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Abstract 

What constitutes learning in the 21st century is the capacity for e-learning. Integral components of e-education 
are training content management systems. Existing content generators more transform content than create 
original content. Creating a methodology and technology for generating original content is important and 
relevant. In order to form adequate methods for generating content, primarily for mathematical and related 
disciplines, the problem of generating a triangle, together with its many attributes, is considered as the simplest 
object of elementary mathematics. We create a simulation model that describes the properties of the object and 
apply modified methods of optimization and corresponding algorithms to it. The current algorithmic layout 
demonstrates the performance of the developed system. It generates triangles in any configurations matching the 
given parameters and demonstrates their properties. 
Keywords: e-learning, mathematics education, generators, learning tool, algorithms 
1. Introduction 

Electronic learning is a type of learning that uses an electronic device. It is a broad educational field, 
encompassing many sub-disciplines and uses, for example, computer-integrated learning is one of the common 
ways of electronic learning, Internet learning known as online learning. Today, many universities are transferring 
most materials digitally. (Concannon, Flynn, & Campbell, 2005) showed that Irish universities are taking 
advantage of the benefits of electronic learning as a mechanism for improving student learning performance on 
campus. While traditional methods, such as face-to-face lectures, trainings and mentoring, remain dominant in 
education, universities invest heavily in learning technologies to facilitate learning quality improvement. There 
are many benefits to learning this way. In (Henderson, Selwyn, & Aston, 2015) they identified 11 benefits of 
digital learning - from the flexibility of time and space, ease of organization and management of learning tasks to 
the ability to replay and re-examine teaching materials and learn in more visual forms. Specifically, for math and 
computer subjects, in (Yushau, 2006) she examined the effect of electronic learning on students' attitude toward 
mathematics and computers. The result indicated that students who studied in this way had a positive approach 
to mathematics and computers. There is currently no system that can interactively teach a material that considers 
the students' thinking, which can show all the options available to any data set that a student wants to examine.  
For the full realization of the possibilities of e-education, the training system should include content management 
modules, such as training content generators. Many generators are built on the use of ontological models. The 
ontology-based approach and the corresponding algorithm (Jovanović, Gašević, & Devedžić, 2006) are used to 
automatically decompose learning objects into reusable content units and dynamically assemble such units into 
personalized learning content. An ontological approach is also used in the framework to create custom 
educational content on demand with automatic evaluation (Tsai, Datla, & Xu, 2008). This structure can logically 
regulate educational content and offer several alternative and ranked learning paths so that teachers or students 
can make smart decisions. 
Higher education can benefit from creating open, shared datasets for students, as this data do not currently exist 
in open and accessible formats. It is proposed to use synthetic data generators (Dorodchi, Al-Hossami, Benedict, 
& Demeter, 2019) to create open source student data versions. Synthetic data sets take precedence over real data, 
since access to real data can be limited. The characteristic of synthetic data is compared with the source data and 
a model of how synthetic data can be used to develop and optimize a general learning algorithm is illustrated. 
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Online courses personalization is an urgent task. Although various personalization methodologies in an 
educational context already exist, personalization by context is always limited by the existing educational 
material; their creation is a laborious task. A conveyor is presented for generating questions and correct answers 
based on training texts (Rüdian & Pinkwart, 2019), limited to actual questions for given sentences. NLP 
technologies are combined with an effective methodology and adjusted to create pairs of questions and answers. 
Tasks solving is one of the key problems of the educational process in mathematics. It requires instructors to 
prepare tasks, correct them, and return feedback to students. The ability to automate all these steps will be a 
powerful tool for instructors, especially in courses with a large number of students. A method is proposed for 
automatically creating and correcting mathematical problems (Poch, et al., 2016). The proposed approach 
codifies various types of problems in a single template that supports a problem descriptor, a set of parameters, 
and a fix code. This approach has been used in calculus and algebra courses. It is confirmed that the average 
grades of students are increasing, due to the increase in the number of exercises performed. Students feel more 
motivated to work. Moreover, the automation of many actions allow instructors to improve the time distribution 
and students' progress monitoring. 
The automatic creation of a large number of exercises for teaching topics in the framework of mathematical 
education is a difficult task. In the installed system (Liebscher, Eckhard; Michael, Ben 2019), files with exercise 
elements are prepared for input via the interface. The generation process is performed in the R environment. You 
can generate as many instances of a certain type of exercise as necessary. The focus here is on math exercises, 
but these ideas can be used to create exercises in similar areas, such as natural sciences and computer science. 
Despite the use of various methods in content generators (ontologies, data synthesis, templates, etc.), all of them 
come down, to one degree or another, not to create really new training materials, but to process existing content 
stored in databases , or to duplicate task options from templates. To get out of this vicious circle of repeatedly 
repeating modification of traditional content, a methodology is proposed for generating content based on 
subject-based simulation models of educational material (Rotkin, Yavich, & Malev, 2018) which allows to 
switch from processing data from databases knowledge directly to the generation of knowledge in the form of 
educational content. 
The base of the methodology is a universal mathematical model that describes the behavior (i.e. a set of states) of 
the investigated object. The universality of the model assumes its multi-parameter nature, that is, the presence of 
parameters and variables that exhaustively reflect the aspects of the functioning of the object being investigated. 
Thus, the simulation model should include a significant number of parameters that take values in wide ranges, so 
that any data characterizing the object can replace the corresponding parameters of the model. Although 
mathematical analysis does not require the establishment of qualitative differences between model parameters, it 
is necessary to represent the difference between the original (active) and derived parameters. For example, there 
is a set of "primary'' independent parameters that characterize the object's own properties, and there are 
"external'' parameters dependent on them. However, a set of some of its own and "external'' parameters can 
constitute an active "user package'', that is, a set of data selected by the individual user as a characteristic of the 
object, and the remaining parameters acquire the status of "secondary" The simulation model of an object can be 
represented in a configuration space with a dimension equal to the total number of parameters that act as 
generalized coordinates of the system. The connections in this space are represented by multidimensional 
surfaces, and the point representing the configuration of the object is located at the intersection of these surfaces. 
Combinatorial analysis gives a chance to determine a set of object configurations with varying its parameters. It 
is easy to understand that the number and diverseness of the set of such configurations is extremely large, which 
significantly complicates the procedure of knowledge extraction, and requires the development of special 
methods and approaches. 
The triangle (taken together with its properties) is selected as the object of generation for this paper. On the one 
hand, this object is simple and intuitive; it is known to all by its basic mathematics course (Davidovitch & 
Yavich, 2017). On the other hand, its properties include a wide variety of attributes, equations, parameters. This 
makes the triangle a very suitable object for modeling and generation. 

