The outcome measure was at the student level, indicating whether the students study in the 
STEM fields or not. Its column name was “isSTEM” in the ASSISTments dataset with a 
dummy-coding scale (0 = no, 1 = yes). The mean of isSTEM was 0.212, indicating that 21.2% 
of the participants studied STEM in higher education. 

As partially indicated in Section 1.1, the affective state and behavior features in the present 
ASSISTments dataset were automatically detected, and the original data that trained the 
detectors was BROMP-based (San Pedro et al., 2013b; Pardos et al., 2014). The predictors 
included four affective states (i.e., boredom, concentration, confusion, and frustration) and two 
behaviors (i.e., off-task and gaming the system), in total six concepts, each at both the student 
level and the action level, which resulted in 12 (= 6 * 2) predictor measures. The action-level 
affective states and behaviors indicated each student’s affective states and behaviors while 
solving a particular problem, labeled “the student affect prediction of the current response” 
(column names: 'RES_BORED,' 'RES_CONCENTRATING,' 'RES_CONFUSED,' 
'RES_FRUSTRATED,' 'RES_OFFTASK,' 'RES_GAMING') in the ASSISTments dataset. The 
student-level affects and behaviors (column names: 'AveResBored,' 'AveResEngcon,' 
'AveResConf,' 'AveResFrust,' 'AveResOfftask,' 'AveResGaming') were the averages of the 
students’ action-level affects and behaviors; that is, for example, taking the average of 
'RES_BORED' values for a student would be the student’s 'AveResBored.' The 12 predictors 
used a continuous scale ranging from 0 to 1. 

2.3. DATA ANALYSIS 

2.3.1. Overview 

The research questions (RQs) were mainly a binary classification task with the goal to predict 
students’ STEM choice in higher education (0 = no; 1 = yes, i.e., a binomial, binary, or 
dichotomous dependent variable or outcome). The independent variables or predictors were the 
students’ affective states and behaviors during solving mathematical problems in middle school, 
which were continuous variables with diverse patterns of data distribution. Regression or tree 
classification methods could be used to answer the RQs. 

The data was analyzed using Python and its related packages, including pandas, numpy, 
seaborn, statsmodels.api, scipy.stats, sklearn, eli5, and shap. The code and results of data 
analysis, preparation, and exploration or binning (including descriptive statistics, data 
distribution plots of the measures, and related data analyses and results without being presented 
in this paper) were made available for public use on five Kaggle kernels (e.g., 
https://www.kaggle.com/meishiuchiu1/assistmentsaffecttrait-student-level-data). 

2.3.2. The three algorithms 

The RQs were answered by three data analysis methods: logistic regression (LR), linear or 
ordinary least squares regression (OR), and random forest with feature selection. All of the three 
algorithms were typical methods for predicting or classifying dependent variables by using 
multiple predictors or features. The differences between the three algorithms can be summarized 
as follows: LR is a typical method for predicting binominal dependent variables, which suited 
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the present student-level data structure; OR is a typical method for predicting continuous 
dependent variables, which did not suit the present student-level data structure but might suit 
the present action-level structure; random forest is a typical non-parametric regression tree 
algorithm and can identify degrees of feature importance in predicting dependent variables. The 
detailed rationales and procedures for using the three algorithms are addressed for each 
algorithm as follows. 

Firstly, LR was used because LR is the most common statistical method for identifying 
effective predictors (using maximum likelihood estimation) to distinguish a dichotomous 
outcome (Allison, 2012) and tends to perform suitably for individual-level outcomes. To 
interpret the regression coefficients for each predictor, given the large sample sizes of this study, 
it was easy to obtain coefficients that were significant but actually had little importance. Effect 
sizes, therefore, were proper criteria to assess the importance of the predictors. In LR, odds 
ratios were used as the effect sizes for the predictors. 

Secondly, linear or ordinary least squares regression (OR) was used, with all the measures 
being transformed into standardized z-scores (ORz). The rationale for using OR in this study 
was that the outcome was at the student level, but the predictors were initially recorded at the 
action level and then aggregated to the student level. By transforming all the outcome and 
predictor measures into z-scores, the data could be dealt with as continuous measures. The best 
choice might have been to analyze the dataset using multilevel modeling, but this is a complex 
modeling method and time-consuming in terms of data processing, especially given the large 
dataset at the action level and the large number of groups at the student level. ORz, therefore, 
served as a compromise for dealing with the present dataset. 

A major concern for using OR to analyze dichotomous dependent variables is that this 
algorithm might violate two of the five assumptions of OR (i.e., homoscedasticity and normality; 
Allison, 2012). The concern, however, can be released if the datasets have large sample sizes 
(or even small sample sizes and skewed distribution). OR can generate robust results similar to 
the results obtained by LR in empirical studies, especially for testing causal hypotheses or 
classifying cases, though LR provides more accurate predictions than OR for student-level data 
(Pohlmann & Leitner, 2003). 

One major merit of using OR is that interpreting OR results is more intuitive and meaningful 
than interpreting LR results, which can facilitate communicating research results to the general 
public (Hellevik, 2009). For example, the significant regression coefficient of an independent 
variable (predictor) in LR should be interpreted by log-odds (e.g., a logit coefficient of 0.300 
refers to log-odds increase by 0.300 for every 1-unit increase in the predictor). However, it is 
easier to understand a regression coefficient in OR (e.g., 0.300), which can be interpreted as the 
probability of the outcome increases by 0.300 units for every 1-unit increase in the predictor. 
Using ORz (as used in the study) can further facilitate the interpretation because after 
transforming all the measures into z-scores, the ORz regression coefficients are standardized 
(i.e., betas), in which the “unit” becomes the “standard deviation” of the measures. These can 
be interpreted as correlation (r) between the predictor and the outcome variable controlling for 
all other predictors in the ORz model. As such, the betas could serve as the effect sizes and use 
the effect size metrics for correlations: rs = 0.100 are small effect sizes, rs = 0.300 are medium 
effect sizes, and rs = .500 are large effect sizes (Cohen, 1992). Further, for example, the beta of 
0.300 for a predictor (e.g., concentration) could be interpreted as 9% (= 0.300*0.300) of the 
total variance of students’ STEM choice having come from concentration controlling for all 
other predictors in the ORz model. 

