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Abstract 

We argue that understanding the cognitive foundations of computational thinking will assist educators to 
improve children’s learning in computing. We explain the conceptual relationship between executive functions 
and aspects of computational thinking. We present initial empirical data from 23 eleven year old learners which 
investigates the correlation between assessments of programming and debugging in the visual language Scratch 
and scores from the BRIEF2 assessment of executive functions. The initial data shows moderate to large 
correlations between assessments of debugging and programming with the BRIEF2 teachers’ rating of executive 
function as manifested in classroom behaviour. Case studies from the empirical data are used to qualitatively 
illustrate how executive functions relate to a game making task. We discuss the implications of these findings for 
educators, and present suggestions for future work. 
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1. Introduction 

The recent Royal Society report on computing education in UK schools reviewed the landscape after major 
curricular reform in which computing lessons became a requirement for learners aged 5 and older in England and 
Wales (Royal Society, 2017). While it welcomes the changes (which it was partly responsible for instigating) and 
notes that there are pockets of excellence, it identifies that computing education is still “patchy and fragile” 
(Royal Society, 2017, p. 6). The report demonstrates the curriculum changes are not enough; they must be 
supported by high quality teacher education and computing education research. It proposes that a research 
agenda in the UK should focus on the questions: “What is the most effective, best-evidenced curriculum 
framework for computing? …Which specific instructional techniques and teaching strategies are most effective 
for raising attainment in computing?”(Royal Society, 2017, p. 95). These are also open questions within the 
international research community. In order to answer these questions, however, we need to further develop our 
understanding of the cognitive and psychological skills which underpin different aspects of computational 
thinking, and how these develop throughout childhood. This paper focuses on the potential link between 
computational thinking and underlying executive functions. 
Much work has been done on defining computational thinking (also referred to as CT) and its component skills. 
In this paper, we use the Royal Society’s clear and succinct definition of computational thinking: “ the process of 
recognising aspects of computation in the world that surrounds us, and applying tools and techniques from 
Computer Science to understand and reason about both natural and artificial systems and processes” (The Royal 
Society, 2012, p. 12). A review of computational thinking research identified the following core computational 
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thinking elements: abstractions and pattern generalizations (including models and simulations); systematic 
processing of information; symbol systems and representations; algorithmic notions of flow of control; 
structured problem decomposition (modularizing); iterative, recursive, and parallel thinking; conditional logic; 
efficiency and performance constraints ; debugging and systematic error detection (Grover & Pea, 2013). In 
addition, “programming is not only a fundamental skill of CS and a key tool for supporting the cognitive tasks 
involved in CT but a demonstration of computational competencies as well.” (Grover & Pea, 2013, p. 40) 
There has been debate about the extent to which computational thinking can be distinguished from the other sorts 
of thinking which children learn at school. Although historically some doubt has been cast on the nature of the 
relationship between programming and problem solving (Palumbo, 1990), recent evidence synthesis reveals that 
learning to program can improve scores on other measures of problem solving. A meta-analysis of studies which 
explore the transfer of programming skills to general problem solving found an overall transfer effect of g =0.49, 
with a transfer to mathematical reasoning of g=0.57 (Scherer, Siddiq, & Sanches Viveros, 2018). It is also likely 
that programming and other computational thinking abilities are enabled by well-researched lower level 
psychological processes. Grover and Pea make the case that while there might be overlap between computational 
thinking and other STEM problem solving approaches, it was recognisably and crucially absent from previous 
curricula (Grover & Pea, 2013). Recent empirical work supports this; while computational thinking is predicted 
by other cognitive abilities, it appears to some extent to be an independent construct. In a study of 1251 Spanish 
school students, Román-González and colleagues investigated the relationship between computational thinking 
(as measured by their CTt instrument) and other cognitive abilities as measured by the Primary Mental Ability 
and RP301  Resolucion-de-Problemas problem solving standardised psychological tests (Román-González, 
Pérez-González, & Jiménez-Fernández, 2017). They found a high correlation (r=0.67) between general problem 
solving ability and computational thinking scores. In a regression model, spatial ability and logical reasoning as 
measured by RP30 problem solving tasks were significant predictors of the CTt scores, explaining 27% of the 
variance. The authors interpret the high proportion of unexplained variance to suggest a “certain independence of 
CT as a psychological construct, distinct from the traditional aptitudes” (Román-González et al., 2017, p. 9). 
They recommend that further research should relate computational thinking with other cognitive abilities 
including working memory and other executive functions (also referred to as EF).  
This paper pursues this line of research by exploring the relationship between two important aspects of 
computational thinking (programming and debugging) and executive functions. It begins with an explanation of 
executive functions, the role they play in academic success, and the reasons why they are likely to be related to 
computational thinking. This is followed by an account of how executive functions (as measured by the Behavior 
Rating Inventory of Executive Functioning-2 (BRIEF2) instrument) may map to creative programming and 
debugging. Having made the case that specific EF skills are likely to underpin these aspects of computational 
thinking, the paper then reports on an empirical study to investigate this issue. Data on 23 eleven year-old 
learners’ creative programming and debugging performance, and EF abilities was gathered. Results of a 
correlation analysis do indeed support the case that EFs are related to computational thinking. Case studies from 
the empirical data are used to qualitatively illustrate how executive functions relate to a game making task. The 
paper concludes with some recommendations for practitioners about how this might affect classroom decision 
making, and suggestions of future research work.  
 
