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In this paper, we describe our solution to predict student STEM career choices during the 2017 
ASSISTments Datamining Competition. We built a machine learning system that automatically reformats 
the data set, generates new features and prunes redundant ones, and performs model and feature selection. 
We designed the system to automatically find a model that optimizes prediction performance, yet the final 
model is a simple logistic regression that allows researchers to discover important features and study their 
effects on STEM career choices. We also compared our method to other methods, which revealed that the 
key to good prediction is proper feature enrichment in the beginning stage of the data analysis, while feature 
selection in a later stage allows a simpler final model.  
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1. INTRODUCTION 

Researchers from Worcester Polytechnic Institute and the University of Pennsylvania 
organized a data mining competition using educational data from ASSISTments, an online 
learning platform that supports student learning through the use of scaffolding, hints, 
immediate feedback, and detailed solutions for middle school mathematics. The aim of the 
competition was to help educators, researchers, and policymakers understand how students’ 
experiences in middle school mathematics classes are related to eventually choosing a STEM 
(Science, Technology, Engineering, and Mathematics) career. Indeed, reliable STEM career 
prediction will help students uncover their STEM interests and further support their academic 
growth in STEM fields. The data set provided in this competition contains students’ 
interaction information with the platform when they were in middle school. The data analysis 
challenge is to predict which students pursued careers in STEM fields after they graduated 
from college.  

In the past two decades, we have seen a large number of high-quality works using students’ 
academic performance and learning behavioral data to predict outcome variables, such as 
standardized test score, dropout from school, college enrollment, and major choice. For 
example, Feng, Heffernan, and Koedinger (2009) investigated how students’ interaction data 
extracted from the ASSISTments platform can be used to reliably evaluate students’ math 
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proficiency. They were especially interested in building features related to student help 
seeking behaviors and used the Bayesian Information Criterion (BIC) to compare linear 
regression models with different groups of predictors. They showed that students’ end-of-year 
exam scores can be better predicted by leveraging the interaction data that reflect assistance 
requirement, effort, and attendance. Pardos, Baker, San Pedro, Gowda, and Gowda (2014) also 
studied the ASSISTments system, but they focused on the correspondence between student 
affect and behavioral engagement and scores on a high-stakes math exam. Using eight 
machine learning models, they constructed a set of affect and engagement behavior detectors 
to estimate the probability that a student is in a state of boredom, engaged concentration, 
confusion, and so on. They further built a model to predict students’ math exam scores and 
showed that the constructed detectors helped the model achieve high prediction accuracies.      
Baker, Berning, Gowda, Zhang, and Hawn (2019) presented a case study on automatically 
identifying students that have a high risk of dropping out of high school, using data on 
students’ discipline, attendance, course-taking, and grades. The logistic regression model used 
in the study helped the authors not only select students at risk, but also found which factors 
played the largest roles in prediction, which provided information to educators that can be 
used in individualized interventions. Knowles (2015) described how to create a statewide 
dropout early warning system that can accurately predict the likelihood of graduation for high 
school students in the State of Wisconsin. The paper thoroughly demonstrated the workflow of 
the whole system, from data cleansing to model training and searching. To balance the 
tradeoff between the correct classification of dropouts and false alarms, the receiver-operating 
characteristics (ROC) metric is used to identify the best models from a large collection of 
candidates, from linear logistic regression models to complex nonlinear models, such as 
support vector machines. This work was also implemented in the open source R package, 
EWStools (Knowles, 2014).  

Instead of using traditional explanatory variables in college enrollment research, such as 
family background, career aspiration, and assessment scores, San Pedro, Baker, Bowers, and 
Heffernan (2013) studied how student online learning behaviors observed in middle school 
related to their college choice. They built a logistic regression model using automatically 
generated affect and engagement features to achieve decent accuracy at predicting college 
attendance. Their study was further extended to predicting STEM and Non-STEM college 
major enrollment by San Pedro, Ocumpaugh, Baker, and Heffernan (2014).  