Thirdly, random forest is a typical, efficient, and accurate non-parametric regression tree 
algorithm to perform classification tasks especially for data with missing data or many 
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predictors (Strobl, Malley, & Tutz, 2009), which suited the aim of this study using six affective 
state and behavior predictors to predict whether students studied STEM or not (a classification 
task). Another reason is that random forest can present predictor importance, which can facilitate 
the comparison with regression coefficients (typical statistics indicating the relative importance 
of predictors) obtained by LR and ORz. Thus, permutation importance and SHAP values were 
used to identify the weights and direction for the predictors (Becker, 2019). Permutation 
importance (PI) was a performance metric on accuracy (how model performance decreases in 
prediction by randomly shuffling the cases of a predictor) for each predictor, with higher 
positive PI indicating higher accuracy and negative PI as a sign of small sample sizes. The 
variance for accuracy was calculated by the results of multiple shuffling. The summary plots of 
SHAP values (i.e., the impact of a predictor for a case on the model output, SHAP value = 0 as 
no impact, < 0 as negative impact, and > 0 as positive impact) could tell the direction of each 
predictor in the model. For example, if most cases with high concentration had high SHAP value, 
then concentration had a positive impact on isSTEM. The judgment on the directions of 
predictors, however, relied on visualization of the SHAP-value summary plot (e.g., Figure 1), 
which might be an unreliable task, especially with large sample sizes. The whole process was 
called the RFPS (Random Forest, Permutation-importance, and SHAP) procedure in this study, 
which might play similar roles to LR and ORz in identifying effective predictors or features and 
reduce concerns about “black box” in random forest algorithms. 

This study focused on identifying the importance of predictors or features. Although the 
global performance of the three algorithms was not the focus, basic evaluation metrics were 
partially considered. OR’s R-squared indicates the total variance of the outcome explained by 
all the predictors in the regression model. A smaller than .050 F-statistic p-value for OR 
indicates that at least one of the regression coefficients is not zero (Allison, 2012). LR uses 
pseudo R-squared as the evaluation statistics, which is explained as a pseudo R-squared with a 
smaller than .050 LLR (likelihood ratio chi-squared statistic) p-value indicating that at least one 
of the regression coefficients is not zero. LR’s pseudo R-squared, however, is not as robust as 
OR’s R-squared. Because both LR and random forest perform classification tasks, classification 
metrics were considered. Classification accuracy was an intuitive measure but might have been 
misleading for this study because the outcome variable (“isSTEM”) did not have roughly equal 
numbers in the two classes (cf. Section 2.1). AUC (or area under ROC [receiver operating 
characteristic] curve) was a relatively robust performance metric for skewed class distribution 
(Fawcett, 2006), normally ranging from 0.500 (random classification) to 1.000 (completely 
correct classification). For this study, higher AUC indicated a better algorithm for distinguishing 
between students choosing STEM and not. 

2.3.3. Multicollinearity in regression analysis 

Regression analysis should pay attention to the problem of multicollinearity, in which the results 
obtained by the individual-feature model (placing only one predictor into a regression analysis) 
will be different from the all-feature model (placing all the predictors into a regression analysis). 
Therefore, the problem of multicollinearity could be resolved by comparing the directions (signs) 
of the regression coefficients between the all- and individual-feature models. A note to make 
was that a simple relationship (or correlation) between a feature and its outcome in the 
individual-feature model might involve many confounding factors and does not allow for 
identifying the relative importance among the features, which could be achieved by the all-
feature model. The criterion for the sign change was that, for a particular construct, the sign of 
its significant regression coefficient (e.g., significantly positive) in its individual-feature model 
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changed to the opposite sign (e.g., significantly negative) in its all-feature model. In the case of 
non-significant coefficients, it is unclear whether a sign change actually represents a 
multicollinearity issue since the coefficients were not significant in either case. 

The problem of multicollinearity, however, would not be serious, and the all-feature model 
would be more suitable than the individual-feature model in this study. The two claims were 
justified as follows. 

Firstly, two measures could check for the problem of multicollinearity. Correlations between 
the predictors larger than 0.900 and the variance inflation factor (VIF) values of the predictors 
larger than 10 would suggest the existence of multicollinearity (Hair, Black, Babin, Anderson, 
& Tatham, 2006). The correlations between the predictors ranged from -0.724 to 0.886 on the 
student-level data (https://www.kaggle.com/meishiuchiu1/assistmentsaffectstate-action-level-
data) and ranged from -.455 to 0.509 on the action-level data (https://www.kaggle.com/ 
meishiuchiu1/assistmentsaffecttrait-student-level-data ) for the three samples (all, female, and 
male students) in this study. All the correlation coefficients were smaller than 0.900. The VIF 
values ranged from 1.101 to 9.982 on the student-level data and ranged from 1.008 to 1.786 on 
the action-level data (Tables 1-3). All of the VIF values were smaller than 10. VIF can be 
explained using an example from this study. In the student-level data in Table 1, the VIF of 
boredom is 8.724, which means that the standard errors of boredom in the all-feature model 
would have been increased by 4.362 (= square root of 8.724) times. 

Secondly, the predictors were collected based on the BROMP (cf. Section 1.1), which used 
a dual coding scheme (coding affective states and behavior simultaneously and separately) and 
assumed that affective states and behaviors should be partially orthogonal or uncorrelated 
(Ocumpaugh et al., 2015). The design of the BROMP justified the use of an all-feature 
regression model. Using an all-feature regression model could not only reflect that there was a 
co-occurrence of affective states and behaviors but also advance our knowledge of the relative 
importance of the affective states and behaviors in predicting STEM choice. For example, boys 
and girls might have had different patterns of the relative importance among the affective states 
and behaviors, which could facilitate the interpretation of the multicollinearity as an actual 
phenomenon, based on which to form a new theory. An example is that the internal/external 
frame of reference model (Chiu, 2012; Marsh & Hau, 2004) and the dimensional comparison 
theory (Jansen, Schroeders, Lüdtke, & Marsh, 2015) were supported by the results of 
multicollinearity, where there were sign changes from the models with individual predictors to 
the models with multiple highly correlated predictors (e.g., using mathematics and science 
achievements to predict mathematics and science self-concept). As such, this study would 
answer the research questions primarily using the results from the all-feature models. The 
individual-feature model was only used for discussing multicollinearity. 

3. RESULTS 

3.1. AFFECTIVE STATES AND BEHAVIORS PREDICT STEM CHOICE FOR ALL 

STUDENTS (RQ1) 

3.1.1. Multicollinearity checking 

On the student-level data, both LR and ORz did not reveal salient sign changes from the 
individual to all-feature models (Table 1). In LR, one construct’s regression coefficients 
remained the same significant signs, and five constructs changed from being significant in the 
individual-feature models to non-significant in the all-feature model. As “non-significant 
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coefficients,” they were therefore exempt from the problem of multicollinearity. ORz’s all- and 
individual-feature models had the same regression coefficient signs: Five constructs’ signs 
remained non-significant, and one construct’s sign remained the same sign (and significant) 
across the all- and individual-feature models. 

