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Abstract: The use of confidence intervals (CIs) for making a statistical inference is gaining popularity in 
research communities. To evaluate college statistics instructors’ readiness to teach CIs, this study explores their 
attitudes toward teaching CIs in elementary statistics courses, and toward using CIs in inferential statistics. Data 
were collected with a survey that classifies instructors’ attitudes on the basis of three previously established 
pedagogical components: affective, cognitive, and behavioral. Based on the survey responses from 270 
participants, we created three profiles (subgroups) via latent profile analysis, and identified each profile’s 
pattern of attitudes toward CIs and common characteristics of the instructors that fit each profile. In addition, we 
compared the profiles across groupings created by six variables: gender, academic background, statistics 
teaching experience, subject preference, degree level, and desire to improve teaching. The results of the latent 
profile analysis support three profiles within the population of statistics instructors, and the results of the 
comparative analysis of teacher characteristics indicate that the six variables are moderate to strong predictors of 
the grouping of the sample into three profiles.  
 
Keywords: Confidence intervals, Inferential statistics, College instructors of statistics, Latent profile analysis, 
and Non-cognitive factors 
 
 
Introduction 

 
In statistics, the process of null hypothesis significance testing (NHST) uses p-values to make statistical 
inferences regarding research results. This process has been the overwhelming choice for quantitative data 
analysis in the social sciences for many years (Fidler & Loftus, 2009). However, an increasing number of 
scholars in statistics education and in quantitative research methods in psychology consider the p-value an 
inadequate measure of evidence for hypothesis testing in inferential statistics at the elementary statistics level 
(Hubbard & Lindsay, 2008; Lindley, 1999; Marden, 2000; Nelder, 1999). Recently, many statistics reformers 
have studied the adequacy of confidence intervals (CIs) in inferential statistics (e.g., Beyth-Marom, Fidler, & 
Cumming, 2008; Cumming & Finch, 2005; Kline, 2004).  
 
In the pedagogical context, Schmidt and Hunter (1997), for example, claimed that students might have greater 
success learning how to use CIs than learning how to conduct NHST, and, further, that CIs enable researchers to 
make better inferential decisions than the p-values used in NHST. In recognition of the advantages of using CIs 
in inferential statistics, reformers of statistics practices have called for wider usage of CIs in preference to p-
values (Cumming & Finch, 2001). As a result, interval estimates are gaining more attention and becoming more 
popular in the quantitative research community (Cumming & Finch, 2005), leading to a need for more studies 
on the usage and teaching of CIs. 
 
The literature on this topic, although still scant, indicates that a number of statistics educators are actively 
exploring cognitive factors in students’ attainment of knowledge of CIs, particularly misconceptions of CIs 
commonly developed by statistics students (e.g., Fidler, 2005; Hoekstra, Morey, Rouder, & Wagenmakers, 
2014; Kalinowski, 2010). The role of teachers’ noncognitive factors in improving the cognitive performance of 
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students has also been investigated in the statistics education community (e.g., Gal & Ginsburg, 1994; Kim, 
Wang, Lee, & Castillo, 2017; Martins, Nascimento, & Estrada, 2012). A recent study by Kim, Wilson, and Ko 
(2018) is the first to address three different aspects—affective, cognitive, and behavioral—of the attitudes of 
college instructors of elementary statistics toward teaching CIs in elementary statistics and toward using CIs for 
inferential statistics. Expanding on Kim et al.’s (2018) work, the current study aims to classify the population of 
statistics instructors into groups, which we call profiles, to identify each profile’s pattern of attitudes toward CIs, 
and to identify common characteristics of the instructors that fit each profile. 
 

 

Research Background 
 
In this section, we describe the known advantages of learning and using CIs in inferential statistics, discuss the 
pedagogical components of attitudes and instructor characteristics, and present the study’s research questions.  

 
 

Advantages of Learning and Using CIs in Inferential Statistics 

 
The p-value methods have been widely accepted and used as a primary tool for data analysis in quantitative 
studies that report their findings via inferential statistics in many areas of social science and other research 
fields. Accordingly, null hypothesis significance tests (NHSTs), of which the p-value is an essential component, 
are heavily emphasized in the discussion of inferential statistics in college level elementary statistics courses, 
and the p-value has been regarded as a culminating topic in these courses. Recent studies, however, indicate 
declining favor and use of p-values in research communities, and some statistics reformers emphasize the 
advantages of using CIs for research purposes, and the need to teach CIs as a tool for inferential statistics in 
elementary statistics classes. In the following subsections, we describe three known advantages of learning and 
using CIs over p-values: they are easier to access, provide more information, and promote meta-analysis. 
 
 
Easier Access 
 
Students are known to develop misconceptions in learning the concept of p-values. Castro Sotos, Vanhoof, Van 
den Noortgate, and Onghena (2009) documented the severity of misconceptions, and misinterpretations 
associated with the learning of p-values and hypothesis tests. In contrast, according to Cumming and Finch 
(2001), the point and interval information provided in CIs supports substantive understanding and interpretation. 
Empirical studies conducted by Fidler and Loftus (2009) support this claim, concluding that visually presented 
CIs ―result in fewer misconceptions than p-values used with NHST‖ (p. 32). In particular, CIs help make sense 
of statistical non-significance (Cumming & Finch, 2001, 2005; Kalinowski, 2010). The empirical studies of 
Fidler and Loftus indicate that ―CIs substantially alleviate the misinterpretation of statistically nonsignificant 
results as evidence for the null hypothesis‖ (p. 36).  