The above three selected sets of works studied test scores, dropouts, and college choices, 
respectively, by linking them to student learning behaviors. In comparison, the current 
competition aims at predicting a longer-term outcome than that studied in any previous work 
of this nature — to predict STEM career choices after college using middle school learning 
behaviors. To meet this challenge, we produce a prediction system with the following 
properties. First, the system should fit existing data well, and make good predictions on new 
data. Secondly, we would like the system to be automatic, that is, to avoid unnecessary human 
intervention. Thirdly, the system should help identify a small number of the most influential 
predictors and allow relatively easy interpretation of the final predictive model. Briefly, our 
system attains the first property above by selecting models and their parameters using 
crossvalidation (CV) techniques with respect to a metric determined by the competition 
organizers. The second property is attained by doing aggregation over records from the 
original data set, using not just the means, but also additional values including various 
quantiles, the minimums, and the maximums, and by further forming an extensive collection 
of transformed variables as well as two-way interactions. With an extra rich pool of candidate 
features to exploit, we have a better chance of finding a good model. Finally, we attain the 
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third aforementioned property of the system by adopting a forward-backward strategy (FBS) 
in variable selection, where the inclusion or exclusion of variables is based on internal CV 
performances. This is different from traditional variable selection methods and algorithms 
based on p-values, information criterion, or penalized regression. As a result of adopting FBS, 
despite a large enriched dataset from which we search for a good model, the final model itself 
is a rather simple logistic linear regression model that involves only a handful of variables. 
This makes our system different from the state-of-the-art machine learning methods, in the 
sense that researchers using our system have a chance to interpret and explore relationships 
between the selected variables and the STEM career. By comparison, it is harder to demystify 
machine learning models that crank out black-box predictions.  

The rest of the paper is structured as the following. Section 2 introduces the process of data 
preparation, new feature generation, and simple pruning, which results in an enriched data set 
for the next step. Section 3 describes the process of model building (including the use of 
feature selection strategies), with the goal of optimizing model performance in terms of a 
criterion set by the competition organizers. Section 4 discusses the pros and cons of our final 
model to that of several others. Section 5 concerns the interpretation of our final model.  
Finally, Section 6 discusses future research directions. 

2. DATA PREPARATION 

2.1. OVERVIEW OF THE DATA SET 

The competition provided an extensive click-stream data set extracted from the ASSISTments 
database. It contained user interaction information from 591 students who used the system 
during their middle school years, as well as whether each of them pursued a career in STEM 
fields (1) or not (0) after college. The entire data set was divided by the competition organizer 
into three parts: the training set, the validation set, and the test set. Visible to participants of 
the competition were user interaction data for all three sets, and career choice data (the target 
variable) for the training set only. Data on career choice for the validation and the test set were 
withheld by the organizer for evaluation purposes. Specifically, competition participants used 
the training set to build models and made predictions on the validation and the test sets. Each 
day, each team could submit one set of predictions to be scored. The score was a combination 
of root mean squared error (RMSE) and area under the curve (AUC) based on predictions for 
the validation set. On each day before the conclusion of the competition, the organizer would 
post a public leaderboard showing each team’s best submission to date and the corresponding 
evaluation metric values, to help the teams improve their models. Eventually, when the 
competition concluded, teams were ranked by the performance of their final model over the 
test set.    
    Although there are only 591 students, each student has hundreds of interactions with the 
system. The resulting data set is rather large, with 316,974 records (rows), each with 76 
variables (columns). Each record captures one action (such as solving a multiple-choice 
question related to square root finding) of a student, along with some context information. 
Examples of context information are: average student knowledge level (according to the 
Bayesian Knowledge Tracing (BKT) algorithm, Corbett and Anderson, 1995), average student 
carelessness (San Pedro, Baker, and Rodrigo, 2014), average student boredom effect (Pardos, 
Baker, San Pedro, Gowda, and Gowda, 2014), and knowledge estimates based on BKT at the 
previous and the current time step. A detailed description of the variables can be found on the 
competition webpage: https://sites.google.com/view/assistmentsdatamining/data-mining-
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competition-2017. Besides the main data set, the organizers also provided each student’s state 
test score during that year. We included this variable in our analysis, but it was not selected by 
our model selection procedure in predicting STEM career choice.  
 