Table 1: Analysis results for all students. 

predictors 
algorithm boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 8.724 2.346 1.339 1.123 4.527 2.190 
LR log odds -5.155 -2.020 -11.566 -9.946 -5.601 -8.138 
(individual std err 0.399 0.155 0.948 0.809 0.466 0.902 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.006 0.133 0.000 0.000 0.004 0.000 
LR log odds -12.182 2.875 0.205 -2.119 2.300 -3.618 
(all-feature std err 6.284 1.693 3.059 2.141 2.592 1.212 
model) p > |z| 0.053 0.089 0.947 0.322 0.375 0.003 
 odds ratio 0.000 17.730 1.227 0.120 9.970 0.027 
ORz beta 0.000 0.045 -0.005 -0.056 0.011 -0.083 
(individual std err 0.041 0.041 0.041 0.041 0.041 0.041 
-feature  p > |t| 0.996 0.271 0.910 0.176 0.792 0.043 
model) beta-squared 0.000 0.002 0.000 0.003 0.000 0.007 
ORz beta -0.165 0.039 -0.002 -0.045 0.082 -0.169 
(all-feature std err 0.121 0.063 0.047 0.043 0.087 0.061 
model) p > |t| 0.172 0.531 0.967 0.302 0.348 0.005 
 beta-squared 0.027 0.002 0.000 0.002 0.007 0.029 
RFPS accuracy 0.011 0.019 0.000 0.015 -0.015 0.000 
 variation 0.007 0.013 0.024 0.016 0.013 0.017 
 important yes yes no yes no no 
 impact direction negative? positive? ?  negative? ? ? 

Action-level data 
 VIF 1.776 1.276 1.068 1.008 1.363 1.141 
LR log odds -5.005 -1.969 -1.883 -1.705 -4.372 -2.210 
(individual std err 0.019 0.007 0.017 0.014 0.026 0.015 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.007 0.140 0.152 0.182 0.013 0.110 
LR log odds -1.789 -1.234 -0.013 -0.113 0.047 -0.633 
(all-feature std err 0.037 0.012 0.018 0.015 0.023 0.015 
model) p > |z| 0.000 0.000 0.480 0.000 0.046 0.000 
 odds ratio 0.167 0.291 0.987 0.893 1.048 0.531 
ORz beta 0.009 0.000 0.006 -0.001 0.011 -0.048 
(individual std err 0.002 0.002 0.002 0.002 0.002 0.002 
-feature  p > |t| 0.000 0.844 0.001 0.746 0.000 0.000 
model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.002 
ORz beta -0.009 0.002 0.002 -0.002 0.004 -0.051 
(all-feature std err 0.002 0.002 0.002 0.002 0.002 0.002 
model) p > |t| 0.000 0.400 0.212 0.237 0.077 0.000 
 beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 
RFPS accuracy 0.010 0.073 0.019 0.030 0.039 0.061 
 variation 0.001 0.002 0.001 0.001 0.001 0.001 
 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 
Note. Green cells indicate the significant (important) results consistent with past literature and 
pink cells indicate the inconsistent results (base on the Hypothesis). The cells without colors 
indicate non-significant or uncertain results. The value “0.000” refers to “< 0.0005”. LR = linear 
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regression; ORz = ordinary least squares regressions with standardized scores; RFPS = random 
forest with permutation importance and sharp values; important = result judged by permutation 
importance; impact direction = result visually judged by Figure 1; “?” = uncertain direction in 
prediction. 
 

On the action-level data, both LR and ORz each had only one construct with a change in the 
signs of regression coefficients. In LR, off-task behavior changed from significantly negative in 
the individual-feature model to positive in the all-feature model (-4.372 to 0.047; Table 1). In 
ORz, boredom changed from positive (0.009) to negative (-0.009). The likely reason was that 
boredom had a relatively higher correlation with being off-task (0.503) than with all other 
predictors (-0.455 ~ -0.015), although none of the correlations were high enough (i.e., 0.900) to 
create a serious problem of multicollinearity. A note to make was that, for the student-level data, 
there were no salient sign changes even though the correlation between boredom and off-task 
behavior was much higher (0.868; https://www.kaggle.com/meishiuchiu1/assistmentsaffecttrait 
-student-level-data). This may have been because, compared with the action-level data, the 
student-level data had a smaller sample size, which resulted in more non-significant regression 
coefficients and thus exempted them from being identified as sign changes (e.g., off-task 
behavior with a sign change from significantly negative (-5.601) to non-significant (2.300); 
Table 1). 

In summary, the problem of multicollinearity in terms of sign changes from the individual- 
to all-feature models occurred only at the constructs of boredom and off-task behavior and only 
on the action-level data. The results were inconsistent with the low correlation coefficients and 
VIF values on the action-level data, which suggested a low possibility of multicollinearity (cf. 
Section 2.3.3). As has been stated, the BROMP coded affective states and behavior 
simultaneously and separately and assumed that affective states and behaviors were partially 
orthogonal or uncorrelated (Ocumpaugh et al., 2015). The simultaneous co-existence of the 
affective states and behaviors was obvious even though there was some possibility of 
multicollinearity in the all-feature models. In the all-feature models, the regression coefficients 
should be explained as the effect of the focused predictor on the outcome controlling for all 
other predictors in the model, which might reveal that there were co-occurrence and interactions 
between human affective states and behaviors. 

3.1.2. Student-level data 

Controlling for all other predictors in the models, the only significant student-level predictor of 
isSTEM was gaming, which predicted it in a negative direction, as indicated by the results 
obtained by LR (log odds = -3.618) and ORz (beta = -0.169) (Table 1). The effect sizes of 
gaming were the odds ratio of 0.027 for LR and the beta-squared of 0.029 for ORz. 

As indicated in Section 2.3.2, RFPS used accuracy measures with variation to assess the 
predictors’ degree of importance. The impact direction of a particular predictor was visually 
judged by the summary plots of SHAP values (Figure 1). For example, the measure “frustration” 
on the student-level data for the all-student sample had the most red dots (cases/students) (red 
indicating high in frustration) on the left-hand side (with negative SHAP values, indicating 
negative impacts of frustration on isSTEM) and the most blue dots (blue indicating low in 
frustration) on the right-hand side (with positive SHAP values). This result indicated that high 
frustration (red dots) had negative impacts on STEM choice (left-hand side) for students and 
vice versa, meaning that frustration was negatively related to STEM choice. RFPS obtained 
different results from those obtained by LR and ORz; that is, the outcome variable, isSTEM, 
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was negatively predicted by three important features: boredom (accuracy = 0.011; variation = 
0.007) and frustration (0.015; 0.016) and positively predicted by concentration (0.019; 0.013; 
Table 1; Figure 1), which matched the predictions of the hypothesis and literature (to be 
discussed in Section 4.1). 

 
 

Student-level data Action-level data 
All students 

  
Female students 

  
Male students 

 

 

Figure 1: The summary plots of SHAP values using RFPS on student- and action-level data for 
different student samples. Section 2.2 presents the information about the measure names in the 
ASSISTments dataset (e.g., “AveResFrust” and “RES-BORED”). 

 

3.1.3. Action-level data 

There were more significant predictors for the action-level data than for the student-level data, 
perhaps due to the large sample size for the action-level data. LR generated four significant 
predictors in the negative direction, boredom (log odds = -1.789; odds ratio = 0.167), 
concentration (-1.234; 0.291), frustration (-0.113; 0.893), and gaming (-0.633; 0.531), and one 
in the positive direction: off-task (0.047; 1.048; Table 1). The result that concentration 
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negatively predicted isSTEM was theoretically non-plausible (cf. the hypothesis). The non-
plausible result might come from the unsuitable use of LR for the action-level data. 