In (Mironescu & Panaitopol, 1994) Mironescu and Panaitopol prove that for every three positive real 
numbers 𝑡1,𝑡2 and 𝑡3 there exists a triangle ABC such that 𝑡𝑎 = 𝑡1, 𝑡𝑏 = 𝑡2 and 𝑡𝑐 = 𝑡3. In (Oxman, 
2008) Oxman shows the uniqueness of such triangle. In this paper we consider these, and all other problems 
appearing in the triangle and provide an algorithm to answer all of them. 
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2. Method 
2.1 The Task 

We have a list of 21 parameters for each triangle ABC: 

 three sides 𝑎 = 𝐵𝐶, 𝑏 = 𝐴𝐶, 𝑐 = 𝐴𝐵 
 three lengths of internal bisectors: 𝑡𝑎 = 𝐴𝐴𝑏,  𝑡𝑏 = 𝐵𝐵𝑏,  𝑡𝑐 = 𝐶𝐶𝑏 
 three lengths of medians: 𝑚𝑎 = 𝐴𝐴𝑚,  𝑚𝑏 = 𝐵𝐵𝑚,  𝑚𝑐 = 𝐶𝐶𝑚 
 three lengths of heights: ℎ𝑎 = 𝐴𝐴ℎ,  ℎ𝑏 = 𝐵𝐵ℎ,  ℎ𝑐 = 𝐶𝐶ℎ 
 radius of inscribed circle 𝑟 
 radius of circumscribed circle 𝑅 
 three internal angles 𝛼 = ∠𝐶𝐴𝐵, 𝛽 = ∠𝐴𝐵𝐶, 𝛾 = ∠𝐵𝐶𝐴 
 three angles between median and a side: 𝜓𝑎 = ∠𝐴𝑚𝐴𝐵, 𝜓𝑏 = ∠𝐵𝑚𝐵𝐶, 𝜓𝑐 = ∠𝐶𝑚𝐶𝐴 
 𝑆- the area of the triangle ABC.  

The user chooses three of them and provides their values. Our goal is to find all possible triangles satisfying 
these conditions and compute them approximately. 
2.2 Search Algorithm 

One of the possible algorithms is to compare given by user values of parameters to standard and search possible 
triangles in such a way. We construct an array with all values of parameters for standard triangles (with positive 

integer angles). The array consists of 178∗179

2
= 15931 triangles. 