2.2. DATA SET REFORMATION 

To make predictions of the STEM career choice for each student, we first reformatted the 
main data set into a tabular data set with 591 rows, and one row for each student. Specifically, 
for any given variable from the activity information in the original data set, we aggregated the 
many rows of its value for a single student to a few summaries, as our new variables. Below, 
we describe the different aggregation methods used for the four different types of variables: 
single-valued, binary-valued, nominal-valued, and continuous-valued.  

First, some variables were already aggregated by the competition organizers. Examples are 
average student knowledge level (“AveKnow”), total number of student actions in system 
(“NumActions”), and average student carelessness (“AveCarelessness”). Given any student, 
each of these columns contains one common value across the multiple rows of this student’s 
actions. And this common value is directly assigned to the corresponding variable in the 
reformatted data.  

For binary-valued variables, we used two methods of aggregation for the rows of each 
student: summation and relative frequency. For example, the variable “correct” in the original 
data set takes the value 1 if a student’s response to a problem is correct, and 0 otherwise. We 
summed up all its values for a student to get the total number of the correct answers. Also, we 
calculated the proportion of the correct answers among all problems attempted.  

For nominal variables, we used two methods of aggregation: the number of different values 
that occurred, and the average number of records per value (the total number of records 
divided by the number of distinct values that occurred). For example, the variable 
“problemType” in the original data set describes the type of the current problem the student 
was worked on. There are a dozen different values possible for this variable, including 
“textfile question”, “radio question”, and so on. One student may have worked on 3 types of 
problems, while another may have encountered all types. We believe the number of types of 
problems a student attempted reflects the breadth of the students’s STEM interests, hence our 
first aggregation. In addition, the number of problems attempted per type reflects the depth of 
the effort made by a student for each type he or she chose to work on, hence our second 
aggregation.  

For continuous variables, we calculated the following 13 summary statistics for each of 
them: the minimum, the maximum, the mean, the standard deviation, and 9 different 
percentiles (from the 10th to the 90th). In addition to the continuous variables from the 
original dataset, we formed new ones based on the continuous variables “Ln” and “Ln-1”. 
Here, “Ln” is a measure of the proficiency level for the skill needed for the current problem at 
the current time, and “Ln-1” is that of the previous time step. The proficiency level is 
measured by the estimates of a student’s math knowledge using the BKT method (Corbett and 
Anderson, 1995). Also, the cognitive skill needed for the current problem is provided in the 
nominal variable, “skill”, reported in terms of knowledge components (KC). The detailed 
definition and usage of KC in the ASSISTment system can be found in Razzaq, Heffernan, 
Feng, and Pardos (2007). Given the above descriptions, it is natural to combine the value of 
“skill” with that of “Ln” and “Ln-1” to generate potentially useful new variables that reflect 
students’ proficiency level and their improvements per skill. Specifically, we first formed 
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eight new continuous variables: over the set of records that correspond to a specific skill of a 
student, we calculate the minimum, the mean, the maximum, and the difference between the 
maximum and the minimum of “Ln” and “Ln-1”, respectively. Then, for each of the eight new 
variables, we computed the 13 summary statistics mentioned in the beginning of this 
paragraph. As a result, we have enriched the data set with many variables. Take, for example, 
a student who practiced on 10 different skills. We can first obtain the maximum “Ln” value 
within each skill, which reflects the highest proficiency level the student ever achieved on 
each skill. Then we include new variables based on summaries like the mean, the standard 
deviation, and the minimum of the 10 maximum “Ln” values, which reflect the average 
maximum proficiency, the variation in maximum proficiency, and the proficiency of the 
weakest skill of the student.  