ORz generated theoretically plausible results but with only two significant predictors: Both 
boredom (beta = -0.009; beta-squared < 0.0005) and gaming (-0.051; 0.003) negatively 
predicted isSTEM (Figure 2). The results might have been plausible because using z-scores 
reduced the problem of multicollinearity, the original data collection design, and low 
correlations between the predictors (cf. Section 2.3.3). 

RFPS results indicated that all six predictors were important in predicting isSTEM: boredom 
(accuracy = 0.010; variation = 0.001), concentration (0.073; 0.02), confusion (0.019; 0.001), 
frustration (0.030; 0.001), off-task (0.039; 0.001) and gaming (0.061; 0.001; Table 1). However, 
the impact direction of the predictions was difficult to visually recognize (Figure 1). For 
example, the gaming behavior of the all-student sample revealed that a few red dots (cases being 
high in gaming behavior) were on the right-hand (positive SHAP values, indicating positive 
impacts of gaming on isSTEM), many blue dots (cases being low in gaming behavior) in the 
middle (near zero SHAP values), and some blue and red dots on the left-hand side (negative 
SHAP values). Even though the accuracy measure indicated that gaming was an important 
variable in predicting isSTEM, it was hard to judge whether gaming was positively or negatively 
related to isSTEM. The reasons might have been the large sample size and large variations in 
the SHAP values on the action-level data. 

3.2. GENDER DIFFERENCES (RQ2) 

3.2.1. Multicollinearity checking 

The female-student data had the same patterns of sign changes in the regression coefficient as 
the all-student data; that is, the problem of multicollinearity occurred only on the action-level 
data at the constructs of boredom and off-task behavior. In LR, off-task behavior changed from 
significantly negative in the individual-feature model to positive in the all-feature model (-5.293 
to 0.119; Table 2). In ORz, boredom changed from positive (0.008) to negative (-0.016). The 
changes were larger for the female-student data than for the all-student data. 

For male students, no sign changes occurred for either the student- or action-level data (Table 
3). Combining all the results for the samples of all, female, and male students suggested that the 
major sign changes occurred for the female-student data. The results also suggested that 
different patterns of how online-learning affective states and behaviors predicted STEM choice 
between female and male students would be found if analyzing female and male data separately, 
as done in this study. 

3.2.2. Student-level data 

For female students, isSTEM was negatively predicted by gaming using both LR (log odds = -
4.320; odds ratio = 0.013) and ORz (beta = -0.198; beta-squared = 0.039) all-feature models 
(Table 2). The results for females replicated the results obtained by LR and ORz for all the 
students (Table 1). RFPS obtained only one important predictor: off-task behavior (accuracy = 
0.016; variation = 0.050) positively predicted isSTEM. The seemingly positive prediction 
direction was as indicated in Figure 1: The ‘AveResOfftask’ for the female student-level data 
had mostly red dots (cases being high in off-task behavior) on the right-hand side (showing 
positive impacts on isSTEM) and mostly blue dots (cases being low in off-task behavior) on the 
left-hand side (showing negative impacts on isSTEM). 
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For male students, LR and ORz failed to identify any significant predictors (Table 3). 
However, RFPS obtained four important predictors: isSTEM was positively predicted by 
concentration (accuracy = 0.040; variation = 0.040) and negatively by frustration (0.017; 0.056), 
which supported the predictions. The outcome isSTEM was also predicted by off-task (0.020; 
0.039) with an uncertain direction and negatively by gaming (0.020; 0.039; Table 3; Figure 1). 
These two behaviors were relatively new in research on online learning, and no prediction 
direction was hypothesized (cf. Section 1.5). 

To summarize, the results of LR and ORz revealed that female and male students had the 
same prediction patterns, except for the negative effect of gaming for only female students. The 
RFPS results revealed more gender differences than LR and ORz results (Tables 2–3). 

3.2.3. Action-level data 

Both LR and RFPS obtained theoretically non-plausible and visually unidentifiable results using 
the action-level data for both female and male students (Tables 2–3). Similar results were 
obtained using the action-level data for all students by LR and RFPS (Table 1). As such, only 
the results obtained by ORz were interpreted in this section. 

For female students, the results using ORz revealed that both boredom (beta = -0.016; beta-
squared < 0.0005) and gaming (-0.057; 0.003) negatively predicted isSTEM, and being off-task 
(0.011; < 0.0005) positively predicted isSTEM. A note to make is that the effect sizes (i.e., beta-
squared) were very small even though the regression coefficient (i.e., betas) were significant. 

Male students had quite a different prediction pattern from female students. The only 
exception was the negative predictive capacity of gaming, which was the same for both genders 
(males’ gaming: beta = -0.038; beta-squared = 0.001). Additionally, male students’ STEM 
choice (isSTEM) could be positively predicted by concentration (0.009; < 0.0005) and 
negatively by frustration (-0.009; < 0.0005), which were plausible results based on the literature. 

3.3. DIFFERENT ALGORITHMS 

3.3.1. Student-level data 

For the student-level data, LR and ORz obtained the same results in the predictive directions of 
the regression coefficients, and RFPS obtained different “important predictors” over different 
student samples (Tables 1–3). The predictive direction of the important predictors identified by 
RFPS could be partially identified by the summary plots of SHAP values (Figure 1) but still 
could not be completely certain. 

Overall performance measures were used to examine the three algorithms over the three 
student samples (Table 4). LR performed better than ORz for the all-student sample: the LR 
model was significant (LLR p = 0.043), and the ORz model was not (p (F-statistic) = 0.077). In 
addition, the LR model had a larger effect size (pseudo R-squared = 0.019) than the ORz model 
(adj. R-squared = 0.009). However, for the female and males student samples, LR was not better 
than ORz because both LR and ORz models were not significant despite LR having larger effect 
sizes (female: 0.028; male: 0.023) than ORz (0.004; 0.003). 

LR also performed slightly better than RFPS because LR’s AUCs for the all-student and 
female-student samples (0.641 and 0.535) were higher than RFPS’s AUCs (0.540 and 0.492). 
However, for male students, RFPS (0.641) performed better than LR (0.571). 
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Table 2: Analysis results for female students. 

predictors 
algorithm boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 8.612 2.440 1.325 1.127 5.551 1.977 
LR log odds -5.716 -2.223 -13.187 -10.292 -6.381 -10.177 
(individual std err 0.644 0.250 1.546 1.257 0.767 1.752 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.003 0.108 0.000 0.000 0.002 0.000 
LR log odds -19.914 4.210 -3.132 2.504 5.725 -4.320 
(all-feature std err 11.678 2.979 5.428 3.338 4.936 2.071 
model) p > |z| 0.088 0.158 0.564 0.453 0.246 0.037 
 odds ratio 0.000 67.367 0.044 12.226 306.493 0.013 
ORz beta -0.037 0.033 -0.060 0.032 -0.005 -0.070 
(individual std err 0.064 0.064 0.064 0.064 0.064 0.064 
-feature  p > |t| 0.559 0.603 0.349 0.616 0.942 0.274 
model) beta-squared 0.001 0.001 0.004 0.001 0.000 0.005 
ORz beta -0.312 -0.002 -0.041 0.032 0.184 -0.198 
(all-feature std err 0.186 0.099 0.073 0.067 0.150 0.089 
model) p > |t| 0.095 0.982 0.580 0.637 0.221 0.028 
 beta-squared 0.097 0.000 0.002 0.001 0.034 0.039 
RFPS accuracy -0.007 -0.007 -0.016 -0.029 0.016 -0.032 
 variation 0.016 0.016 0.029 0.024 0.050 0.020 
 important no no no no yes no 
 impact direction ? ? ? ? positive? ? 