 
 

More Information 
 
While remaining within a familiar frequentist framework, where inferential conclusions are drawn from the 
frequencies present in the data, CIs offer more information than p-values. According to Cumming and Finch 
(2001), there is a direct link between CIs and null hypothesis significance testing (NHST):  
 

Noting an interval excludes a value is equivalent to rejecting a hypothesis that asserts that value as 
true—at a significance level related to C. A CI may be regarded as the set of hypothetical population 
values consistent, in this sense, with the data. (p. 534) 
 

CIs give additional information. According to Cumming and Finch, the precision information provided by CIs 
can be estimated before conducting an experiment, and the width may be used to guide the choice of design and 
sample size. Moreover, after an experiment is completed, CIs give information about precision that may be more 
useful and accessible than a statistical power value (Cumming & Finch, 2001). Although statistical power and 
effect sizes help boost the meaning of p-values and their interpretation, graphical representations of CIs provide 
a visual assessment of data that a reader can use to understand underlying patterns. 
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Promoting Meta-analysis 
 
CIs are helpful when combining evidence from multiple experiments because they promote meta-analytic 
thinking. According to Fidler and Loftus (2009), CIs can be useful for investigating multiple hypotheses on a 
single scale because they do not presume any single null hypothesis (p. 29). Therefore, CIs emphasize the idea 
of uncertainty, and they more readily allow readers to assess data at varying degrees than do the p-values used in 
NHST, which lead strongly toward a dichotomous conclusion of either rejecting or failing to reject the null 
hypothesis. In this sense, CIs can lead readers to look at data in a research paper more holistically, promoting 
meta-analytical thinking. According to Cumming and Finch (2001): 

 
CIs are useful in the cumulation of evidence over experiments: They support meta-analysis and meta-
analytic thinking focused on estimation. This feature of CIs has been little explored or exploited in the 
social sciences but is in our view crucial and deserving of much thought and development. (p. 534) 

 
The authors of this paper believe that it is important for instructors to be aware of these advantages of CIs, to be 
ready to use CIs as a tool for inferential statistics, and to view them as a valued topic to emphasize in elementary 
statistics courses.   
 
 
Pedagogical Components of Attitudes and Instructor Characteristics       

 
A taxonomical construct that classifies attitude into three pedagogical components—affective, cognitive, and 
behavioral—has been widely accepted in studies of noncognitive factors in psychology and education (e.g., 
Aiken, 1970; Gómez-Chacón, 2000; Olson & Zanna, 1993). Recently, this taxonomical construct has been used 
to address pre- and in-service teachers’ attitudes toward statistics (e.g., for preservice elementary school 
teachers, Estrada, 2002 and Martins et al., 2012; for college instructors, Kim et al., 2017). According to Estrada 
(2002) and Martins et al. (2012), the three components can be defined as follows:   
 

o Affective component: one’s feelings about the objects in question;  
o Cognitive component: one’s self-perception or beliefs about the objects in question; and 
o Behavioral component: one’s inclinations to act in a particular way about the objects in question 

 
This study also draws upon this taxonomical construct. However, rather than using the three pedagogical 
components to distinguish different types of attitudes, we use them to cover widely used pedagogical domains 
of attitudes toward teaching and using CIs. 
 
Using the same taxonomical construct and the same definition of each component, Kim et al. (2018) developed 
a survey to explore each of the three aspects (affective, cognitive, and behavioral) of instructors’ attitudes 
toward CIs, and to learn how the attitudes are explained by three factors: gender, academic background, and 
statistics teaching experiences. Their findings indicate that gender is a moderate predictor while academic 
background and statistics teaching experience are strong predictors of elementary statistics instructors’ (ESIs) 
attitudes toward CIs. Specifically, they showed that the ESIs with a statistics background at the graduate level 
held significantly more positive attitudes toward CIs than those without such a background, and the ESIs with 
four or more years of teaching experience had more positive attitudes toward CIs than their counterparts with 
less than four years of experience. These results suggest the likelihood of distinct subgroups within the 
population of ESIs.  
 
Extending the study of Kim et al. (2018), the study in this paper intends to identify existing subgroups within 
the ESI population, and to explain the characteristics of ESIs in each subgroup using the same three potential 
factors (gender, academic background, statistic teaching background) along with three additional factors: degree 
level, subject preference, and self-perception of the need for professional development. The specific questions 
we address are:  
 

o In the target population, how heterogeneous are the participants in terms of attitudes toward 
confidence intervals?  
- How many distinct groups exist in the target population? 
- What attitudinal patterns do ESIs exhibit toward using CIs and teaching CIs?  

o What relationships exist between the attitudinal pattern groups (i.e., profiles) and the six variables 
of gender, academic background, statistics teaching experience, degree level, subject preference, 
and desire to improve teaching? 
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Methods 
 
To measure ESIs’ attitudes toward CIs, we used a survey that was designed for this purpose. See Kim et al. 
(2018) for brief results related to taxonomical constructs and teaching contexts. 
 
 

Description of Survey and Data Collection  

 
The survey has three parts. Part I collected biodata of the participants, and provides the information on the six 
teacher characteristic variables we explore in this study: gender, academic background, statistics teaching 
experience, subject preference, degree level, and desire to improve teaching. Part II contains 12 items that 
address ESIs’ attitudes toward using and teaching CIs without making explicit connections with the 
aforementioned advantages of CIs. Part III contains 18 items, which address ESIs’ attitudes toward CIs in 
relation to such advantages. This study uses the participants’ responses to the items in Parts I and II only.    
 
The questionnaire of Survey Part II draws on the taxonomical construct of the three pedagogical components of 
attitude (Table 1, columns [A], [C], and [B]). In addition, the questionnaire items are framed so as to assess (1) 
two views—one of attitudes toward CIs in place of p-values and the other of attitudes toward CIs regardless of 
p-values (Table 1, rows [a] and [b]), and (2) two contexts—the general context and the teaching context (the 
sub-columns under columns [A], [C], and [B] in the table).   

 
Table 1. Survey Items Framed by the Taxonomical Constructs 

 Affective (A) Cognitive (C) Behavioral (B) 
 General Teaching General Teaching General Teaching 

(a) In comparison with p-values (COM) I8 I9 I12 I7 I11 I10 
(b) Independent of p-values (IND) I1 I3 I5 I4 I6 I2 

 
The 12 items in Part II have a Likert-scale format. To increase the effect of responses, it uses a 7-point scale 
instead of the usual 5-point scale (from 1 ―strongly disagree‖ to 7 ―strongly agree‖). To avoid apparent 
acquiescence, the survey has a mixture of positive and negative items; seven items are phrased positively and 
five negatively. The response scores of the negative items were reversed for the analysis. The 12 items appear in 
the appendix.   
 