After the inclusion of additional variables, the new data set has 591 rows and 717 columns. 
Unlike in the physical sciences, there is rarely scientific theory in social sciences and in the 
educational field that analytically relates the target variable to the features. It is possible that 
some of these 717 features facilitates the prediction of the target variable, STEM career 
choice, in different linear and non-linear fashions, and they can be impactful by themselves 
and/or through interactions. To include or approximate the many possible types of 
relationships among the variables, we generated abundant new features based on the 717 
aggregations. Details are described in the next subsection. 

 

2.3. FEATURE GENERATION 

2.3.1. Generation of new univariate features 

Since all 717 variables are technically non-negative continuous variables, we considered nine 
mathematical transformations to each of them, including logarithm with the natural base, and 
power functions with the power of -3, -2, -1, -0.5, 0.5, 1, 2, and 3, respectively. Here, the 
logarithm transformation helps symmetrize heavily right-skewed distributions. Various power 
transformations are also common techniques to potentially stabilize the variance of the 
variables and make their distribution more normal-like. To reduce redundancy, we only kept 
generated variables that are different enough from existing variables and at the same time are 
highly correlated to the target. Specifically, we adopted Pearson’s correlation coefficient, and 
for a generated variable to be included, its absolute correlation with the original variable 
should not exceed 0.7, and its correlation with the target variable should exceed 0.15 and be at 
least 0.1 more than the correlation between the original and the target variable. In principle, all 
the aforementioned thresholds can be treated as parameters to be tuned, say, by CV. 

 

2.3.2. Interaction features generation 

Once the univariate transformations and screenings are done, we further enrich the pool of 
predictors with seven kinds of pair-wise interactions: multiplication, addition, subtraction, 
variable A divided by variable B, variable B divided by variable A, and the minimum and the 
maximum of the two variables. To avoid dividing by zero, the denominators were set to 1 plus 
the value of the denominator variables in the division operations. We again include a fast 
screening step to eliminate the interaction variables that either look similar to existing 
variables or are poorly correlated with the target. The same thresholds were used as that of the 
univariate screening, except that the absolute correlation between the interaction variable and 
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target variable is required to exceed 0.01 plus the maximum of the absolute correlations 
between the two original variables and the target variable. These screening criteria helped 
retain promising predictors while avoid inter-collinearity problems for later regression 
analysis. 

After the above screening processes, there is still a rich pool of 2217 variables. Also, the 
total number of students remained 591, with 467 of them in the training set. 

 

2.3.3. Feature elimination 

In the early stage of the competition, we used the above enriched data set in the subsequent 
model building procedure (including variable selection) for data analysis, described in Section 
3. However, feedback from the public leaderboard suggested that the models that performed 
better on our internal CV set tended to do worse on the validation set. This somewhat 
surprising result prompted us to investigate discrepancies among the training, the validation 
and the test set. Indeed, we found serious discrepancies in the distributions of several 
predictors in the three sets. This type of problem is often referred to as the covariate shift 
problem in machine learning research (Sugiyama, Krauledat, and Müller, 2007). Besides 
problems that concern the predictors, there is also an imbalance label problem. Indeed, we 
deduced that the distribution of the target variable is much more imbalanced in the validation 
set than in the training set. Actually, only 5% of the students in the validation set had chosen a 
STEM career, compared to 25% in the training set. After all, we decided that features 
generated in Section 2.3 that suffered from the discrepancy problems were not the most 
promising predictors for the test set. So, we designed the following additional feature 
elimination step.       