2. Literature Review 

2.1 Executive Functions and the Link to Computational Thinking 
Executive functions (EF) is an umbrella term for higher order cognitive functions linked with the frontal lobes of 
the human brain (Aron, Robbins, & Poldrack, 2004) and include abilities such as inhibiting impulsive responses, 
the ability to hold and simultaneously manipulate information in mind (known as working memory), attention 
shifting (or cognitive flexibility), planning and risk taking (Diamond, 2013; Miyake et al., 2000). EF serve as 
general purpose control mechanisms that help modulate human cognition (Miyake et al., 2000), underpin 
self-control (Denckla, 1996; Pennington & Ozonoff, 1996) and are commonly implicated in problem-solving or 
goal-directed-behaviour (Luria, 1966). These functions mature at different rates through childhood and into 
adolescence (Dolan & Molen, 2006).  
Executive functioning and educational attainment in the primary school age-range has also been linked with 
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metacognition (MC) (Bryce, Whitebread, & Szűcs, 2015), with some studies reporting a link between MC and 
problem solving in computer science learning specifically (Allsop, 2019; Parham, Gugerty, & Stevenson, 2010). 
Parham and colleagues’ analysis of a think-aloud study with eleven college-level programmers indicates that the 
meta-cognitive strategies of checking/comparing code and stating/revisiting goals were commonly used mental 
processes. In a study of a class of 11 year learners, Allsop noted the use of metacognitive practices to control and 
regulate programming activities including planning, monitoring and evaluation (Allsop, 2019). Whilst related 
constructs in children’s thought and action (Lyons & Zelazo, 2011), EF and metacognition have been based in 
different research and theoretical traditions in the psychological literature (Roebers, 2017a). In this study, for the 
sake of clarity, we have chosen to focus on EF. 
We believe that the link between EF and CT is worth exploring for two reasons: 1) EF is a predictor of academic 
success in general, including in the development of mathematical skills and science learning (Cragg & Gilmore, 
2014) so it is reasonable to assume that they are also required in CT; and 2) conceptual analysis of the processes 
involved in programming and debugging predict that cognitive regulation aspects of EF are required. However, 
further empirical evidence of the relationship is required; this paper makes an initial contribution by providing 
the results of an exploratory study in a primary school classroom. 
Programming and debugging are not the only components of computational thinking; it is likely that EFs are also 
implicated in other aspects. We have chosen to start with these components because they are commonly taught in 
classrooms in the UK and other countries internationally, and there are extensive online teaching materials to 
support them. Other aspects of computational thinking should be the subject of future research.  
 
2.2 EF as a Predictor of Academic Success 
Executive functions are implicated in a wide range of areas of academic learning and attainment. For example, in 
reading (Altemeier, Abbott, & Berninger, 2008), maths (Gilmore et al., 2013) and science (St Clair-Thompson & 
Gathercole, 2006). They are also predictive of school achievement more generally (Bull & Scerif, 2010; McLean 
& Hitch, 1999; St Clair-Thompson & Gathercole, 2006; Titz & Karbach, 2014) as well as university 
achievement (Knouse, Feldman, & Blevins, 2014), and job success (Daly, Delaney, Egan, & Baumeister, 2015). 
Some interpret these findings to suggest a domain-general relationship between EF and school attainment (Best, 
Miller, & Naglieri, 2011), a growing number of studies highlight a particularly important role for EF in relation 
to learning in STEM subjects (St Clair-Thompson & Gathercole, 2006; Van der Ven, Kroesbergen, Boom, & 
Leseman, 2012), although to our knowledge, no previous studies have considered the relationship between EF 
and CT. 
Neuroscience and education research indicates that executive skills play a critical role in developing 
mathematical proficiency, particularly updating and manipulating working memory, inhibition and shifting 
(Cragg & Gilmore, 2014). Given Weintrop and colleagues’ detailed argument exploring the reciprocal 
relationship between computational thinking and maths and science learning (Weintrop et al., 2016), and the 
meta-analysis results which indicate programming improves mathematical test scores (Scherer et al., 2018), there 
is good reason to investigate the relationship between computational thinking and executive skills. The executive 
skills which support the development of maths proficiency are also likely to play a role in developing 
computational thinking. Indeed, empirical evidence from design based research with middle school children 
confirms that the outcomes of a course in computational thinking were predicted by maths performance ( Grover, 
Pea, & Cooper, 2015). 
 