The data were collected via an online survey system during the summer of 2017. An invitation to take the 
survey was sent to 10,096 faculty in mathematics or statistics departments at two- and four-year colleges in 24 
states across the United States (i.e., all faculty members in the relevant departments at all two- or four-year 
colleges we could identify in the 24 states). While 292 responded, the analysis was conducted using the 
responses of 270 participants who answered more than 80% (10 items) of the 12 items in Part II of the survey. 
The distributions of the participants based on each of the six variables—gender, academic background, statistics 
teaching experience, subject preference, degree level, and desire to improve teaching—are shown in the Results 
section. 
 
 
Validity 

 
The survey was designed to ensure three types of validity: content, face, and construct validity. 
 
 
Content Validity  
 
Content validity refers to the extent to which the items on a measure represent all facets of the targeted construct 
(Haynes, Richard, & Kubany, 1995) or the extent to which an instrument adequately samples the research 
domain of interest (Wynd, Schmidt, & Schaefer, 2003). To establish content validity, a group of four math and 
statistics educators (including three of the four authors of this paper) had back-and-forth discussions during the 
survey development phase. The discussion focused on whether the 12 items in Part II of the survey covered: (1) 
the three domains determined by affective, cognitive, and behavioral aspects, (2) the two views—of attitudes 
toward CIs in place of p-values and of attitudes toward CIs regardless of p-values—and (3) the two contexts—
the general context and the teaching context.  
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Face Validity 
 
Face validity is generally defined as the degree to which a test (or assessment) seems to measure what it is 
supposed to measure from a participant’s perspective. That is, it refers to the relevance of a test as it appears to 
test participants. To secure face validity, the research team consulted with two instructors of elementary 
statistics; one holds a PhD in a statistical science, and had taught various statistics courses for over three years at 
the time of the consultation; and the other holds an MS degree in statistics, and had taught elementary statistics 
for eight years at the time. They both gave advice on technical uses of statistics terms to ensure that the terms 
were used appropriately in the survey items and that the survey items were phrased such that they ask what the 
research team intended to ask. Their suggestions were noted and discussed in this paper.  
 
 
Construct Validity  
 
Construct validity is the extent to which a test measures a theoretical construct or trait (Anastasi & Urbina, 
1997). As described above the survey used in this study was based on a taxonomy of three components that 
together comprise pedagogical attitudes towards CIs. Therefore, for construct validity, we did not treat these 
three components separately in this analysis, but consider the internal consistency of the 12 items together. 
Based on the responses, the instrument demonstrated acceptable internal consistency, with a Cronbach’s alpha 
of 0.751. Factor analysis was not considered because this study’s analysis considers the 12 items in the survey 
either holistically or individually, but not as distinct sets. 
 
 
Results 

 
This study’s intention is to create profiles (or define subgroups) of the given group of ESIs using latent profile 
analysis, to explore each profile’s attitudinal patterns in regard to teaching and using CIs, and to characterize the 
ESIs of each profile in terms of the six aforementioned teacher characteristics. All significance tests were 
conducted at the commonly used significance levels of α = .05, .01, and .001. Due to the limitations involved in 
making dichotomous conclusions based on p-values (Gelman, 2013), we also considered α = .10 at times (for 
example, when we tested possibilities for potential factors that might characterize the profiles). Furthermore, we 
provide 95% two-sided confidence intervals to describe the distribution of the scores of each item for the 
identified profiles.  
 
 
Subgroups of the Target Population 
 
The results of the LPA are shown in Table 2. The five indices (or criteria) under the ―Fit statistics‖ column in 
Table 2 measure the fit of different numbers of profiles (1 through 4 in the ―Model‖ column in Table 2) to the 
given sample. The measures under each index show the degree to which the associated index supports each 
number of profiles. For example, the second number (11103.304) in the AIC column measures how well AIC 
agrees with dividing the given sample into two profiles. AIC, BIC, and SABIC support the number of profiles 
associated with the lowest measure of that index, which shows which model fits well using as few parameters as 
possible (Tein, Coxe, & Cham, 2013). 

 
Table 2. Number of Profiles Suggested by the Five LPA Criteria 

Model Fit statistics Profile membership 
distribution 

AIC BIC SABIC BLRT Entropy 1 2 3 4 
1 profile 11613.038 11699.401 11623.304 - - 270    
2 profiles 11103.304 11236.446 11119.131 -5782.519*** .945 54 216   
3 profiles 10960.805 11140.726 10982.192 -5514.652***

 .962 49 209 12  

4 profiles 10859.661 11806.362 10886.609 -5430.402
*** .837 45 109 12 104 

Notes. (1) AIC = Akaike information criterion; BIC = Bayesian information criterion; SABIC = sample-size 
adjusted BIC; and BLRT = bootstrapped likelihood ratio test, and (2) *        ; **        ; and ***          
 
BLRT determines an optimal number of profiles by comparing a model, via statistical inference, that supports   
profiles against a model that supports     profiles for each    . Thus, the three BLRT measures 
            ,             , and              indicate, respectively, that a two-profile model provides a 
significantly higher degree of fit than a one-profile model, a three-profile model provides a significantly higher 
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degree of fit than a two-profile model, and a four-profile model provides a significantly higher degree of fit than 
a three-profile model, all at the significance level of       . Therefore, BLRT most strongly supports a four-
profile model. For entropy, the higher the measure is, the more strongly it supports the associated number of 
profiles. 
 
The measures in Table 2 indicate that while AIC, SABIC, and BLRT support a model of four profiles within the 
population represented by the given sample, both BIC and entropy support a model of three profiles. In this 
study, we regard three profiles as more optimal than four profiles for further analysis for several reasons: (1) 
BIC, which is in general more widely used than the other four indices (Tein, Coxe, & Cham, 2013), supports 
three profiles; (2) four profiles are least supported by both BIC and entropy; and (3) when four profiles were 
assumed, we found significant overlaps on many of the item scores between Profiles 2 and 4. The last four 
columns of Table 2 (under ―Profile membership distribution‖) suggest the size of each profile for each assumed 
number of profiles. If three profiles are assumed within the sample, the sample sizes would be:    = 49,    = 
209, and     = 12 (shown in the shaded part of the table).  
 