First, we identify the variables for which the distributions in the training set and the test set 
are the most different based on a measure of discrepancy (MOD) that we now describe. (For 
the calculation of MOD, we simply combined the validation and test set as one test set.) Given 
any variable, we obtained ten percentiles (from the 10th to the 100th) of its values in the 
training set and recorded the percentiles theses values corresponded to in the test set. For 
example, if the 50th percentile of a variable in the training set was 224.5, and the value 224.5 
happened to be the 57th percentile of this variable in the test set, then we recorded an absolute 
difference of 57-50 = 7 percentage points for this variable. Then, among the 10 absolute 
differences (one for each of the 10 percentiles inspected), the maximum value was defined to 
be the MOD. Any variable with MOD greater than a given threshold value will be eliminated. 
To choose a good threshold value, we considered six integer values, from 4 to 9, which led to 
six different data sets. For each data set, we performed the analysis of Section 3.2. Among the 
90 (15 times 6) combinations of models and data sets. We chose as the final model the one 
with the best CV result based on the evaluation metric defined by the organizer (see Section 
3.1). It turned out that the optimal value for the MOD threshold was 6. 

3. MODEL BUILDING 

3.1. MODEL EVALUATION AND MODEL SELECTION 

The competition organizer used an interesting, nonstandard evaluation metric (EM): the sum 
of the (1-RMSE) and AUC. As far as we know, no existing statistical or machine learning 
methods are designed to optimize (that is, to maximize) this EM directly. Recall that we 
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intended to obtain a final model that allows certain degrees of interpretability. Therefore, we 
decided not to pursue the state-of-the-art predictive methods such as gradient boosting 
machine (GBM) (Friedman, 2001), which makes predictions using highly sophisticated 
combinations of all available features. Instead, we decided to consider logistic regression 
models built upon different subsets of features and identify the model with the best 
crossvalidated performance in the aforementioned EM. Note that there was an astronomical 
number of 2p different models to consider, where p was the number of features, which was in 
the thousands for the enriched dataset from Section 2. Hence strategies were needed to find the 
optimal or close-to-optimal model, which we discuss in the next subsection. 

 

3.2. THE FORWARD-BACKWARD STRATEGY (FBS) 

In searching for an optimal subset of variables, a common strategy in the literature is the 
Forward-Backward Strategy (FBS), which updates the current model by including or 
excluding one variable in each step. As for which variable to include or exclude, standard 
practice involves fitting the resulting model using logistic regression and checking if the 
associated gain or loss in fitting is worthwhile, say, if it improves value of some information 
criteria like AIC or BIC. Since this competition defined its own EM, we decided to modify the 
above standard practice by (1) evaluating a model using cross-validated EM instead of popular 
information criteria, and (2) fitting a model using a slightly more general approach than 
logistic regression.   

For (2), we considered five different penalized logistic regression methods and let the 
training data help decide which one eventually yields the best final model. The five different 
penalties are the least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996), 
the Ridge penalty (Hoerl and Kennard, 1970), the Elastic Net penalty (Zou and Hastie, 2005), 
the smoothly clipped absolute deviation penalty (SCAD, Fan and Li, 2001), and the minimax 
concave penalty (MCP, Zhang, 2010). Each of these penalty functions has its own tuning 
parameter(s). For simplicity, we allowed the parameters to take values on a pre-defined grid, 
and eventually experimented with 15 different combinations of penalty methods and their 
tuning parameter values. The R package ncvreg (Breheny and Huang, 2011) can be used to 
implement all the above penalized logistic regression methods with efficient coordinate 
descent algorithms.  

Next, we explain the CV-based criteria of including or excluding a variable. Despite the 
seemingly lengthy description to follow, the procedure is entirely automated by a searching 
system that we coded in R (R Core Team, 2017). The training set is partitioned into five 
subsets with roughly equal numbers of students. When evaluating a model in a step, a five-
fold CV is performed by holding out one subset as the internal test set, while using the rest for 
training. A repeat over all five folds generates five values of the EM.   

To start, we fix a penalized method, such as the Lasso. In the forward stage, we first find 
the variable that has the highest absolute correlation with the target variable and call it the best 
one-variable set. A five-fold CV is conducted with the given penalized method using this 
variable, which resulted in five EM values that we call the current best CV values. Next, to 
find the best two-variable set, we enumerated all the remaining variables, paired one at each 
time to the best one-variable set and use the penalized method in another five-fold CV to get a 
set of five new values of the EM. If the mean of the new EM values is greater than a small 
positive threshold value plus the mean of the current best values, and that the minimum of the 
new EM values is greater than the current best minimum minus a small positive number, then 
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the best two-variable set and the best CV values are updated accordingly. Once every variable 
was screened, the best two-variable set was found, and we moved on to find the best three-
variable set, and so on. The forward stage stopped when no more variable met the criteria to 
enter the best set. The above strategy of considering both the mean and the minimum (that is, 
the worst case) of the CV values came from the intention to attain good average performance 
while being robust over the five folds.  