2.3 Conceptual Analysis Of Efs Involved In Programming and Debugging 
2.3.1  Why Efs Are Required For Creative Programming Tasks 
The playful constructionist approach advocated by the Scratch creators, based on Papert’s intellectual legacy, 
encourages creativity and self-directed exploration. Following the footsteps of Logo, Scratch was designed as a 
constructionist environment to support a spiral of creativity, in which learners “imagine what they want to do, 
create a project based on their ideas, play with their creations, share their ideas and creations with others, and 
reflect on their experiences—all of which leads them to imagine new ideas and new projects”(Resnick, 2007, p. 
18) . Brennan and Resnick describe design in the creative programming context as “an adaptive process, one in 
which the plan might change in response to approaching the solution in small steps”. They describe a process of 
“iterative cycles of imagining and building, developing a little bit, trying it out then developing further, based on 
their experiences and new ideas.”(Brennan & Resnick, 2012, p. 7).  
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The merits of pure discovery learning (for example in Papert’s constructionist work with Logo) have been 
questioned (Mayer, 2004). Previous researchers have argued that “learners often struggle with algorithmic 
concepts, especially if they are left to tinker in programming environments, or if they are not taught these 
concepts using appropriately supportive pedagogies.” (Grover et al., 2015, p. 205). That is, unstructured 
programming tasks by themselves may not improve computational thinking. Grover et al. recommend minimally 
guided discovery learning for computational thinking courses for middle school learners (Grover et al., 2015), 
including approaches such as scaffolding, cognitive apprenticeships, code reading and tracing, and modelling the 
process of decomposition. They aim to enable children to build on computational concepts which they have been 
taught, in a way which fosters creativity and ownership. 
The complexity of creative programming tasks can greatly challenge novices. The individual computational 
thinking skills can be difficult to acquire in themselves, but the higher order executive function skills place 
additional load on the learner, particularly in terms of planning and self-monitoring. The learner must decide 
what to make, how to make it and be able to monitor her own progress in reaching her goals. Depending on the 
stage of the learner, it may be the case that the requisite planning and monitoring executive functions are still 
developing. In addition, the task places a load on working memory because the programmer must hold in mind 
the end goal, and steps needed to achieve the goal. Inhibition is also required to avoid distractions from the goal. 
Papert (Papert, 1991) and later Resnick and Brennan (Brennan & Resnick, 2012) favour a less top down 
approach to planning in which the programmer is: “guided by the work as it proceeds rather than staying with the 
pre-established plan” (Papert, 1991, p. 3). A learner working in this way would still task-monitor periodically to 
evaluate whether the current code produces a desirable output, and if not, decide what changes are needed and 
map out the sub-steps to get from the current state to the desired state. While open ended creative tasks can be 
fun when appropriately challenging, it may be overwhelming and frustrating for some learners unless they are 
adequately supported. For learners with developing EF skills, it may be difficult – and demoralising – to engage 
with such tasks. With appropriate support with planning and monitoring, however, working on motivating 
programming tasks may be one approach to EF skills development. It is possible that the requisite EF and 
programming skills can be further developed alongside each other in creative projects, if the learner has 
previously had support to develop both programming skills and planning and monitoring skills in other contexts. 
 