Under the three-profile assumption, we further tested the latent class patterns based on estimated posterior 
probabilities (Table 3). For example, in Table 3, the three numbers in columns 1, 2, and 3 in the Profile 1 row 
mean that when an individual belongs to Profile 1, the probability that the latent test identifies that individual as 
belonging to Profiles 1, 2, and 3 is, respectively, .984, .016, and .000. In general, the profiling is considered 
acceptable if an individual’s probability of belonging to his or her own profile is greater than .7 for all profiles. 
The measures of .984, .985, and .967 in Table 3 indicate the probabilities that individuals in Profiles 1, 2, and 3 
are classified in Profiles 1, 2, and 3, respectively. 
 

Table 3. Test of the Latent Class Patterns Based on Estimated Posterior Probabilities 
Profiles n 1 2 3 Sum 

Profile 1 (P1) 49 .984 .016 .000 1 
Profile 2 (P2) 209 .015 .985 .000 1 
Profile 3 (P3) 12 .010 .023 .967 1 

 
 
Profile Characteristics  

 
The study further considers the extent to which the three profiles are different from one another for each of the 
12 items in Part II of the survey. While the profiles were determined by the differences shown in the 
individuals’ responses to the 12 items, the degree of difference on each item varied. The mean differences are 
summarized graphically in Figure 1. For convenience, we refer to Profiles 1, 2, and 3, respectively, as P1, P2, 
and P3. Note that P2 contains the majority of the sample (  = 209), and that P2 scored higher than P1 or P3 for 
most items. The only two items where P2 scored lower than some other profile are Items 9 and 11, for which the 
difference seems nonsignificant. For the other 10 items, the mean scores of the individuals in P2 seem clearly 
higher than at least one of the other two profiles’ mean scores. In this section, we report the group differences 
for each of the 12 items. 
 

 
Figure 1. Mean Profile Scores in the Three Latent Profiles 
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Figure 1 shows the profiles’ mean differences on each item by point estimate. Next, 95% interval estimates, and 
the profile differences based on the interval estimates, are shown in Figure 2. The graphs in Figure 2 show that 
Items 1, 2, 4, 5, and 6 contain a pair of intervals with gaps. This indicates the possibility of profile differences 
for those items. In particular, Item 4 contains a wide gap between P3 and the other profiles. Also, based on the 
point estimates and the interval lengths of the scores for the three profiles, we describe P1, P2, and P3, 
respectively, as the ―stable-score group,‖ the ―high-score group,‖ and the ―diverse-score group.‖ The scores of 
P1, the stable-score group, show more consistency over the 12 items compared to the other two profiles (Figures 
1 and 2); the scores of P2, the high-score group, are higher than the scores of the other two profiles for most 
items (Figure 1); and the scores of P3, the diverse-score group, fluctuate across the items more than those of the 
other two profiles (Figures 1 and 2). 
 

 
Figure 2. Plot of the Latent Profile Analysis with 95% Confidence Intervals 

 
While the 12 items served as variables that determine the profiling, they also serve to compare different 
attitudinal patterns of the profiles, and to describe the profile differences. Table 4 shows the results of the profile 
difference tests that used an F-test statistic (Column B), post-hoc analysis (Column C), and effect sizes 
(Columns D and E) for each of the 12 items.  
 

Table 4. Profile Differences on Each Item 
(A) (B) (C) (D) (E) 

Items F-value post-hoc analysis (Scheffé) η2    
I1 25.504*** 1 < 2, 2 > 3 .161 .154 
I2 147.797*** 1 < 2, 2 > 3, 3 > 1 .525 .521 
I3 49.842*** 1 < 2, 3 > 1 .273 .267 
I4 277.310*** 1 < 2, 2 > 3, 3 < 1 .677 .673 
I5 29.747*** 1 < 2, 2 > 3, 1 > 3 .182 .176 
I6 162.839*** 1 < 2, 2 > 3, 1 < 3 .549 .545 
I7 15.929*** 1 < 2, 2 > 3 .107 .100 
I8 24.819*** 1 < 2, 3 > 1 .157 .150 
I9 .185 - .001 .000 

I10 13.509*** 1 < 2 .092 .085 
I11 .497 - .004 .000 
I12 18.388*** 1 < 2 .121 .114 

* p < .05; ** p < .01; *** p < .001  
 
In Table 4, Column (A) lists the 12 items. Column (B) shows the results of a one-way ANOVA test that we 
conducted to learn group differences using an F-test for each item. The results are shown in Column (B). For 
each of the 10 items that show statistical significance (all but Items 9 and 11), we further tested where the 
differences lie among the three profiles via post-hoc analysis using Scheffé’s method without assuming equal 
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variance. Column (C) shows the outcomes of one-tailed tests. For example, ―1 < 2‖ for Item 1 indicates that the 
mean score of Profile 2 is significantly higher than that of Profile 1 at the significance level of        for the 
item. For the effect sizes, we report eta squared (η2: Column D) and omega squared (  : Column E). The effect 
sizes draw attention to the items that displayed greater group differences. The effect sizes of the group 
differences shown in I2, I3, I4, and I6 were more significant than those for the other items with significant 
differences. We include I3 with reservation, due to the significantly lower effect sizes of the item (η2 = .273 and 
  = .267) compared to the other three. While F-value alone indicates that group differences are statistically 
significant for 10 items (all but I9 and I11) at       , the F-values combined with the effect sizes indicate 
that the group differences are more significant in these four (I2, I3, I4, and I6). The outcomes from point 
estimation, interval estimation, and F-tests along with the effect sizes not only indicate significant group 
differences on the four items of I2, I3, I4, and I6 but also suggest the slimness of the possibility of such 
significance on the two items of I9 and I11. To illustrate the characteristics of each profile, we draw upon these 
six items, which are listed in Table 5. In the table, we refer to the four items (I2, I3, I4, and I6) with greater 
difference effect sizes between profiles as significant items, and the two items (I9 and I11) smaller effect sizes 
as nonsignificant items.  
 