In the backward stage, we excluded one variable from the current best set each time and 
compared the model performance with the current best model using the same criteria as in the 
forward stage. When no more variables can be dropped, the backward stage halted, giving a 
final set of variables.   

Note that we can execute the FBS process using different penalized logistic regression 
models, and they may lead to different final sets. A comparison among these different final 
sets can be done, simply by consulting their respective set of five CV EM values, which were 
part of the output of the FBS process. Our final model is based on the final set that has the 
highest mean CV EM. 

 

4. COMPARISON OF THE FINAL MODEL AND OTHERS 

4.1. OUR FINAL MODEL 

The eventual best subset of features was selected by using the MCP logistic method through 
the FBS and retained 14 features. As is typical in making predictions using methods that 
include variable selection steps, we refitted the data with the 14 selected features. This time, a 
Ridge model was used for estimating coefficients because it had the best performance among 
all regression models experimented on in terms of internal CV, and it turned out to also have 
the best performance on the validation set used for the public leaderboard standing. A 
parsimonious model like ours avoids overfitting the observed data and is likely to generate 
smaller prediction error for future observations. 

4.2. COMPARING DIFFERENT PREDICTION METHODS 

It is natural to wonder how much our model improved upon simpler ones, and how it 
compares to other more advanced prediction methods. Recall that two main ideas that lead to 
our final model are feature enrichment and feature selection. Through comparisons with 
different methods that use some or none of these ideas, we show that feature enrichment is the 
step that brought major improvement in prediction for many different follow-up prediction 
methods, while feature selection using our FBS is the step that led to a parsimonious final 
model, hence better interpretability.   

 
(1) Using basic features only. In the original data set, there were ten aggregated 

variables, including “AveKnow”, “AveCarelessness”, “AveCorrect”, and so on. Using only 
these 10 aggregated variables, we implemented the classical logistic regression method, 
several penalized logistic regression methods, and the sophisticated GBM method. The 
value of EM of these predictions on the test set is shown in Table 1. For clarity, among the 
penalized regression methods, only the performance of the Lasso method (with its penalty 
parameter optimized by internal CV) is included because it performed better than its peers.   
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(2) Using enriched features, but without FBS. There are 2217 features in our enriched 
dataset after the feature generation and screening steps described in Section 2. Since there 
are more features than the number of subjects, the classical logistic regression method is 
not applicable, but penalized methods are. Many penalized methods select variables 
automatically and possess various theoretic properties. In brief, under certain conditions, 
the model resulting from certain penalized methods approaches the “true” model when the 
number of students increases. Therefore, we implemented several penalized methods on our 
enriched data set directly (without FBS). For example, the Lasso method (with its penalty 
parameter optimized by CV) generated a model that retained 22 features.  

(3) Using features selected by the FBS. Recall that 14 variables remain after feature 
enrichment and selection using FBS. Our final model is a Ridge regression model. We also 
constructed GBM based on the same 14 variables.     
 

4.2.1. Implications of Table 1  

First of all, we mention that the test set is the set used by the competition organizers to rank 
the participating teams. Since prediction performance in EM will change for a different test 

Table 1: Summary of EM 

Model_#features EM Improvement  
relative to 
logistic_10 

Based on 10 basic 
features 

  

logistic_10 0.994 0 

lasso_10 0.982 -1.2% 

gbm_10 1.03 3.6% 

Based on 2217 
enriched features 

  

lasso_22 1.033 3.9% 

gbm_2217 1.086 9.3% 

Based on 14 
enriched features 
selected by FBS 

  

ridge(FBS)_14 (final) 1.048 5.5% 

gbm(FBS)_14 1.067 7.4% 
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set, the numbers reported in Table 1 and the implied rankings of the different methods involve 
uncertainty. Nevertheless, some insights can be drawn. One can see that all prediction 
methods based on enriched features performed better than all methods based on the original 
10 features, indicating the importance of generating more features.  