2.4  Why EFs Are Required For Debugging Tasks 
Resnick and Brennan describe computational practices relating to solving and anticipating problems. An 
interviewee described her debugging activities as “identify the source of the problem, read through the scripts, 
experiment with scripts, try writing scripts again, find example scripts that work, tell or ask someone else, take a 
break…” (Brennan & Resnick, 2012, p. 7). Rich and colleagues present a helpful literature syntheis and learning 
trajectory of debugging for children (Rich, Andrew Binkowski, Strickland, & Franklin, 2019). They identify 
strategies documented in the literature for finding and fixing errors including: hypothesising and testing theories 
about the cause of a problem, and deciding how to change a program when it does not produce the intended 
results. These behaviours are likely to rely on underpinning executive function capacities such as working 
memory and cognitive flexibility (“the ability to shift between response sets, learn from mistakes, devise 
alternative strategies, divide attention, and process multiple sources of information concurrently” (Anderson, 
2002, p. 74)).  Rich et al. observe that emotional regulation and the ability to preserve in the face of failure is a 
requirement for successful debugging; emotional regulation is an aspect of executive function which is assessed 
by the emotional control subscale within the BRIEF2 instrument which we used in this study. In addition, Rich 
and colleagues note that at the end of the learning trajectory, learners become aware that debugging techniques 
can be chosen strategically. The ability to evaluate and slect the best strategy for a task requires well developed 
executive function capacities (Roebers, 2017b). 
In order to systematically detect errors in code, the learner must have the ability to understand the decription of 
the incorrect program behaviour and why it is different from the required behaviour, and be able to develop and 
follow a plan of detecting, fixing and testing which places high demands on working memory, as well as the 
ability to switch between tasks and switch back and forth between different representations. This last point is 
particularly salient in a visual language like Scratch where the user must look at the visual behaviour of a sprite 
on screen, compare it to a mental representation of what the ideal behavior would look like, and then switch to a 
different visual representation of code blocks in order to fix the problem.  
The programmer must think of possible reasons why the program is not working, prioritise which is most likely 
to begin with, pinpoint where the error would occur in the code, identify whether it is actually present in the code 
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and if so, fix it. If that particular error was not present, or if it was present but fixing it did not result in the target 
code behaviour, the programmer must move on to consider another possible reason for the flaw. Beginner 
programmers are disadvantaged because they do not have the experience to quickly identify or prioritise possible 
errors. From this point of view, the debugging exercises used in this study were designed to start with examples 
where the learner need only solve one bug at a time and progress to finding and correcting multiple bugs. 
 
3. A Classroom Study 

We conducted an initial study with a class of 11 year old children to begin the process of testing the theorised 
link between EF and CT with empirical data. The aims of the study were to quantiatively explore the relationship 
between EF and CT, specifically: the overall relationship between creative programming and debugging with 
aspects of executive function, as measured by BRIEF2. A further goal for this study was to use case studies from 
the empirical data to qualitatively illustrate the relationship between EF and CT. 
 
3.1 Participants 
This study involved twenty-five children (16 boys, 9 girls) aged 11-12 years from the same Primary 7 class at a 
Scottish Primary School. All children had experience of programming using Scratch as part of their computing 
curriculum work. The group were recruited by their class teacher and received written information sheets and 
consent forms (in age appropriate language) two weeks before the study to be read, signed, and returned before 
they could take part in the sessions. The ethical procedures were approved by the [blank for review] ethics 
committee. Of the twenty-five children who gave their consent to be part of the study, we were able to collect 
data on all EF/CT measures for twenty-three.  
 
3.2 Data Collection  
The following data was collected in this study. 
Executive functions  
The Behavioural Rating Inventory of Executive Function (BRIEF2) is a rating scale used to assess everyday 
behaviours associated with executive functions at home and school. It is considered to be an ecologically valid 
method of assessing the extent to which individuals are able to successfully pursue their own goals in complex 
every-day problem solving tasks (Toplak, West, & Stanovich, 2013) . It is used for clinical assessment of 
children for whom there may be concerns about self- regulation (e.g those with autistic spectrum disorders, 
attention disorders, depression and other conditions). The BRIEF2 is a questionnaire completed by teachers 
about individuals’ behaviour and emotional regulation, aspects of EF which are also important for classroom 
learning. A recent review of BRIEF2 considered it to be a theoretically and psychometrically sound measure of 
executive functioning for children and adolescents (Dodzik, 2017), with internal consistency for the teachers 
form in the range of alpha coefficient =0.88 to 0.98, and a test/re-test reliability of 0.82. 
In this study, the BRIEF2 teacher rating scale is used to assess behaviours which might impact on typically 
developing children’s ability to complete complex creative programming and debugging tasks. BRIEF2 has three 
indices: behavioural regulation (consisting of inhibit and self-monitor scales), emotion regulation (consisting of 
shift and emotional control scales) and cognitive regulation (consisting of initiate, working memory, 
plan/organise, task-monitor, and organisation of materials scales).  
The class teacher filled in a 63 item scale for each pupil, indicating whether the statement is true of the child 
never (scored as 1), sometimes (scored as 2), or often (scored as 3). The raw score was then converted to a 
T-score which is normalised for age and gender according to. T-scores range between 36 and 90 for 11-13 year 
old girls and between 37 and 88 for 11-13 year old boys (Gioia, Isquith, Guy, & Kenworthy, 2015). Higher 
scores indicate higher level of difficulty in a specific domain of executive function. The Global Executive 
Composite score is reported here as it is considered as a useful summary measure.  
Creative programming task: We used an automatic assessment of aspects of computational thinking as 
manifested in the source code of a Scratch program collected from the participants (flow control, data 
representation, abstraction, user interaction, synchronisation, parallelism and logic). The code was analysed 
using Dr Scratch, software which performs static analysis of Scratch source code (Moreno-León & Robles, 
2015). Assessment from Dr Scratch has shown to be consistent with other software metrics of code complexity 
(Moreno-Leon, Robles, & Roman-Gonzalez, 2016) and correlate strongly with the assessments of expert human 
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evaluators (r=0.82) (Moreno-León, Harteveld, Román-González, & Robles, 2017). Overall scores range between 
0 and 21, with higher scores indicating higher proficiency.  
Debugging task: A set of 7 custom Scratch debugging tasks were developed by the authors, based on the Debug 
It! Exercises available on Scratch Studio 1. The seven exercises required debugging examples involving 
conditionals, fixed loop, variables, conditional loop, parallelism (simple problems), and two integrated examples 
which brought together several of these concepts (complex problems). Participants were given a specification of 
what an example Scratch program should do, a description of the buggy behaviour of the code when it runs, and 
the code itself. They were then asked to locate and fix the error. Each simple problem was scored with 2 points 
for a complete solution, and one point for a partial solution (where a clue had been given), while the two 
complex problems which had a maximum score of 6 points because there were multiple bugs. The maximum 
overall score was 22, with higher scores indicating higher proficiency. The tasks were scored by the first and 
second authors; discrepancies in the scores were resolved through discussion. 
 