Action-level data 
 VIF 1.766 1.288 1.068 1.007 1.361 1.129 
LR log odds -5.536 -2.179 -2.150 -1.833 -5.293 -2.654 
(individual std err 0.031 0.011 0.028 0.022 0.046 0.028 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.004 0.113 0.117 0.160 0.005 0.070 
LR log odds -1.975 -1.385 -0.070 -0.069 0.119 -0.785 
(all-feature std err 0.058 0.019 0.029 0.023 0.038 0.028 
model) p > |z| 0.000 0.000 0.017 0.003 0.002 0.000 
 odds ratio 0.139 0.250 0.932 0.934 1.126 0.456 
ORz beta 0.008 -0.003 0.000 0.005 0.017 -0.055 
(individual std err 0.003 0.003 0.003 0.003 0.003 0.003 
-feature  p > |t| 0.002 0.246 0.879 0.071 0.000 0.000 
model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 
ORz beta -0.016 -0.004 -0.003 0.004 0.011 -0.057 
(all-feature std err 0.004 0.003 0.003 0.003 0.003 0.003 
model) p > |t| 0.000 0.256 0.301 0.201 0.001 0.000 
 beta-squared 0.000 0.000 0.000 0.000 0.000 0.003 
RFPS accuracy 0.063 0.056 0.034 0.021 0.016 0.006 
 variation 0.002 0.001 0.001 0.001 0.002 0.001 
 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 
Note. The notes are the same as those in Table 1. 
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Table 3: Analysis results for male students. 

predictors 
algorithm boredom concentration confusion frustration off-task gaming 

Student-level data 
 VIF 9.982 2.711 1.457 1.101 4.511 2.289 
LR log odds -4.534 -1.760 -9.734 -9.314 -4.854 -6.117 
(individual std err 0.609 0.234 1.420 1.257 0.704 1.078 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.011 0.172 0.000 0.000 0.008 0.002 
LR log odds -6.031 1.944 1.744 -6.021 -0.228 -2.691 
(all-feature std err 8.722 2.397 4.188 3.571 3.811 1.669 
model) p > |z| 0.489 0.417 0.677 0.092 0.952 0.107 
 odds ratio 0.002 6.986 5.718 0.002 0.796 0.068 
ORz beta 0.027 0.051 0.020 -0.116 0.023 -0.087 
(individual std err 0.065 0.065 0.065 0.065 0.065 0.065 
-feature  p > |t| 0.678 0.436 0.764 0.074 0.721 0.184 
model) beta-squared 0.001 0.003 0.000 0.013 0.001 0.007 
ORz beta 0.044 0.113 0.016 -0.105 -0.033 -0.110 
(all-feature std err 0.205 0.107 0.078 0.068 0.138 0.098 
model) p > |t| 0.830 0.289 0.842 0.124 0.810 0.262 
 beta-squared 0.002 0.013 0.000 0.011 0.001 0.012 
RFPS accuracy -0.003 0.040 -0.033 0.017 0.020 0.020 
 variation 0.013 0.040 0.030 0.056 0.039 0.039 
 important no yes no yes yes yes 
 impact direction ? positive? ? negative? ? negative? 

Action-level data 
 VIF 1.786 1.266 1.071 1.008 1.372 1.150 
LR log odds -4.388 -1.707 -1.617 -1.550 -3.510 -1.767 
(individual std err 0.028 0.010 0.025 0.021 0.035 0.019 
-feature  p > |z| 0.000 0.000 0.000 0.000 0.000 0.000 
model) odds ratio 0.012 0.182 0.199 0.212 0.030 0.171 
LR log odds -1.578 -1.060 0.005 -0.166 0.000 -0.460 
(all-feature std err 0.056 0.018 0.027 0.022 0.035 0.021 
model) p > |z| 0.000 0.000 0.855 0.000 0.677 0.000 
 odds ratio 0.206 0.347 1.005 0.847 1.015 0.632 
ORz beta 0.008 0.006 0.007 -0.008 0.007 -0.037 
(individual std err 0.003 0.003 0.003 0.003 0.003 0.003 
-feature  p > |t| 0.003 0.047 0.017 0.003 0.016 0.000 
model) beta-squared 0.000 0.000 0.000 0.000 0.000 0.001 
ORz beta -0.002 0.009 0.004 -0.009 0.000 -0.038 
(all-feature std err 0.004 0.003 0.003 0.003 0.003 0.003 
model) p > |t| 0.604 0.006 0.199 0.001 0.999 0.000 
 beta-squared 0.000 0.000 0.000 0.000 0.000 0.001 
RFPS accuracy 0.0124 0.0924 0.0214 0.0377 0.0589 0.0805 
 variation 0.0014 0.002 0.0014 0.0015 0.0046 0.0009 
 important yes yes yes yes yes yes 
 impact direction ? ? ? ? ? ? 
Note. The notes are the same as those in Table 1. 
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Table 4: Overall performance of the three algorithms for different datasets. 

   All students Female students Male students 
Algorithm Data level student action student action student action 
LR LL -299.220 -161190.000 -116.840 -63440.000 -127.750 -71538.000 
 LL-null 304.920 -160430.000 -120.200 -63183.000 -130.740 -71166.000 
 LLR p 0.043 1.000 0.242 1.000 0.307 1.000 
 pseudo R2 0.019 -0.005 0.028 -0.004 0.023 -0.005 
 AUC 0.641 0.531 0.535 0.535 0.571 0.531 
ORz F-statistic 1.912 127.900 1.154 70.680 1.117 33.850 
 p (F-statistic) 0.077 0.000 0.332 0.000 0.353 0.000 
 adj. R2 0.009 0.002 0.004 0.003 0.003 0.002 
RFPS AUC 0.540 0.476 0.492 0.492 0.641 0.475 
Note. The orange cells indicate statistically significant results at p < 0.050. The value “0.000” 
refers to “< 0.0005”. LL = log likelihood; LLR = log-likelihood ratio.  
 

3.3.2. Action-level data 

In terms of regression coefficients, ORz tended to generate theoretically plausible results and 
could sensitively detect effective predictors for different student samples (Tables 1–3). Both LR 
and RFPS identified many significant predictors. However, LR generated non-plausible results, 
and RFPS found uncertain ones. 