2.3 Array Construction 

We write a short program which will construct an array of all triangles with positive integer (in degrees) angles. 
Of course, three angles do not define a triangle, however they define it up to a linear parameter (for example, 𝑅). 
One could compute all values of parameters by introducing functions and using these well-known formulas: 

𝛼(𝛼, 𝛽) = 𝛼 
𝛽(𝛼, 𝛽) = 𝛽 

𝛾(𝛼, 𝛽) = 180 − 𝛼 − 𝛽 
𝑎(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛼) 
𝑏(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛽) 
𝑐(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛾) 

𝑡𝑎(𝛼, 𝛽) =
4𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠 .

𝛼
2

/

𝑠𝑖𝑛(𝛽) + 𝑠𝑖𝑛(𝛾)
 

𝑡𝑏(𝛼, 𝛽) =
4𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠 (

𝛽
2

)

𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛾)
 

𝑡𝑐(𝛼, 𝛽) =
4𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 .

𝛾
2

/

𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛽)
 

𝑚𝑎(𝛼, 𝛽) = √𝑠𝑖𝑛2(𝛽) + 𝑠𝑖𝑛2(𝛾) + 2𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 (𝛼) 
𝑚𝑏(𝛼, 𝛽) = √𝑠𝑖𝑛2(𝛼) + 𝑠𝑖𝑛2(𝛾) + 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠 (𝛽) 
𝑚𝑐(𝛼, 𝛽) = √𝑠𝑖𝑛2(𝛼) + 𝑠𝑖𝑛2(𝛽) + 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 (𝛾) 

ℎ𝑎(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛 (𝛾) 
ℎ𝑏(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛 (𝛾) 
ℎ𝑐(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛 (𝛽) 

𝑟(𝛼, 𝛽) =
2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛 (𝛾)

𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛽) + 𝑠𝑖𝑛 (𝛾)
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𝜓𝑎(𝛼, 𝛽) = 𝑐𝑜𝑠;1 (
𝑠𝑖𝑛(𝛾) + 𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 (𝛼)

√𝑠𝑖𝑛2(𝛽) + 𝑠𝑖𝑛2(𝛾) + 2𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 (𝛼)
) 

𝜓𝑏(𝛼, 𝛽) = 𝑐𝑜𝑠;1 (
𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠 (𝛽)

√𝑠𝑖𝑛2(𝛼) + 𝑠𝑖𝑛2(𝛾) + 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠 (𝛽)
) 

𝜓𝑐(𝛼, 𝛽) = 𝑐𝑜𝑠;1 (
𝑠𝑖𝑛(𝛽) + 𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠 (𝛾)

√𝑠𝑖𝑛2(𝛼) + 𝑠𝑖𝑛2(𝛽) + 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠 (𝛾)
) 

𝑆(𝛼, 𝛽) = 2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛 (𝛾) 
These formulas hold only for R=1. 
Now we are ready to define an array of all standard triangles (i.e. with integer angles). We run over all the alpha 
and beta that have positive whole angle and save all the values of their parameters. 
We have differentiated between parameters with function 𝑜(𝑛) that returns an order of the parameter number 𝑛: 
in particular, sides, bisectors medians etc. are parameters of order 1; angles are parameters of order 0; and the 
area is a parameter of order 2. 
2.4 An Algorithm 

The user chooses three parameters (number 𝑛1 , 𝑛2  and 𝑛3 ) and provides values 𝑣1 , 𝑣2  and 𝑣3 
correspondingly. Our goal is to answer whether triangle satisfying these conditions exists and find all triangles 
with this property. 
First, we check whether we can answer immediately that there are no triangles satisfying these properties. In 
particular, we check if 

 for each side, a height must be less than or equal to an internal bisector, which must be less than or 
equal to a median. If two of them are equal, then the third must be equal to them since a triangle is 
isosceles. 

 an angle 𝜓𝑎must be strictly lower than 𝛼, 𝜓𝑏<𝛽 and 𝜓𝑐 <𝛾. 
 𝛼 + 𝛽 + 𝛾 = 1800, therefore, a sum of any two of them is lower than 1800. 
 Side lengths must satisfy three triangle inequalities. 