Based on the enriched features, the two GBM methods perform the best, followed by our 
method (ridge(FBS)_14). The GBM based on 2217 features had the best prediction 
performance, but it does not explicitly show how each feature affects the target variable and 
does not help researchers interpret the most influential features.  

In terms of feature selection, the FBS we used is a key step to reduce the number of 
features to only 14, a variable set for which both the GBM (gbm(FBS)_14) and our more 
interpretable penalized regression method (ridge(FBS)_14) perform reasonably well. Note that 
for feature selection, one could have used a penalized regression method that is less costly 
than the FBS, but the latter seems to have an advantage in selecting the most useful features: 
recall that the Lasso method selected 22 variables, while our regression model based on FBS 
used only 14 features  and improved the EM value on the test set by 15% compared to the 
Lasso.  

An explicit formula for prediction using our model is provided in the next section, which 
provides data analysts and domain experts a chance to study and explain it. The same type of 
inference is hard to do with GBM.  
 

5. INTERPRETATIONS OF THE FINAL MODEL 

The final logistic regression model with estimated coefficients for each predictor is: 
 

𝑙𝑜𝑔 (
𝑃(𝑌 = 1|𝑋)

1 − 𝑃(𝑌 = 1|𝑋)
) = −1.154 + 0.085𝑋1 + 0.061𝑋2 − 0.122𝑋3

+0.105𝑋4𝑋5 − 0.051𝑋5𝑋6 + 0.113𝑋7 − 0.079𝑋8

−0.157𝑋9 − 0.101
𝑋10

𝑋4 + 1
+ 0.087

𝑋12
𝑋11 + 1

−0.168
𝑋6

𝑋13 + 1
+ 0.047

𝑋15
𝑋14 + 1

+ 0.113
𝑋16

𝑋14 + 1

+0.126
𝑋18

𝑋17 + 1

 

 
Here, 𝑃(𝑌 = 1|𝑋) represents the probability of choosing a STEM career given a set of values 
of the predictors, 𝑋. Table 2 below lists the variables used in equation (1). There were 14 
predictors that were formed by 18 variables. Each of the 14 predictors has been standardized 
to have mean 0 and standard deviation 1, so that the regression coefficients are comparable in 
size. 

We now give a couple of examples to show what the coefficients in our model may imply. 
The variable X1 is described in Table 2. It measures the variability in the number of times 
scaffolding hints had been accessed among the different skills the student had practiced. In 
model (1), the coefficient of X1 is 0.085, which means that students with larger values of X1 
have a higher tendency to choose STEM careers. Specifically, by holding the value of other 
variables unchanged, increasing the value of X1 by one standard deviation increases the odds 
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of choosing a STEM career for a student by about 9% (exp(0.085)-1). Note that an association 
between X1 and the target does not imply causation. However, seeing the association from the 
model allows researchers to further explore the data set or the literature to see what other 
variables are highly correlated with X1 that may have an impact on the STEM career choice. 
We found that the students who practiced many skills but mainly focused on a handful of them 
tended to have large values of X1. It could be that these students had decent interest in learning 
mathematics and also made efforts to improve their weaknesses; students who have such an 
attitude and approach for math learning are more likely to choose STEM careers. 

