
1 

The Accessibility of Mathematical Notation 

on the Web and Beyond 

Jason J.G. White * 

Educational Testing Service 

Abstract: This paper serves two purposes. First, it offers an overview of the role of the Mathematical 
Markup Language (MathML) in representing mathematical notation on the Web, and its significance 
for accessibility. To orient the discussion, hypotheses are advanced regarding users’ needs in 
connection with the accessibility of mathematical notation. Second, current developments in the 
evolution of MathML are reviewed, noting their consequences for accessibility, and commenting on 
prospects for future improvement in the concrete experiences of users of assistive technologies. 
Recommendations are advanced for further research and development activities, emphasizing the 
cognitive aspects of user interface design. 

Keywords: accessibility, Mathematical Markup Language, text to speech, braille, user interface
design, Web standards 

*Corresponding Author, Jason J.G. White (jjwhite@ets.org)
Submitted January 21, 2020 
Accepted March 2, 2020 
Published online April 20, 2020



Vol. 23, No. 1 - 2020 ; Journal of Science Education for Students with Disabilities 

2 

SIGNIFICANCE OF THE PROBLEM 

Mathematics is a beautiful and important 
discipline in which profound insight can be 
derived logically from relatively simple, 
foundational principles and definitions. In 
addition, it functions as a central component of 
the natural and social sciences. Thus, 
mathematical knowledge is fundamental to a 
scientific education, and to many scientific or 
technical professions. For this reason, access to 
mathematical content is a necessary element of 
equality of opportunity for people with 
disabilities in scientifically-oriented educational 
programs, and in associated careers. 

The World Wide Web poses risks as well as 
opportunities for enhanced access to 
mathematics. The positive side consists of a 
growing body of mathematically-oriented 
documents and applications, including 
educational materials that are now available 
either on the Web itself or in electronic books, 
some of which are based on Web technologies 
and standards, such as the EPUB publishing 
format. These materials include books, 
mathematical or scientific journals, online 
courses, and application software used for a 
variety of educational and professional purposes. 
By making these resources intrinsically 
accessible, there is great potential to overcome 
limitations often encountered by students with 
disabilities in the conversion of mathematical 
texts into alternative formats, such as embossed 
braille, large print, and recorded audio (Bouck & 
Meyer, 2012). In principle, this access could be 
achieved in a timely manner and in ways that 
meet individuals’ needs, thus approximating true 
equality much more closely than approaches 
based on conversion of print media into 
conventional specialized formats have been able 
to accomplish. Web-based materials are only 

actually accessible, however, to the extent that 
they are designed and implemented appropriately, 
and the required support is available from Web 
browsers, electronic book reading tools, and 
assistive technologies. Thus, for example, 
notation occurring in much of the vast 
mathematical and scientific journal literature that 
is now available in Portable Document Format 
(PDF) is not accessible to users of screen readers, 
in the absence of further innovation in advanced 
document recognition techniques that can 
achieve the required levels of reliability. The 
negative side of the story, then, acknowledges the 
barriers to scientific education and professional 
opportunities created by inadequacies in the 
accessibility of mathematical content appearing 
in Web-based materials. 

The scope of this paper is confined to a single but 
essential aspect of the problem: the accessibility 
of the notation itself. As will become clear in the 
subsequent discussion, this includes effective 
access to the processes of reading, writing and 
manipulating mathematical expressions 
occurring in a wide variety of contexts and 
applications. The accessibility of graphics, 
including diagrams and charts, is not treated here, 
though it is recognized also as indispensable. 
Following a review of central needs of users with 
disabilities for access to mathematical notation, 
the role of MathML is explained. Current 
developments are then discussed, with 
commentary concerning the challenges and 
opportunities that remain. 

ACCESS TO NOTATION: USERS’ NEEDS 

Before reviewing the current state of the 
MathML Web standard and its implementations, 
a valuable perspective can be gained by 
advancing informed hypotheses that identify 
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pertinent needs of users with disabilities in
accessing mathematical content. 