In terms of overall algorithm performance, ORz performed better than LR because the LR 
models for all the three student samples were not significant (all LLR ps = 1.000) and the effect 
sizes (pseudo R-squared) became negative (-0.005; -0.004; -0.005), which showed that the LR 
models did not fit the empirical data. On the other hand, the ORz models were significant (all 
ps (F-statistic) < 0.0005), and their effect sizes were positive though small (0.002; 0.003; 0.002). 
LR performed better than RFPS because LR models had higher AUCs (0.531; 0.535; 0.531) 
than did the RFPS models (0.476; 0.492; 0.475). 

4. DISCUSSION 

4.1. METHODOLOGICAL ISSUES 

4.1.1. Two Approaches to the Concern of Multicollinearity 

Regression-related algorithms using multiple predictors (or features) need to examine 
multicollinearity. A salient indication of multicollinearity is sign changes of regression 
coefficient estimates from individual-feature to all-feature models, which normally occur when 
regression models include multiple highly correlated predictors. This study uses six predictors 
of similar constructs (i.e., affective states and behaviors), which inevitably increases the 
necessity to address the concern of multicollinearity. This study handles multicollinearity using 
two approaches: the methodological approach and the theoretical or conceptual approach. 
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The methodological approach. This approach sees including multiple highly correlated 
predictors into a regression analysis as an undesirable procedure, which will generate distorted 
and thus non-trustworthy regression coefficient estimates. Based on this approach, the aim is to 
reduce the problem of multicollinearity or provide evidence showing few problems of 
multicollinearity. For the former, to reduce the problem of multicollinearity, researchers can use 
statistical measures such as penalizing highly correlated predictors in ridge and Lasso 
regressions (Bowles, 2015), combining similar predictors to one factor by factor analysis or 
using z-scores (Aiken & West, 1991; as ORz used in this study). For the latter, researchers can 
provide evidence showing how severe is the problem of multicollinearity. For example, this 
study presents and compares the results obtained by individual-feature models and all-feature 
models. Sign changes do occur from individual to all-feature models, which indicates 
multicollinearity. However, the low correlations among predictors and the low VIF for each 
predictor (Hair et al., 2006) reflect a low degree of the problem of multicollinearity. 

The theoretical approach. In interpreting the results of regression analysis, the regression 
coefficient estimates for a particular predictor is the pure relationship between the outcome and 
the predictor controlling for, partial out, or relative to the other predictors in the regression 
model. This means that the results obtained by individual-feature models may be disguised 
predictive effects without including essential control variables in a regression model or without 
considering its relativity to other related, essential factors in the world. From this approach, 
judging the plausibility of the results obtained by individual-feature and all-feature models 
should depend on multiple criteria, as used in this study: the low (or below-criterion) 
correlations among predictors, the low (or below-criterion) VIF for each predictor, and the 
predictions based on a pre-determined theoretical framework (i.e., the PAS). The three criteria 
suggest that the results obtained from all-feature models tend to be more plausible than those 
from individual-feature models. 

4.1.2.  ORz as the best analysis method 

This study used three algorithms or data analysis methods (LR, ORz, and RFPS) to identify 
effective predictors for STEM choice. As indicated in Section 2.3.2, the three algorithms were 
appropriate for the present data and aims of this study because they are typical methods for 
predicting or classifying dependent variables. LR suited the present student-level data structure 
and the aim to predict whether go to STEM or not; ORz might suit the present action-level 
structure and the aim to predict STEM choice; random forest is a typical non-parametric 
regression tree algorithm with feature selection functions, which can assess the degrees of the 
importance of each feature in determining STEM choice. This triangulation among the three 
algorithms (Hussein, 2015) may help find suitable algorithms for educationally meaningful 
findings on the present novel datasets at both student and action levels from an intelligent 
tutoring system, ASSISTments. 

Combining the results of Sections 3.1–3 about LR and ORz, ORz tended to be a conservative 
but valid analysis method, which generated theoretically plausible predictions and significant 
overall model performance. LR identified non-plausible predictors that were contrary to the 
literature, and LR’s overall model performance showed a bad fit to the data. This study was 
actually a binary classification task. LR did perform best on the student-level data but became 
worse on the action-level data. ORz violated some of its assumptions for this task (Allison, 2012) 
but performed excellently on the action-level data and generated the same regression coefficient 
patterns as LR on the student-level data. This finding appears to be in accordance with empirical 
research perspectives that ORz is a suitable choice for most predictive tasks, even if its 
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assumptions were violated (Pohlmann & Leitner, 2003). Future research needs to validate these 
findings using different datasets. 

RFPS over-identified important predictors in indicating that all predictors were important on 
the action-level data. Most signs of the prediction were not visually identifiable using the 
summary plots of SHAP values in RFPS. Given the unreliability of using the SHAP-value 
summary plot to judge the directions of prediction, RFPS needs to develop further measures for 
certain predictive directions in order to fully solve the issue of the black box in the random forest 
algorithm. Another concern is that random forest is a proper algorithm for a dataset with a large 
number of features, but fewer cases than features (Strobl, Malley, & Tutz, 2009) and can be 
exempt from the problem of multicollinearity even with many features. Perhaps the task of this 
study contains only six features and many cases (especially on the action-level data) and is not 
suitable for using random forest. The ASSISTments dataset contains many more variables than 
those used in this study. Random forest may be more suitable for a study using all the variables 
in the ASSISTments dataset, which is an issue that could be addressed by future research. 

To summarize, ORz generally performed better than LR and RFPS did in terms of plausible 
regression coefficients and certain prediction directions on both student- and action-level data 
over the three student samples. Given the merits of ORz, the following discussion only focuses 
on the results obtained by ORz. However, the generally small effect sizes of the regression 
coefficients and the overall model performances in the models of this study (Tables 1–4) suggest 
taking a conservative approach to interpreting the results. 

4.2. EFFECTS OF THE PREDICTORS (RQ1) 

4.2.1. Gaming as the top stable, negative predictor 

Gaming the system is the most stable predictor of STEM choice in the negative direction at both 
student and action levels among the six affective states and behavioral constructs investigated 
in this study, a result consistent with San Pedro et al.’s (2014) and Pardos et al.’s (2014) studies 
using student-level data. Gaming the system is a behavior during online learning that includes 
continuously or quickly guessing solutions, requesting hints, or exploiting the functions in the 
system irrelevant to learning (Baker et al. 2010; Ocumpaugh et al., 2015). The result may also 
suggest that when considering affective states and behavior together (placing them all in one 
regression model), affective behavior (instead of affective states) will capture all the predictive 
capacity in predicting STEM choice, a result supporting the PAS at affective behavior. 