If parameters provided by the user contradict to one of these conditions, then we just say that such triangle does 
not exist. 
There are four cases: the user provided three, two, one or zero parameters of order 0. In each case the main 
function 𝐹(𝛼, 𝛽) will be defined. 
2.5 Case 1: All Three Parameters Provided by the User are of Order 0 

There are only 6 angle parameters of order 0: 𝛼, 𝛽, 𝛾, 𝜓𝑎, 𝜓𝑏, 𝜓𝑐. If the user decided to provide values for three 
parameters among these, then one option is that there exist infinitely many triangles (each triangle can be 
homothetically transformed with arbitrary coefficient, and the achieved triangle will have the same values for 
parameters of order 0. We can find all possible triangles with a condition 𝑅 = 1, after that write formulas for 
each parameter with respect to 𝑅. Let us write a search over all possible integer parameters 𝛼 and 𝛽, and 
check three inequalities: 
|𝑣1 − 𝑑,𝑛1, 𝛼, 𝛽-| < 𝛿 , |𝑣2 − 𝑑,𝑛2, 𝛼, 𝛽-| < 𝛿  and |𝑣3 − 𝑑,𝑛3, 𝛼, 𝛽-| < 𝛿 , where 𝛿  is a small angle, for 
example, 𝛿 = 1∘, and 𝑑 is the database of parameter 𝑛𝑖. In this case we define the main function in the 
following way: 

𝐹(𝛼, 𝛽) =  
1

𝛿2
⋅ ((𝑣1 − 𝑑,𝑛1, 𝛼, 𝛽-)2 + (𝑣2 − 𝑑,𝑛2, 𝛼, 𝛽-)2 + (𝑣3 − 𝑑,𝑛3, 𝛼, 𝛽-)2) 

and it must be less than 3 for our found triangles. 
2.5.1 Case 2: The User has Provided two Parameters of Order 0, and one Parameter of a Positive Order 
Without loss of generality we assume that positive ordered parameter is the third one. In this case there should be 
only finite number of possible triangles. We write a search over all possible integer parameters 𝛼 and 𝛽, and 
check two inequalities: 

|𝑣1 − 𝑑,𝑛1, 𝛼, 𝛽-| < 𝛿 and |𝑣2 − 𝑑,𝑛2, 𝛼, 𝛽-| < 𝛿. 
First, we find all triangle with 𝑅 = 1 using two parameters of order 0, and after that we calculate 𝑅 using the 
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third parameter by the formula (values α and β is taken from the triangle with 𝑅 = 1): 

𝑅 = (
𝑣3

𝑑,𝑛3, 𝛼, 𝛽-
)

1
𝑂(𝑛3)

 

In this case we define the main function in the following way: 

𝐹(𝛼, 𝛽) =
1

𝛿2
⋅ ((𝑣1 − 𝑑,𝑛1, 𝛼, 𝛽-)2 + (𝑣2 − 𝑑,𝑛2, 𝛼, 𝛽-)2) 

and it must be less than 2 for our found triangles. 
2.5.2 Case 3: The User has Provided one Parameter of Order 0, and two Parameters of Positive Orders 
Without loss of generality we assume that the zero ordered parameter is the first one. We write a search over all 
possible integer parameters 𝛼 and 𝛽, and check whether the value 𝑣1 differs from 𝑑,𝑛1, 𝛼, 𝛽- by less than 𝛿. 
If this condition holds, we can calculate two values of R: 𝑅2 and 𝑅3 using values 𝑣2 and 𝑣3 respectively: 
𝑓𝑜𝑟 𝑖 = 2 𝑜𝑟 3, 

𝑅𝑖 = (
𝑣𝑖

𝑑,𝑛𝑖 , 𝛼, 𝛽-
)

1
𝑂(𝑛𝑖)

 

We check whether the ratio 𝑅2

𝑅3
 is closed to 1 (if 𝛼 and 𝛽 is closed to values in the needed triangle, it must be 

closed to 1). We can check it in the following way:|𝑅2

𝑅3
− 1| < 휀 where 휀 is some small constant, for example 

0.01. In this case we define the main function in the following way: 

𝐹(𝛼, 𝛽) =
1

𝛿2
⋅ (𝑣1 − 𝑑,𝑛1, 𝛼, 𝛽-)2 +

1

휀2
⋅ (

𝑅2

𝑅3
− 1)

2

 

and it must be less than 2 for our found triangles. 
2.5.3 Case 4: The User has Provided Three Parameters of Positive Orders 

In this case we will do the same search as in the previous case, but we will define three values of 𝑅: 𝑅1, 𝑅2 

and 𝑅3 by the same formula 𝑅𝑖. In this case we will need to check three inequalities: |
𝑅2

𝑅3
− 1| < 휀, |

𝑅1

𝑅3
− 1| <

휀, and |
𝑅1

𝑅2
− 1| < 휀. In this case we define the main function in the following way: 