3.3 Procedure 
Data collection sessions were undertaken by the second author and a research assistant at the Primary School. 
These staff members both had up-to-date certification to work with children. 
 
3.3.1  Scratch Creative Programming Session 
The creative programming sessions were hosted in the children’s classroom using school Windows laptops and 
facilitated by the second author. He first explained to the children that they were being asked to use Scratch 
online to individually create a program of their choosing within a 60-minute time limit and gave the children an 
opportunity to ask questions about the exercise. The children had a written document of a description of the task 
and instructions to refer to and could ask for clarification and assistance if required. 
 
3.3.2  Scratch Program Debugging Session 
The debugging session was again facilitated by the second author but the research assistant was also present to 
help support the children. The session began with the second author explaining to the children that they were 
being asked to fix a series of 7 broken Scratch programs within a 60-minute time limit. The children were asked 
to work alone without discussion. 
The children were given a worksheet with a description of each problem, stating what the program should ideally 
look like (the specification) and the problems with the current version of the program (see supplementary 
materials). The children also had access to videos of the ideal of each program and the problematic version. 
 
4. Results 

4.1 Descriptive Statistics 
The descriptive statistics indicate that this class of children had room for improvement in debugging (with an 
average just slightly over half marks) and creative programming (with a mean under half marks). Note that the 
number of participants N varies due to student absences on different data collection days. 
 
Table 1. Descriptive Statistics for Overall Measures 

 N Mean Standard deviation 

Debugging score 22 7.5 4.13 
Creative programming score 23 9.35 4.53 
BRIEF2 T-score 25 51.12 15.55 
 

 
1 https://scratch.mit.edu/projects/10437439/ 
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The pearson correlation between the Creative Programming task score and the Debugging score is r=0.6 (95% 
CI 0.26, 0.82]). This can be interpreted as a large correlation between these two measurements of computational 
thinking (Cohen, 1992).  
 
4.2 Findings 
As shown in Table 3, programs which have higher Dr Scratch scores are produced by children who have lower 
BRIEF2 scores (i.e. those who have more mature executive functioning): BRIEF2 scores explain 60% of the 
variance in Dr Scratch scores. Similarly, learners with a greater level of debugging skills have better developed 
EF skills, explaining 40% of the variance in debugging scores. Focusing on how the Scratch score relates to the 
BRIEF2 sub-scales, the Behaviour Regulation Index (BRI) correlates with r=-0.69, the Emotional Regulation 
Index (ERI) correlates with r=-0.57, and the Cognitive Regulation Index (CRI) correlates with r = -0.55. Given 
that the BRI seems to have the strongest relationship with the Scratch score, it was worth examining the 
relationship of the further subscales within it: the Inhibit subscale is r=-0.7, and the Self-monitor subscale is 
r=-0.67. The definition of Inhibit from the BRIEF2 manual is “the inhibit scale assesses inhibitory control (i.e. 
the ability to inhibit, resist, or not act on impulse), including the ability to stop one’s behaviour at the appropriate 
time.” (Dodzik, 2017, p. 33). The definition of Self-monitor is “the self-monitor scale assesses awareness of the 
impact of one’s own behaviour on other people and outcomes”. It includes “awareness of one’s own 
effectiveness in problem solving and the ability to monitor important outcomes” (Dodzik, 2017, p. 34). 
 