For another example, we look at the interaction term that has X10 in the numerator, and X4 
in the denominator (and recall from Section 2 that the plus one in the denominator is just for 
technical reasons). Here, X10 is the total number of hints used by a student, and X4 is the 
number of sessions, that is, the number of logins to the ASSISTments system. Thus, their ratio 
reflects the number of hints a student accessed per session. The regression coefficient is -
0.101, suggesting that students who depend more on hints are less likely to pursue STEM 
careers. For example, take two students A and B who have the same records except that the 
number of hints per session A needed is one standard deviation higher than B. In this case, the 
odds that student A chooses a STEM career is predicted to be 90% (exp(-0.101)) that of 
student B. Note that the above is a naive attempt to interpret the effect of a predictor in our 
regression model. It is most likely that two students who need very different numbers of hints 
per session will have different learning behaviors that result in different values for many other 
predictors as well. More comprehensive ways to interpret regression models and the real 
impact of different predictors are available and are under continuous development. We will 
not go over similar interpretations of the effect of each predictor due to space limitations.  

 
Table 2: Predictors and their descriptions.  

Predictor Name Symbol Description of the predictor, or  

how its value is obtained for each student 

fsca_oppo.sd X1 The standard deviation of the number of times a student 
accessed the scaffolding hints among all skills the student has 
worked on 

sumt3.0. X2 The minimum value of “sumTime3SDwhen3RowRight” 

ln_diff_mean.0. X3 First, take Ln and Ln-1, variables described in Section 2.2, 
which measure the proficiency level for the skill needed for 
the current problem at the current and the previous time, 
respectively. Then, the mean of their differences reflects the 
average instantaneous speed of improvement in proficiency 
for a particular skill. Finally, we take the minimum of this 
speed across all skills, which reflects the speed of 
improvement for the skill that was the least improved upon. 

num_session X4 The number of sessions 
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perc_ogi X5 The proportion of non-scaffolding problems the student 
practiced 

5help.70. X6 First find the sums of the number of helps requested for the 
past 5 problems at each time, and then obtain the 70th 
percentile of the sums 

perc_sca X7 The proportion of scaffolding problems the student practiced 

hint.20. X8 The number of hints used for the first one fifth of problems 

hint.40. X9 The number of hints used for the first two fifths of problems 

hint.100. X10 The total number of hints used 

8help.80. X11 First find the sums of the number of helps requested for the 
past 8 problems at each time, and then obtain the 80th 
percentile of the sums 

num_sca X12 The number of scaffolding problems the student practiced 

num_prob_type X13 The number of problem types the student practiced 

perc_prob_type X14 Total number of activities divided by num_prob_type  

8help.50. X15 First find the sums of the number of helps requested for the 
past 8 problems at each time, and then obtain the 50th 
percentile of the sums 

8help.90. X16 First find the sums of the number of helps requested for the 
past 8 problems at each time, and then obtain the 90th 
percentile of the sums 

5help.40. X17 First find the sums of the number of helps requested for the 
past 5 problems at each time, and then obtain the 40th 
percentile of the sums 

num_ogi X18 The number of non-scaffolding problems the student practiced 
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6. SUMMARY 

For the competition, we built a machine learning pipeline to automate predictions for students’ 
choice of STEM career. The pipeline consists of feature extraction, feature generation and 
basic screening, feature selection using FBS, and automatic model selection based on internal 
CV. The end product of the pipeline is a logistic regression model that involves both original 
features and generated ones, including two-way interactions. We showed how to interpret the 
effects of some of the predictors in the final model.   

We also compared our model to several others that use different features and different 
model structures. Based on the comparison results, we believe that the key for good prediction 
of students’ STEM career choice is to form a good set of basic summaries of their learning 
behavior (Section 2.2) and generate a rich enough set of features and interactions based on the 
basic summaries (Section 2.3), before further modeling and feature selection steps. Despite the 
advance in automatic machine learning tools, these initial steps of forming meaningful 
features and interactions are best done by domain experts and data analysts together. Only 
after this initial step of material collection and generation, can one expect to use machine 
learning techniques to harness the power of data for prediction. While highly sophisticated 
nonlinear and/or multi-level machine learning methods such as neural network, support vector 
machine and GBM might produce good predictions, models with relatively simple structures 
such as our regression model can also perform well, and provide more insights to researchers 
for current and future studies.  
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