𝐹(𝛼, 𝛽) =
1

휀2
⋅ ((

𝑅2

𝑅3
− 1)

2

+ (
𝑅1

𝑅3
− 1)

2

+ (
𝑅1

𝑅2
− 1)

2

) 

and it must be less than 3 for our found triangles. 
Now for each found solution (i.e. pair of integer numbers(𝛼, 𝛽)) we start the searching in its neighbors that far 
from this point in 1 angle degree from alpha or beta to find a closer minimum of our function. 
Now several found approximations for one solution will go to one point, and we are ready to clarify our 
approximation. At this moment our approximation has integer angles. But we want to clarify it to have k decimal 
places. I suggest taking k=3 however one can take larger if there is a need. 
The algorithm is as follows. Assume that we have 𝑖 decimal places already calculated (in the beginning 𝑖 = 0). 
Let (𝛼𝑖 , 𝛽𝑖) be our point. (In particular, we take(𝛼0, 𝛽0) to be a pair found in the previous step. We take 
𝑐 = 10*;𝑖;1+. For 𝑞1 from -10 to 10 and for 𝑞2 from -10 to 10 we evaluate 𝐹(𝛼𝑖 + 𝑞1𝑐, 𝛽𝑖 + 𝑞2𝑐). We 
compare all these 441 numbers and find the minimal one. We fix the pair (𝛼𝑖 + 𝑞1𝑐, 𝛽𝑖 + 𝑞2𝑐)as a new pair 
(𝛼*𝑖:1+, 𝛽*𝑖:1+). This will help us to calculate the decimal place  𝑖 + 1. We continue until 𝑘 decimal places will 
not be computed. At the end we will obtain a pair (𝛼𝑘, 𝛽𝑘) which will clarify our approximation up to k decimal 
places, i.e. as accurate as we want. 
2.6 Examples 

Here are illustrations for the generating triangles: 
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Figure 1. Examples of generating triangles in a single circumference by two parameters 

a) the side AB = 1, the side AC = 2; 
b) the height BBh = 1, the area of a triangle S = 1; 
c) bisector AAb = 1.5, the radius of the inscribed circle r = 0.5; 
d) median BBm = 1, the angle between side and median ∠CBBm = 60o. 
 
On the Figure 1 we can see 4 examples of triangles; each was generated by 3 parameters (including the radius R 
of the circumscribed circle) listed below the figure. 
4. Discussion 

The development of the methodology and the current algorithmic layout of the content generator using the 
example of a triangle as the simplest object of mathematical education gives a number of significant advantages 
in the field of content management of e-education. 
In contrast to the traditional methods of creating and solving problems about the properties of a triangle 
(Mironescu & Panaitopol, 1994; Oxman, 2008), which consider individual particular issues, the developed 
technique based on 21 parameters includes almost all the basic attributes and properties of triangles. The number 
of possible combinations of parameters in the generated configurations is several orders of magnitude greater 
than the number of triangles in the original array, which allows the formation of an almost unlimited number of 
original problems. 
The advantage of the imitational generator is also that it does not need primary content databases, which in 
conventional sources (Dorodchi, Al-Hossami, Benedict, & Demeter, 2019; Rüdian & Pinkwart, 2019) usually are 
a source for modifying the content. In addition, the use of optimization calculation methods can significantly 
expand the scope of tasks. Optimization allows to choose both initial and secondary parameters as parameter sets. 
Conventional simulation generation (Rotkin, Yavich, & Malev, 2018) is based on direct configuration 
dependencies exclusively on the initial parameters, which limits the variety of tasks. 
The other side of these advantages is the need of large computational resources. This circumstance is overcome 
by using special algorithmic techniques. Using a circumscribed circle of radius 1 and varying the dimension 
reduces the number of initial parameters from three to two and, accordingly, reduces the dimension of the 
calculation model. An additional significant effect is the use of stepwise optimization. Together, these measures 
give an acceptable level of estimated time. 
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5. Suggestions 

This work has significant development prospects, both methodological and practical (applied). 
There is a great interest and considerable difficulty in the improvement of the optimization problem, with the 
aim of eliminating the formation of large source arrays and increasing accuracy (not due to an increase in the 
volume of calculations). 
The following list is also necessary to be committed: 
to supplement the generator with an ontological model and algorithm for selecting acceptable tasks from sets of 
configurations; 
to improve the user interface algorithms in order to adequately represent the generated content; 
to extend the private methodology to other mathematical and related problems; 
to test pilot generators in the educational process; 
to study the effect of using content generators on the didactic features of trainings. 
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