Table 2. Relationships between Measures of CT and “Reflective” Aspects of EF 

Measures 
Pearson 

correlation r 
95% CI 

Creative Programming total and BRIEF2 global composite -0.6 [-0.8, -0.25] 
Debugging total and BRIEF2 global composite -0.4 [-0.70, -0.02] 
Creative Programming and BRIEF2 behavioural regulation index (BRI) -0.69 [-0.86, -0.40] 
Creative Programming and BRIEF2 emotional regulation index (ERI) -0.56 [-0.79, -0.19] 
Creative Programming and BRIEF2 cogntivie regulation index (CRI) -0.55 [-0.79,-0.18] 
Creative Programming and BRIEF2 BRI Inhibit 0.7 [-0.86, -0.40] 
Creative Programming and BRIEF2 BRI self-monitor -0.67 [-0.85, -0.36] 

 
4.3 Qualitative Illustrations of How EF Relates to Programming Tasks 
It is instructive to examine the games produced by learners with different EF profiles in order to identify sorts of 
help which teachers could provide when supporting similar tasks in the future (see Table 3 for a summary of 
their numerical scores). 
 

Table 3. Summary of Case Study Learners’ Scores 
Participant 

number 

Sex Age BRIEF2 Total score Creative programming 

score  

Debugging score 

P18 M 11 164 1 7 
P9 M 11 160 N/A1  N/A 
P5 M 11 83 0 3 
P1 F 12 69 14 12 
P11 F 11 63 8 5 
P17 F 11 62 12 10 

 
1 Scratch analyser crashes when this program is run; no score is output.  
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P18 is an eleven year old boy with one of the highest Behavioural Regulation Index scores in the class, scoring 
highly on both the inhibit and self-monitor scales indicating serious issues with these areas of functioning. 
Indeed, P18 has extremely elevated EF profiles across all BRIEF2 subscales. This learner’s Scratch file has no 
code. It is hand-drawn stick man sprite and some vertical black lines on a backdrop. It is possible that the black 
lines were intended to form a maze like some of the other children’s. The game does not convey personal 
interests or show exploratory behaviour within the tool like some of the other games with very little functionality. 
This learner has an elevated score in Initiate, suggesting that he finds it difficult to get started on a task. P18 
scored 7 out of 21 on the debugging test, which illustrates that he has some basic understanding of Scratch 
constructs but he was unable to put them into practice. He was unable to marshall his efforts to produce a plan 
for a meaningful program in an open ended creative task. This learner would benefit from being given a specific 
task which would consolidate his knowledge of the Scratch concepts which he has been taught. 

 
Figure 1. A Screen Shot of P18's Game 

 
Figure 2 shows a screen shot of P9’s game. P9 is also an eleven year old boy with an elevated EF score across all 
the subscales and was joint with P18 in having a particularly high score for the self-monitoring scale again, 
indicating difficulties across numerous areas of EF. In this game, there a multiple copies of each sprite with the 
same code copied between sprites. When the code runs, the sprites rapidly rotate and make a noise. The overall 
effect is strikingly colourful and overwhelming. There is quite a lot of code, but it is repeated sequences of 
animation instructions and loops which do not serve a clear purpose. There are multiple unnecessary nested loop 
constructs which suggest that the learner does not understand that only one forever block would have caused the 
cat sprite to repeatedly miaow. The learner does not appear to have been following a plan to create a particular 
interactive program, but rather gives the impression of exploring the Scratch interface to produce an entertaining 
visual result. He was absent on the day of the debugging session so there is no additional information about his 
Scratch knowledge. While children often find it fun to experiment with visual effects in Scratch when they 
initially encounter it, this learner would benefit from support in developing a specific goal and identifying how 
this could be accomplished in Scratch.  
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Figure 2. A Screenshot of P9's Game 