Gaming (the system) is new for traditional educational research on mathematical problem 
solving. Linking gaming to educational research on similar issues may further elaborate on the 
term. During mathematical problem solving, students need to experience the process of 
contemplating (Mason, Burton, & Stacey, 1996). The present use of the term ‘gaming the system’ 
may be a proxy for the concepts of ‘lacking contemplation,’ ‘hyperactivity,’ ‘impulsiveness,’ 
‘lack of discipline,’ or ‘lack of self-regulation’ in education and psychology research. Self-
regulation or executive functioning is a higher-order cognitive process for inhibitory control, 
planning, and flexible goal-directed behaviors (Bernier, Carlson, & Whipple, 2010). Future 
research may need to validate in greater depth whether or not gaming the system is “lack of self-
regulation” behavior in online learning. 

Another reason for the negative role of gaming in predicting STEM choice may be that the 
tasks in the present ASSISTments dataset are difficult enough and invite gaming behaviors for 
low mathematics achievers, which in turn can negatively predict STEM choice. As indicated in 
a related study, unsuccessful problem-solvers are likely to game the system on difficult tasks 
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(Baker & Rossi, 2013). Future research needs to control for task difficulty in investigating 
related topics. 

4.2.2. Boredom as the second negative predictor only at the action level 

Boredom is the second predictor of STEM choice in the negative direction but only at the action 
level, not at the student level, which partially fits the PAS hypothesis. The results suggest that 
boredom may be more of an action-level affective state than a student-level one. As defined in 
ASSISTments and evidenced in related studies, boredom is an aversive state that disengages 
students and relates to low knowledge, skills (Eastwood et al., 2012; San Pedro et al., 2013b), 
and poor learning (Baker et al., 2010). 

According to the educational literature on affective states during mathematical problem 
solving, boredom may occur at the start of the process of mathematical problem solving and 
correlate with interest and task attraction (Mason et al., 1996). Students’ STEM choice is largely 
determined by their affect toward STEM including interest and curiosity, identity, and values, 
and next by teaching activities and context such as parental encouragement and pressure, 
teachers’ pedagogies, and inside- and outside-school learning experiences (Cerinsek et al., 2013; 
Maltese & Tai, 2010). Diverse novel, interesting problem-solving designs (e.g., games) need to 
be incorporated into online mathematical problem-solving platforms in order to reduce students’ 
boredom. 

4.2.3. Other predictors 

The other three affective states in ASSISTments (i.e., concentration, confusion, and frustration) 
do not significantly predict STEM choice. The results do not fully support the major PAS 
hypothesis, which assumes that concentration should positively affect STEM choice, and 
confusion and frustration should negatively predict STEM choice. Past studies using the 
ASSISTments data suggest that STEM choice is (A) positively predicted by concentration given 
its capacity to predict mathematical knowledge (San Pedro et al., 2013b) and STEM vocational 
self-efficacy (Ocumpaugh et al., 2016), (B) negatively predicted by confusion given its capacity 
to predict STEM vocational interest (Ocumpaugh et al., 2016) and course grades (Lee et al., 
2011), and (C) uncertain in its capacity to be predicted by confusion and frustration. This is 
because frustration has an uncertain relationship with knowledge or task difficulty (San Pedro 
et al., 2013b), and short-period confusion and frustration relate positively to learning gains, but 
lengthy-period confusion and frustration negatively relate to learning gains (Liu et al., 2013). 
The uncertain relationship between confusion, frustration, and outcomes is suggested by the 
minor PAS hypothesis that occasional negative affect in response to negative feedback can 
partially explain long-term success (Lyubomirsky et al. 2005). In this sense, the present non-
significant results are reasonable because this study does not consider in-depth short- and long-
period affects. Future research needs to take into account the time factor in student experiences 
of the three affective states (i.e., concentration, confusion, and frustration). 

Off-task behavior also fails to predict STEM choice. Being off-task is negative in its meaning, 
and it is hard to hypothesize its role in predicting STEM choice due to the diversity of off-task 
behaviors (e.g., staring into space, interacting with peers, and playing with objects; Ocumpaugh 
et al., 2015). 

The non-significant results for the three affective states, however, are reasonable because the 
significance has been captured by the most relatively important features or predictors (i.e., 
gaming and boredom) in the all-feature regression model. In terms of educational literature, the 
result appears to be reasonable if we consider STEM choice as a complex decision determined 
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by diverse student personal, social, and cultural factors (Chiu, 2017). In addition to personal 
cognitive, affective, and behavioral aspects of STEM learning and problem solving, students’ 
pursuit of advanced STEM studies and careers may be determined by sociocultural factors. For 
example, students are likely to choose STEM if they perceive STEM as special, beneficial, 
practical, influential, and conducive to future career development, meeting their ideal job-
related reputation or expectations (Gazley et al., 2014; Hsu, Roth, Marshall, & Guenette, 2009). 
Combining diverse online and off-line personal and sociocultural data may provide a clearer 
picture of effective predictors for STEM choice. 

4.3. GENDER DIFFERENCES (RQ2) 

4.3.1. Few gender differences at the student level 

For student-level constructs, female students’ gaming negatively predicts their STEM choice, 
but there is no effective predictor for male students. Educational research indicates that girls use 
more self-regulated learning skills (e.g., record keeping, monitoring, goal-setting, planning, and 
environmental structuring) than boys (Zimmerman & Martinez-Pons, 1990). In addition to the 
tendency to use self-regulated learning strategies, compared with boys, girls are more reluctant 
to compete with others, to take action because of extrinsic motivation, and to respond to the 
environment strongly (OECD, 2015). Because girls are less likely to respond strongly to the 
environment and more self-regulated, girls’ gaming the system may be more a sign of being less 
likely to choose STEM than it is for boys. 

This speculation, however, needs to be examined by future research. It may be particularly 
important to better understand the relationship between online gaming behavior and self-
regulation. As suggested, “gaming the system” behavior may be correlated with self-regulation 
in a negative direction, in which individuals attempt to succeed in problem solving without 
focusing on learning the intended curricula but on irrelevant tasks such as intentionally rapid 
guessing, making mistakes, and requesting hints (Baker, Corbett et al., 2013). Based on these 
understandings, researchers could investigate gender differences in how gaming behavior 
predicts their STEM choices. 

4.3.2. Many gender differences at the action level 

For action-level constructs, gaming is the only common significant predictor of STEM choice 
for both female and male students. The main gender differences are that boredom negatively 
predicts females’ STEM choice, and being off-task positively predicts females’ STEM choice; 
by contrast, frustration negatively predicts males’ STEM choice, and concentration positively 
predicts males’ STEM choice. The results imply that there are more gender differences at the 
action level than gender similarities (Hyde, 2005). Females and males may have different 
patterns of affective states and behaviors in approaching mathematics problem solving, which 
may, in turn, play a role in their future STEM choice. The results are consistent with the stable 
research findings that there are gender differences in STEM-related affects (e.g., Carli et al., 
2016; OECD, 2014). 