Table 5. Four Items with Significant Differences and Two Items Without 
Impact Status Items Statements 

Four significant 
items 

I2 I rarely explain CIs in my classes as a statistical tool for making decisions about 
data. 

I3a I feel uncomfortable teaching the underlying concept of CIs. 
I4 CIs should be discussed as a method for making statistical inferences in an 

introductory statistics course curriculum. 
I6 I rarely approach inferential statistics using CIs. 

Two nonsignificant 
items 

I9 I feel more comfortable teaching CIs than p-values. 
I11 I tend to treat statistical inference problems in terms of CIs. 

a The differences on Item 3 had a much lower effect size than the other three items.  
 
Regarding the four significant items, note that all four of these items are from the independent view, indicating 
attitudes toward CIs without comparison to p-values. We further note that three of them (I3, I4 and I2) are from 
the teaching context, rather than the general context. Regarding the two nonsignificant items (I9 and I11), the 
graphs in Figures 1 and 2 as well as the F-values (.185 for I9 and .497 for I11) show that the group difference 
for each of the two items is not significant at the level of α = .05. This evidence is further supported by the 
ranking given by Cramer’s V (i.e., effect size; Cramer, 1946). Note that both these items are from the in-
comparison view as opposed to the independent view, framing CIs in comparison to p-values. 
 
 
Characteristics of the Grouping 

 
The profile analysis reported in the previous sections sorted the sample into three groups: Profiles 1, 2, and 3. In 
this section, we describe each profile using the six teacher characteristics considered in the study: (1) gender, (2) 
subject preference (between math and statistics), (3) degree level, (4) academic background, (5) teaching 
experience, and (6) four dimensions of teachers’ desire to improve their teaching: (a) self-awareness of the need 
for more content knowledge (CK), (b) self-awareness of the need for more pedagogical content knowledge 
(PCK), (c) willingness to participate in professional development (PD) programs to improve CK, and (d) 
willingness to participate in PD programs to improve PCK. The first five characteristics along with the four-part 
sixth characteristic give a total of 11 variables. We test the independence between each variable and the three-
way grouping using Pearson’s chi-squared tests. To determine to what extent the group differences could be 
explained by each of the 11 independent variables, we set the following hypotheses for each variable  , where 
             ,   ,   ,   , and   :  
 

o Null hypothesis (  ): the group difference is not explained by variable  . 
o Alternative hypothesis (  ): the group difference is explained by variable  .  

 
In checking these differences, we considered the effect sizes using the scores of Cramer’s V, which is known to 
be well-suited for checking hypotheses of chi-square distribution. In this study, we classify Cramer’s V scores 
as very strong (    ), strong (    ), moderate (    ), weak (    ) and non-existent or very weak (  ) 
(Cramer, 1946).  
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Gender 
 
Participants were asked, ―What is your gender?‖ with listed choices of ―male,‖ ―female,‖ and ―not applicable.‖ 

Outcomes of the chi-square test are summarized in Table 6. The last column of the table shows that the chi-
square statistic for ―gender‖ equals 11.610** (significant at      ) with df = 2, and that the effect size, 
measured by Cramer’s V, is .207 (strong), which falls into the category of strong. The gender difference seems 
to be most overtly present in P1, and P3 consists only of males. 
 

Table 6. Chi-Squared Distribution of Gender in Each Latent Profile  
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V  

Gender 
Male 24 (49.0) 136 (65.1) 12 (100) 

11.610**(2) .207 
(strong) Female 25 (51.0) 73 (34.9) 0 (0) 

Total 49 (100) 209 (100) 12 (100) 
 
 
Subject Preference 
 
Regarding the subject preference for teaching between mathematics and statistics, participants were asked, 
―Which subject do you enjoy teaching more?‖ with listed choices of ―mathematics,‖ ―statistics,‖ ―no 
preference,‖ and ―N/A.‖ Outcomes of the chi-square test are summarized in Table 7. The last column of the 
table shows that the chi-square statistic for ―preference‖ equals 23.601*** (significant at       ) with df = 4, 
and that the effect size, measured by Cramer’s V, is .209 (strong). A difference seems to be overtly present 
between P1 and P2.  
 

Table 7. Chi-Square Distribution of Statistic for Subject Preference in Each Latent Profile 
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V 

Subject 
preference 

Math 32 (66.7) 63 (30.1) 6 (50.0) 

23.601***(2) .209  
(strong) 

Stats 8 (16.7) 74 (35.4) 2 (16.7) 
No pref. 8 (16.7) 72 (34.4) 4 (33.3) 

Total 48 (100) 209 (100) 12 (100) 
 
 
Degree Level 
 
Participants were asked, ―What is the highest degree you hold?‖ with listed choices as follows:  
 

o Bachelor’s (or equivalent), and currently not enrolled in a graduate degree program; 
o Bachelor’s (or equivalent), and currently enrolled in a graduate degree program; 
o Master’s (or equivalent), and currently not enrolled in a doctoral degree program; 
o Master’s (or equivalent), and currently enrolled full-time in a graduate degree program; and 
o Doctoral (or equivalent). 

 
Outcomes of the chi-square test are summarized in Table 8. The last column of the table shows that the statistic 
for degree level equals 32.330*** (significant at       ) with df = 8, and that the effect size, measured by 
Cramer’s V, is .245, which would fall between the very strong and strong categories depending on rounding. As 
the table indicates, no clear degree-level difference was found.  
 