 
As an example of a child who did have a plan but who did not write any code, P5 made a backdrop which reads 
“in this game you have to get your green ball to the yellow ball and you will progress to the next round”. This is 
a plan for a potentially entertaining game, but it has not been implemented at all, with no sprites representing 
either colour of ball. His debugging score of 8 suggests that he understands how Scratch concepts work although 
he did not use them in his own game. P5 is in the 59% percentile for his overall EF score, but he has an 
extremely elevated score for Inhibit which indicates that in general he is distractable and may be diverted from 
executing plans. 
In the case of P1, a twelve year old girl, there is an indication that she thought of a plan but did not prioritise 
finishing the subtasks which were essential for the user to play the game. According to the instructions for the 
user, the purpose is to jump up and collect apples from a tree. The event handling code to implement this is not 
present, although the learner spent time creating scene changes to transfer from a bedroom to an orchard and 
back. P1 has a mid-range EF score in general, but it is elevated for the Shift subscale. Shift includes the ability to 
switch or alternate attention and change focus from one topic to another. Here, the learner may have failed to 
switch attention to the apple gathering mechanic in time to complete the game. The game would have been more 
successful if the learner had some support in identifying which aspects were essential to get a working prototype 
of the game completed. 
P11 (an eleven year old girl) has developed a plan for her game although her knowledge of Scratch appears to be 
insufficient to put it fully into practice. P11 has low scores for EF, benchmarked in the 26th percentile for a girl 
of her age according to the BRIEF2 manual indicating no substantive difficulties with EF in comparison to peers. 
In the game, there are clear instructions which tell the user to hunt for the apple in each scene. There are multiple 
scenes, and multiple sprites for decoration. Code is copied across sprites but is not relevant to them. The code 
does not work because when the user clicks on the apple it switches to only one other room. There is also 
redundant code with “if” statements which will never execute. Her debugging score of 5 also suggests that her 
knowledge of Scratch concepts could be improved. In this case, the learner could progress with some support in 
learning conditional language constructs to help her achieve her initial plan.  
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Figure 3. A Screen Shot of P11's Game 
 
Like many of the children, P17 (an eleven year old girl) made a maze game (see Figure 4) but it is unusually well 
executed. P17 has low EF scores indicating no difficulties in EF (in the 23rd percentile) and her debugging score 
of 8 indicates that she has some working knowledge of Scratch constructs. The maze game has several levels of 
progressing difficulty implemented, indicating some advance planning of the maze features. The code is concise 
and elegant in comparison to that of her peers, using broadcast to generically level up. A step forwards for this 
learner might be to try implementing more complex game mechanics such as a scoring mechanism which would 
require additional computational thinking skills. 

 

Figure 4. A Screen Shot of P17's Game 
 

5. Discussion and Future Research 

Initial empirical results suggest that there is a relationship between EF and both creative programming and 
debugging. This is consistent with the recent finding that computational thinking assessments correlate with 
general cognitive abilities (r= 0.67) (Román-González et al., 2017). We do not interpret this to mean that CT is 
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just “ordinary” problem solving and that the current worldwide emphasis on developing CT is mistaken. Rather, 
we see it is one step further in establishing the nomological net (Román-González et al., 2017) which links CT to 
other cognitive variables. 
The case studies give an indication of how programming skills and executive functions are both required for 
learners to be successful in open ended creative programing tasks. Our study suggests EF is linked with the CT 
abilities of children but metacognition (in terms of self-regulation and self-monitoring) may also contribute to 
the ability of children to engage in CT. Our findings from a standardized test of EF and analysis of the code 
produced by the children along with their debugging performance are complementary to previous evidence about 
children’s metacognition when programming. Allsop’s study in a primary school classroom (in a similar 
educational context and age group) triangulated evidence from semi-structured interviews, learner journals, 
observations as well as completed games to examine the planning, monitoring and evaluation skills used by the 
children (Allsop, 2019). As with our case study learners, Allsop found that debugging required a degree of skill 
in monitoring and evaluation. Interestingly, the learners in her study reported that their methods of planning their 
games (such as sketching) transferred into their ability to plan for other learning domains. Allsop’s methodology 
gives some insight into the children’s thought processes which is beneficial, although in our case the use of 
standardized tests of EF alongside the assessment of programming enabled us to investigate the relationship 
between EF and CT. Future research could further examine the impact of MC in the emerging EF-CT 
relationship.  
An important finding from Allsop’s work is that the children in a natural classroom setting used language as an 
instrument for making decisions, evaluating and regulating activities in conversation with their peers. This 
suggests that attempts to objectively assess individual performance on creative programming and debugging in a 
“test” situation where peer collaboration does not occur may underestimate the children’s capabilities. That is, 
Scratch code and debugging scores from “test” conditions reveal what the learner is capable of without the 
assistance of a more able peer, whereas more naturalist methodologies show what the learner is able to do within 
their zone of proximal adjustment (i.e. the human and artefact resources that are the most appropriate form of 
assistance for a given learner at a particular moment in time (Luckin, 2008)).  
As this was exploratory work, further studies are required to confirm these findings, and establish the direction 
of the effect. This study should be replicated with a larger sample size to establish whether the relationships 
between these variables hold. While the automated assessment of Scratch programs using Dr Scratch is 
convenient, hand analysis of the games suggests that there are discrepancies between the inclusion of a code 
construct and its correct usage. Future versions of Dr Scratch may address such problems such as the inclusion of 
“dead” code which is never used. 
There have been recent calls for improvements in standardised methods for assessing computational thinking 
(Román-González et al., 2017). This study focussed on programming and debugging, by analysing the product of 
these processes (program source code). Future work could use assessments of wider computational thinking 
skills, perhaps using tools such as the CTt (Román-González et al., 2017). We would anticipate that individual 
test items would be shorter and they would require less sustained concentration on a single problem than an 
open-ended programming tasks. 