The findings of this study may be used to provide insights into appropriate designs for both 
genders. For example, females may need to feel interested (not bored) in solving mathematical 
problems. Females may also need to take time off from online learning tasks when they need to 
ponder or handle other (e.g., social) matters not directly related to learning tasks. Females 
generally have more interest in social communication and others’ feelings in solving game-
based mathematical problems (Ke, 2008), which implies that off-task social behavior may 
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dominate females’ learning with little harm or even positive support to learning. A related study 
indicates that the negative relationships between off-task behavior and mathematics 
achievement are stronger for boys than for girls (Peterson, & Fennema, 1985), which also 
partially suggest that being off-task appears to be more harmful to boys than girls. If the 
speculation is a wise guess, then female students especially need a mathematics learning 
platform that provides some interesting elements and allows for seemingly irrelevant social 
behaviors during online mathematical problem solving. 

For males, educators may need to manage degrees of task difficulty (Gee, 2005a; San Pedro 
et al., 2013b) and notice male students’ sensitivity to failure in mathematical problem solving, 
which may be a major source of frustration. The interaction between task difficulty and 
frustration and the way to manage this interaction are complex problems, which appear to be an 
issue for boys. Concentration is a positive predictor for males. The results are consistent with 
past research findings that concentration relates to STEM vocational self-efficacy (Ocumpaugh, 
San Pedro, Lai, Baker, & Borgen, 2016) and mathematical knowledge (San Pedro et al., 2013b). 
This also leads to an interesting comparison with females’ being off-task as a positive predictor. 
Females pay more attention to social affairs and males to tasks in game-based mathematical 
problem solving (Ke, 2008), which invites future research to investigate this likely gender 
difference further.  

4.4. CONTRIBUTIONS, LIMITATIONS, AND SUGGESTIONS FOR FUTURE RESEARCH 

4.4.1. Contributions 

ASSISTments provides valuable big data on student action-level data, which is rarely researched 
in traditional education. This study offers a pioneering approach to such research and contributes 
to two aspects in particular. 

Firstly, it uses both student-level and action-level data in mathematical problem solving to 
predict future STEM choice. 

Secondly, gender differences are investigated. For educational practice, the differential 
teaching for addressing gender differences in affective states and behaviors during online 
mathematical problem solving, as suggested by the present findings, may be a key to 
encouraging both genders to pursue STEM advanced studies and careers, especially for female 
students, who are persistently underrepresented in STEM (Else-Quest et al., 2010; Koller, 
Baumert, & Schnabel, 2001). 

4.4.2. Limitations and future research 

Despite the novel dataset, new topics, and diverse data analysis methods used in this study, this 
study has the following limitations for future researchers to consider. 

STEM choice relates to high STEM or mathematics ability (Nugent et al., 2015; San Pedro 
et al., 2014). It, therefore, can infer that affective states or behaviors linking to higher STEM 
achievement may link to STEM choices such as a low degree of boredom (Tze, Daniels, & 
Klassen, 2016) and a high degree of motivation (including confidence, interest, value, control, 
and goal; Pintrich, 2003). Future research may need to include student knowledge in the 
proposed model. 

Research has indicated that the relationships between affective states or behaviors and 
problem-solving scores may be moderated by problem types. For example, there is a negative 
relationship between boredom and online problem-solving scores on original problems but a 
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positive relationship on scaffolding problems (Pardos et al., 2014). This study does not include 
problem types as a moderator, which can be addressed by future research. 

Student selection bias may be an issue. The data is collected through an online tutoring 
platform (i.e., ASSISTments). If the platform is used as homework, then family computer 
availability and skills may influence student performance. If the platform is used at school, a 
control-experimental design may be the best choice to draw a cause-and-effect relationship, 
which may partially resolve the problem of selection bias. 

The problem of multicollinearity should be further addressed. One solution would be to use 
factor analysis to reduce measure numbers (i.e., combining correlated measures into factors). 
Another solution would be to use regression algorithms penalizing highly correlated predictors 
(e.g., Ridge and Lasso linear regressions; Bowles, 2015). Given that there were only six 
predictors in the regression models, however, there appeared to be no need to perform other 
complicated linear regressions that are not typical in educational research. Further, multilevel 
analysis may be needed for the present data structure. However, the disadvantages of using 
multilevel analysis are its model complexity and time-consuming computation. ORz appears to 
be an effective method but needs to be examined further for its validity in handling the present 
type of dataset, which had multiple levels of data, a dichotomous outcome, and a large number 
of observations. 

Gender difference is a complex issue and may be an outcome from interactions between 
multiple biological, psychological, and social factors (Halpern, Wai, & Saw, 2005). There are 
still debates between gender differences and similarities (Hyde, 2005). Any research results or 
claims relating to gender differences should be explained and used with caution. Gender 
differences in affective states and behaviors during mathematical problem solving may vary by 
culture (Ho et al., 2000), by age, in different time periods, for different problem types, and on 
online and offline platforms. The results obtained in this study need to be examined further with 
data from other cultures, cohorts, and platforms and on different problem-solving tasks. 

This study uses diverse measures to assess the overall performances of the three algorithms 
(LR, ORz, and RFPS; Section 3.3). However, there is a lack of systematic literature review, 
research design, data analysis, and discussion to generate robust findings across the three 
algorithms that can be applied to guiding future research into selecting proper algorithms for 
these particular types of data. This topic can be addressed by future research on data analysis 
algorithms. 

Some findings of this study may not be robust. For example, the predictive directions of 
features obtained by the random forest plus related feature selection algorithm are not reliably 
or identifiable by visualization. The effect sizes of the features’ effects are very small even for 
significant effects, which may be due to the large sample sizes in this study. This is especially 
true for the results obtained by using the action-level data. The low effect size, however, is 
reasonable because it is challenging to predict a student’s STEM choice using that student’s 
affective states and behaviors during one mathematical problem. Nonetheless, these findings 
may provide insight for understanding the relationships between students’ online learning 
behavior, adaptive teaching, and career development. 

4.5. CONCLUSION 

Understanding which factors contribute to STEM choice and how educational designs can 
promote this choice remains a challenge. Based on the triangulation between educational 
literature, three student samples, and three data analysis methods, this study uses data on 
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students’ affective states and behaviors from an online mathematics learning platform (i.e., 
ASSISTments) to predict STEM choice and provides the following major findings. 

 
1. Gaming the system at both student and action levels stably predicts STEM choice in a 

negative direction. Whether “gaming the system” is a sign of “lack of self-regulation” in 
educational and psychological literature needs to be clarified in terms of its predictive 
capacity for STEM choice. 
 

2. At the action level of problem solving, in addition to less gaming, female students are 
more likely to study STEM if they show less boredom and have more off-task behaviors 
(perhaps because females may engage in socially or other off-task behaviors that support 
their learning; Section 4.3.2; Ke, 2008; Peterson, & Fennema, 1985). Male students are 
more likely to study STEM if they exhibit more concentration and less frustration. 
Differential intervention for both genders could be designed for both off-line and online 
learning platforms in order to encourage both genders to pursue advanced studies and 
careers in STEM. 
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