Table 8. Chi-Square Distribution of Degree in Each Latent Profile 
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V 

Degree 

Bachelor 1(2.0) 0(0.0) 0(0.0) 

32.330***(8) 
.245  

(very strong/ 
strong) 

Bachelor + 0(0.0) 0(0.0) 1(8.3) 
Master 9(18.4) 67(32.1) 1(8.3) 

Master + 4(8.2) 9(4.3) 1(8.3) 
Doctoral 35(71.4) 133(63.6) 9(75.0) 

Total 49(100) 209(100) 12(100) 
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Academic Background 
 
Regarding the instructors’ academic background, we used participants’ responses to the item, ―What is your 
highest degree in?‖ with a listed choice of ―Math education (or Math teaching),‖ ―Mathematics,‖ ―Statistics (or 
Mathematics with a Statistics concentration),‖ and ―other.‖ For data analysis, participants were grouped as: (1) 
Math: having a graduate degree with the highest degree in math without holding a graduate degree in statistics 
or math education; (2) Stat: having a graduate degree in statistics; and (3) MaEd: having a graduate degree with 
the highest degree in math education without holding a graduate degree in statistics. Outcomes of the chi-square 
test are summarized in Table 9. The last column of the table shows that the chi-square statistic for degree level 
equals 11.193* (significant at      ) with df = 4, and that the effect size, measured by Cramer’s V, is .145, 
which would again fall between the strong and moderate categories depending on rounding. As the table shows, 
no clear degree-level difference was found.  
 

Table 9. Chi-Square Distribution of Academic Background in Each Latent Profile 
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V 

Academic 
Background 

Math 39(81.3) 132(63.2) 8(72.7) 

11.193*(4) 
.145  

(strong/ 
moderate) 

Stat 2(4.2) 50(23.9) 3(27.3) 
Math Ed 7(14.6) 27(12.9) 0(0.0) 

Total 48(100) 209(100) 11(100) 
 
 
Statistics Teaching Experience  
 
The participants were asked, ―How many years have you taught statistics?‖ They were directed to mark a 
number on a bar that ranged from 0 to 50. To ease data analysis, we grouped the participants into three groups: 
(1) novice: 5 years or less of experience; (2) mid-exp: 6–15 years of experience; and (3) high-exp: 16 years of 
experience or more. Outcomes of a chi-square test are summarized in Table 10. The last column of the table 
shows that the chi-square statistic for experience equals 9.785* (significant at      ) with df = 4, and that the 
effect size, measured by Cramer’s V, is .135 (moderate). Note that P1 (57.1%) contains more novice instructors 
than P2 (33.5%) or P3 (41.7%).    
 

Table 10. Chi-Square Distribution of Experience in Each Latent Profile 
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V 

Experience 

Novice 28(57.1) 70(33.5) 5(41.7) 

9.785*(4) .135  
(moderate) 

Mid-exp 11(22.4) 83(39.7) 4(33.3) 
High-exp 10(20.4) 56(26.8) 3(25.0) 

Total 49(100) 209(100) 12(100) 
 
 
Desire to Improve Teaching 
 
The participants were asked to respond to four statements: (a) ―I need to have more statistics content knowledge 
to be able to teach elementary statistics more effectively‖; (b) ―I need to have more pedagogical content 
knowledge for statistics to be able to teach elementary statistics more effectively‖; (c) ―I would like to 
participate in professional development programs to learn more statistics content‖; and (d) ―I would like to 
participate in professional development programs to gain more pedagogical content knowledge of statistics.‖ 
While these items were rated on a 7-point Likert scale, we combined the scores into three groups to enable chi-
square tests: Group 1 for scores 1–2, Group 2 for scores 3–5, and Group 3 for scores 6–7. Chi-square tests were 
conducted separately for each of the four statements, but the outcomes of all four are summarized in Table 11.  
 
The outcomes of the chi-square test regarding gaining statistics content knowledge are summarized in row (a) of 
Table 11. The first cell of the last column shows that the chi-square statistic equals 10.658* (significant at α = 
.05) with df = 4, and that the effect size, measured by Cramer’s V, is .140 (moderate). The measures in row (a) 
of the table indicate that individuals in P1 (30.6%) feel more need to gain statistics content knowledge than 
those in P2 (15.3%) or P3 (25.1%), and that most of P3 (66.7%) sees little to no need to do so. The outcomes of 
the chi-square test regarding gaining pedagogical content knowledge for statistics are summarized in row (b). 
The second cell of the last column shows that the chi-square statistic equals 4.118 (not significant at α = .05) 
with df = 4, and that the effect size, measured by Cramer’s V, is .087 (weak). The measures in row (b) indicate 
that individuals in P1 (28.6%) feel more need to gain pedagogical content knowledge than those in P2 (16.3%) 
or P3 (16.7%), and that many of P2 (41.1%) sees little to no need to do so.  
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Table 11. Chi-Square Distribution of Four Sub-variables of Desire to Improve Teaching in Each Latent Profile 
Variables \ Profile P1 (%) P2 (%) P3 (%)    (df) Cramer’s V 

(a) 

1 17(34.7) 108(51.7) 8(66.7) 

10.658*(4) .140  
(moderate)  

2 17(34.7) 69(33.0) 1(8.3) 
3 15(30.6) 32(15.3) 3(25.0) 

Total 49(100) 209(100) 12(100) 

(b) 

1 16(32.7) 86(41.1) 4(33.3) 

4.118 (4) .087  
(weak) 

2 19(38.8) 88(42.1) 6(50.0) 
3 14(28.6) 35(16.7) 2(16.7) 

Total 49(100) 209(100) 12(100) 

(c) 

1 10(20.4) 68(32.5) 7(58.3) 

9.037 (4) .129  
(moderate)  

2 27(55.1) 83(39.7) 2(16.7) 
3 12(24.5) 58(27.8) 3(25.0) 

Total 49(100) 209(100) 12(100) 

(d) 

1 9(18.4) 50(23.9) 8(66.7) 

13.544*(4) .158  

(strong) 
2 27(55.1) 94(45.0) 2(16.7) 
3 13(26.5) 65(31.1) 2(16.7) 

Total 49(100) 209(100) 12(100) 
       

The outcomes of the chi-square test regarding the desire to participate in PD programs to learn more statistics 
content are summarized in row (c). The third cell of the last column shows that the chi-square statistic equals 
9.0374* (not significant at α = .05) with df = 4, and that the effect size, measured by Cramer’s V, is .129 
(moderate). The measures in row (c) indicate that individuals in P3 have less desire to participate in PD 
programs to learn more statistics content knowledge than their counterparts in P1 or P2.   
 