  
6. Implications for Educators 

The results of this pilot work may be of benefit to classroom teachers who are planning how to support their 
learners during Scratch projects. It would appear that learners who have difficulties with executive functions, 
particularly behavioural regulation (including not being able to successfully self-monitor or inhibit their 
behaviour) could find an open creative task challenging. For such learners, it could be beneficial to introduce a 
variety of support mechanisms for a zone of proximal adjustment (Luckin, 2008). The teacher could introduce 
regular check points where each class member reflects (perhaps with a classmate) on the extent to which they 
have achieved their initial plan. Some learners may need help to come up with a coherent plan in the first place 
(beyond exploring the interface to find serendipitous effects), and could potentially benefit from lessons in 
structuring and prioritising the required steps to achieve an initial game idea. This can be scaffolded through 
activities in which the learners devise a plan to implement a given specification, or are asked to prioritise a list of 
tasks which need to be achieved to make a specified game. 
Other learners in this study appeared to have the executive skills to conceive, execute and monitor a plan but 
lacked the knowledge of programming language constructs to carry it out. A possible remedy for this would be to 
recommend project specifications to learners to develop their current level of Scratch knowledge e.g. a learner 
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who has successfully implemented a maze game could be encouraged to try developing a scoring system for it 
once they have studied a lesson on variables. 
While teachers are skilled in scaffolding tasks according to learners’ stages for other areas of learning, they may 
find it harder to achieve if they are themselves new to programming and have not yet developed an intuition for 
how difficult tasks are to achieve in the target programming language. This emphasises the need for learning 
materials which are clearly graded in terms of computational thinking difficulty. 
If future work was to confirm a strong relationship between EF and aspects of CT, what would be the 
implications? Firstly, it would be useful for those designing curricula and teaching materials for CT, because 
previous empirical results about the developmental trajectory of EF would give some guidance of the stage at 
which it would be appropriate to introduce particular problem solving tasks in CT. Well established empirical 
results about the development of the ability to look ahead when planning, the development working memory and 
shifting could be applied. These could be used to design external representations, software scaffolding or 
pedagogical approaches which would assist learners whose EFs are still developing. 
Secondly, knowledge of how certain types of CT task rely on secure EFs could help teachers to plan tasks which 
are appropriate to their learners. Research into teachers’ knowledge of executive functions in mathematics 
learning illustrates that experienced teachers are aware of the importance of working memory, inhibition and 
shifting from observation during their practice (Gilmore & Cragg, 2014). However, Gilmore and Cragg found 
that it may take some years for this understanding to develop and student teachers may not encounter these 
concepts during their studies. It is therefore important that developers of classroom learning materials think 
carefully about the executive function demands of their programming and debugging activities and indicate 
clearly the stage of learning for which each task is suitable. Plain language indications of the underlying skills 
would also be helpful (such as the statements used in the BRIEF2 tool), as Gilmore and Cragg found that even 
the experienced teachers who understood the concepts were not familiar with the technical terms from the 
psychology literature. An introduction to EF and how it relates to CT could be a useful part of initial teacher 
education programmes. 
Lastly, it is possible that CT activities could be a motivating and engaging way to help learners improve their 
EFs. Because EF is a predictor of life success, academic success and health in later life, interventions which 
successfully improve EF in young learners are very valuable (Diamond, 2012). Attempts to train EFs (such as 
working memory) in isolation have shown limited effectiveness when transferred to improving maths 
proficiency (Titz & Karbach, 2014). More holistic curriculum based interventions have met with more success, 
for example Diamond’s model of the routes to developing EF emphasises the importance of joy; social belonging 
and support; and the building of confidence, pride and self-efficacy (Diamond, 2012). The design goals of the 
Scratch community are strikingly similar (Resnick et al., 2009), with the emphasis on fun, low floor, high ceiling 
and wide walls (as a route to building confidence and pride in achievements), and a large online community for 
sharing and support1. For these reasons, practice during motivating, authentic and appropriately challenging 
computational activities could be a rich environment in which to develop the executive functions which will be 
crucially important to children’s lives.  
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