Finally, the outcomes of the chi-square test regarding the desire to participate in PD programs to learn more 
pedagogical content knowledge are summarized in row (d). The fourth cell of the last column shows that the 
chi-square statistic equals 13.544* (significant at α = .05) with df = 4, and that the effect size, measured by 
Cramer’s V, is .158 (strong). The measures in row (d) indicate that individuals in P3 have less desire to 
participate in PD programs to learn more statistics pedagogical content knowledge than their counterparts in P1 
or P2. 
 
 
Discussion 
 
The goals of this study are: (1) to identify distinct groups within the population of college instructors of statistics 
regarding their attitudes toward teaching CIs in their elementary statistics courses and toward using CIs for 
inferential statistics, and (2) to explain the heterogeneity among the distinct groups in terms of a set of teacher 
characteristics. Regarding the first research goal, the latent profile analysis suggested a classification of the 
population of college instructors of statistics into three profiles based on their attitudes toward teaching and 
using confidence intervals. Using the instructors’ responses to the survey items, we were able to describe the 
three profiles as a ―stable-score group,‖ a ―high-score group,‖ and a ―diverse-score group.‖ In addition, under 
the assumption that there are three subgroups, we found four items (Items 2, 3, 4, and 6) for which the most 
significant differences were shown among the three profiles. It is interesting to note that all of these four items 
are from the independent view; that is, the view in which CIs are considered without regard to p-values. A 
possible reason for this is that the in-comparison view may promote dichotomous thinking, as the items in this 
view may encourage the respondent to compare, for example, the benefits of CIs with the benefits of p-values. 
We can reasonably assume that many instructors hold more positive attitudes toward p-values than confidence 
intervals due to greater exposure to and familiarity with inferential statistics that uses p-values, as learners, 
practitioners, and educators. While participants are likely to show various ranges of feelings, beliefs, and 
behaviors regarding confidence intervals, these ranges might be reduced by item statements confined to 
comparison between the use of CIs and the use of p-values. Note also that three of the four items (Items 2, 3, 
and 4) are from the teaching context. This may mean that teachers in different profiles show greater differences 
in the teaching than in the general context. That is, those in the different profiles can be distinguished more by 
their attitudes toward teaching the topic of confidence intervals than by their use of confidence intervals for 
inferential statistics. In addition to the findings related to the first research question, we note a few other 
interesting findings: (1) the scores are low for Items 9 and 11 for all three profiles, and the group differences 
were not significant at the significance level of      ; both of these items are from the in-comparison context 
as opposed to the independent context; (2) on each of 10 out of the 12 items, Profile 2’s scores are significantly 
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higher than the scores on the same items of at least one of the other two profiles based on the F-values; and (3) 
Profile 3 scored significantly higher than Profile 1 on Items 2, 3, 6, 8, 10, and 12, four of which address 
behavior.  
 
Regarding the second research goal, the chi-square tests showed that the profile differences may be explained by 
some of the six biodata variables (i.e., 11 variables with the four subitems of the sixth variable). The results 
indicate that P1 (the stable-score group) in comparison to P2 or P3, has more females, more individuals who 
prefer math, and more who hold terminal degrees, as well as significantly fewer individuals with a statistics 
background, who have less experience in statistics teaching and more motivation to learn content or pedagogical 
content knowledge. P2, in comparison to P1 and P3, has more males and more individuals who have master’s 
degrees, prefer statistics over math, and have more experience in statistics teaching, as well as less motivation to 
learn content or pedagogical content knowledge.  
 
This study has limitations. Although the sample size (n = 268–270) allowed quantitative data analysis for 
statistical inferences, a larger scale study is necessary to arrive at firmer conclusions. Furthermore, the voluntary 
responses in the data collection, and the low response rate (2.67%) constrain the extent to which the findings can 
be generalized. Notwithstanding these limitations, the findings of this study have implications for the teaching 
and learning of elementary statistics at the college level. With the advantages that confidence intervals (CIs) 
provide in inferential statistics, scholars of alternative statistical methods encourage wider use of CIs to the 
research community of social sciences (Cumming & Finch, 2001) and suggest rules of understanding CIs as an 
alternative statistical method to use in inferential statistics (Cuming & Finch, 2005). If such recommendations to 
use CIs to a wider extent are to be successfully implemented in the research community, it will be important for 
college instructors of statistics to be familiar with the concept of CIs, the use of CIs, and the teaching of the 
topic. Therefore, CIs should be considered as essential as p-values as a part of inferential statistics at the college 
level of elementary statistics (Fidler and Cumming, 2005). The authors of this paper conducted the study that 
has taken one of the first steps in this direction, by identifying different types of instructors in its three profiles. 
This profiling allowed us to learn the characteristics of instructor groups that showed differences in the ways 
they develop attitudes toward using and teaching confidence intervals, and to identify the kind of instructor 
group that needs more attention to develop more positive attitudes toward teaching and using CIs. It is hoped 
that the study lays a foundation for future research exploring the origins and factors of ESIs’ attitudes toward 
CIs, the dynamics of how ESIs’ attitudes affect their teaching and pedagogical decision-making, and how the 
challenges in teaching CIs relate to elementary statistics students’ attitudes. 
 

 

References 

 
Aiken, L. R., Jr. (1970). Affective factors in mathematics learning: Comments on a paper by Neale and a plan 

for research. Journal for Research in Mathematics Education, 1(4), 251–255. 
Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.). Upper Saddle River, NJ: Prentice Hall. 
Beyth-Marom, R., Fidler, F., & Cumming, G. (2008). Statistical cognition: Towards evidence-based practice in 

statistics and statistics education. Statistics Education Research Journal, 7(2), 20–39. 
Castro Sotos, A. E., Vanhoof, S., Van den Noortgate, W., & Onghena, P. (2009). How confident are students in 

their misconceptions about hypothesis tests? Journal of Statistics Education, 17(2). 
[Retrieved from: www.amstat.org/publications/jse/v17n2/castrosotos.html] 

Cramer, H. (1946). Mathematical methods of statistics. Princeton, NJ: Princeton University Press. 
Cumming, G., & Finch, S. (2001). A primer on the understanding, use and calculation of confidence intervals 

based on central and noncentral distributions. Educational and Psychological Measurement, 61, 530–
572.  

Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals, and how to read pictures of data. 
American Psychologist, 60, 170–180.  

Estrada, A. (2002). Análisis de las actitudes y conocimientos estadísticos elementales en la formación del 
profesorado [Analysis of attitudes and elementary statistical knowledge in training teachers] 
(Unpublished doctoral dissertation). Universidad Autónoma de Barcelona.  

Fidler, F. (2005). From statistical significance to effect estimation: Statistical reform in psychology, medicine 
and ecology (Unpublished PhD thesis). University of Melbourne.  

Fidler, F., & Loftus, G. R. (2009). Why figures with error bars should replace p values: Some conceptual 
arguments and empirical demonstrations. Zeitschrift für Psychologie/Journal of Psychology, 217(1), 27–
37. 



International Journal on Social and Education Sciences (IJonSES) 

55 

Gal, I., & Ginsburg, L. (1994). The role of beliefs and attitudes in learning statistics: Towards an assessment 
framework. Journal of Statistics Education, 2(2). [Retrieved from 
http://www.amstat.org/publications/jse/v2n2/gal.html] 

Geiser, C. (2012). Data analysis with Mplus. New York: Guilford Press.  
Gelman, A. (2013). P values and statistical practice. Epidemiology, 24(1), 69–72. 
Gómez-Chacón, I. (2000). Affective influences in the knowledge of mathematics. Educational Studies in 

Mathematics, 43(2), 149–168. 
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. 

Biometrika, 61(2), 215–231. 
Haynes, S. N., Richard, D., & Kubany, E. S. (1995). Content validity in psychological assessment: A functional 

approach to concepts and methods. Psychological Assessment, 7(3), 238–247. 
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E. J. (2014). Robust misinterpretation of 

confidence intervals. Psychonomic Bulletin & Review, 21(5), 1157–1164. 
Hubbard, R., & Lindsay, R. M. (2008). Why p values are not a useful measure of evidence in statistical 

significance testing. Theory & Psychology, 18(1), 69–88. 
Kim, H., Wang, X., Lee, B., & Castillo, A. (2017). College instructors’ attitudes toward statistics. In A. 

Chronaki (Ed.), Proceedings of the Ninth International Mathematics Education and Society Conference 
(Vol. 2, pp. 611–621). Volos, Greece: University of Thessaly. 

Kim, H., Wilson, A. T., & Ko, H. (2018). College instructors’ attitudes toward confidence intervals. In M. A. 
Sorto, A. White, & L. Guyot (Eds.), Looking back, looking forward. Proceedings of ICOTS 10, Kyoto, 
Japan. Voorburg, The Netherlands: International Statistical Institute. 

Kalinowski, P. (2010). Identifying misconceptions about confidence intervals. In C. Reading (Ed.), Data and 
context in statistics education: Towards an evidence-based society. Proceedings of ICOTS8, Ljubljana, 
Slovenia. Voorburg, The Netherlands: International Statistical Institute. 

Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behavioral research. 
Washington, DC: American Psychological Association. 

Lindley, D. V. (1999). Comment on Bayarri and Berger. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. 
M. Smith (Eds.), Bayesian statistics (Vol. 6, p. 75). Oxford, UK: Clarendon. 

Marden, J. I. (2000). Hypothesis testing: From p values to Bayes factors. Journal of the American Statistical 
Association, 95, 1316–1320. 

Martins, J. A., Nascimento, M. M. S., & Estrada, A. (2012). Looking back over their shoulders: A qualitative 
analysis of Portuguese teachers’ attitudes towards statistics. Statistics Education Research Journal, 
11(2), 26–44. 

McLachlan, G., & Peel, D. (2000). Finite mixture models. New York, NY: John Wiley. 
Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén. 
Nelder, J. A. (1999). From statistics to statistical science. Journal of the Royal Statistical Society: Series D (The 

Statistician), 48(2), 257-269. 
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class 

analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: 
A Multidisciplinary Journal, 14(4), 535–569. 

Olson, J. M., & Zanna, M. P. (1993). Attitude and attitude change. Annual Review of Psychology, 44, 117–154. 
Ramaswamy, V., DeSarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling approach 

for estimating marketing mix elasticities with PIMS data. 12(1), 103–124. 
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Dordrecht, The 

Netherlands: D. Reidel. 
Schmidt, F. L., & Hunter, J. E. (1997). Eight common but false objections to the discontinuation of significance 

testing in the analysis of research data. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if 
there were no significance tests? (pp. 37–64). Hillsdale, NJ: Erlbaum.  

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. 
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. 

Psychometrika, 52(3), 333–343. 
Tein, J. Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent 

profile analysis. Structural Equation Modeling, 20(4), 640-657. 
Wynd, C. A., Schmidt, B., & Schaefer, M. A. (2003). Two quantitative approaches for estimating content 

validity. Western Journal of Nursing Research, 25(5), 508–518. 
 
 



International Journal on Social and Education Sciences (IJonSES) 

56 

Appendix. Survey Items in Part II 
 

1. I like reading newspaper or scholarly articles that used CIs for making statistical inferences.  
2. I rarely explain CIs in my classes as a statistical tool for making decisions about data. 
3. I feel uncomfortable teaching the underlying concept of CIs. 
4. CIs should be discussed as a method for making statistical inferences in an introductory statistics 

course curriculum.    
5. CIs provide detailed information on how inferential conclusions are reached from data. 
6. I rarely approach inferential statistics using CIs. 
7. It is important to convince students that CIs are as valid a tool as p-values for statistical inference. 
8. I find decisions about data less clear when they rely on CIs as opposed to p-values. 
9. I feel more comfortable teaching CIs than p-values. 
10. In introductory statistics classes, I emphasize CIs as a tool for inferential statistics as much as p-value 

methods.  
11. I tend to treat statistical inference problems in terms of CIs. 
12. CIs provide less evidence for making statistical inferences than the p-value methods. 

 