 

For users who are blind, a braille or spoken 
representation of mathematical notation is 
necessary. Standards for the braille encoding vary 
internationally. They include Nemeth Code, 
Unified English Braille, the Marburg mathematics 
code, and French mathematical braille. Although 
the spoken representation has not been subject to 
formal standardization, there are several 
established approaches recognized in the 
literature, notably MathSpeak (Isaacson et 
al., 2010) and, more recently, ClearSpeak 
(Frankel et al., 2016). 

For users with low vision, the mathematical 
notation can be enlarged by applying commonly 
implemented magnification techniques. The 
inclusion of success criterion 1.4.10 in the Web 
Content Accessibility Guidelines (WCAG) 2.1 
standard (World Wide Web Consortium, 2018) 
may, however, lead to greater demand to 
optimize the spatial layout of mathematical 
content automatically to ensure that it is 
wrapped within the view-port, thereby avoiding 
the need for the user to scroll the display 
horizontally to read an entire expression. 

There is suggestive evidence (Lewis et al., 
2010) that a spoken presentation of 
mathematical expressions, with synchronized 
highlighting, can benefit students with 
learning disabilities. Although further 
empirical investigation of the efficacy of 
a spoken presentation and of appropriate 
modes of delivery (e.g., speaking styles) is 
warranted, the potential of speech output 
to enhance mathematical learning beyond 

the population of students who are blind or 
visually impaired whom it has traditionally 
served is noteworthy. 

Working effectively with mathematical notation 
demands more than having the ability to read it. 
One must also be able to ‘do mathematics’—
that is, to understand, manipulate, and write 
symbolic expressions in order to solve a 
mathematical problem or to develop a 
mathematical proof. By analyzing a detailed 
example drawn from elementary algebra, 
Stöger et al., 2004 have argued that for a person 
who is blind and who uses a single-line 
refreshable braille display (i.e., hardware that is 
currently available commercially), 
simplification of a mathematical expression can 
impose considerable demands on working 
memory. In addition, frequent shifting of the 
display is necessary between the given 
expression that is being manipulated, and the 
new expression that is under construction. In the 
strictly serial modality of speech, it is 
reasonable to suppose that the same difficulties 
would emerge to an equal or greater degree than 
in braille. As the authors acknowledge, and as 
remains largely the case today, the development 
of tools to support nonvisual manipulation of 
mathematical expressions has not received 
sustained research attention, unlike efforts to 
enable reading via a spoken or braille 
presentation, or indeed means of navigating the 
logical structure of the notation to enhance 
comprehension.1 However, due to the 
fundamental importance of symbolic 
manipulation in mathematical learning and 
practice, it is clear that the development of well 
researched approaches to facilitating such tasks 
in nonvisual modalities is desirable. In sum, 

1On the latter point, it may be noted that a user interface for interactively reading and navigating the structural
components of spoken mathematical notation was introduced as early as Raman, 1994, together with variable 
substitution as a means of summarizing complex expressions to aid the reader’s understanding. 
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adequate access to mathematical notation 
entails effective means of reading, navigating, 
manipulating, and writing it, in modalities 
suited to the needs of each individual, and 
without creating unnecessary cognitive load. 

REPRESENTING MATHEMATICS 

ON THE WEB 

Overview of MathML 

The Mathematical Markup Language (MathML), 
first standardized by the World Wide Web 
Consortium in 1998 and now in its third major 
version (World Wide Web Consortium, 2014), 
is the established format for representing 
mathematical notation on the Web. Expressions 
written in MathML can be included in Hypertext 
Markup Language (HTML) documents 
directly, for consumption by tools such as 
Web browsers, or in formats based on the 
Extensible Markup Language (XML) that may 
be used by publishers to produce HTML-based 
or typeset material. The MathML standard 
provides for two distinct means of representing 
mathematical expressions—Presentation MathML, 
and Content MathML. Presentation MathML is 
overwhelmingly the more common form used in 
practice. It represents mathematical notation 
suitably for visual rendering, but without 
necessarily preserving its underlying meaning. 
Content MathML, however, represents notation 
as an expression tree in which the mathematical 
meaning is given unambiguously, for example by 
applying operators to operands. The chief 
limitation of Content MathML is that it is 
constrained in the types of mathematical 
subject-matter which it can convey, as 
specifying the meaning of notation used in the 

entire discipline would be infeasible.2 In 
deciding whether to implement Content 
MathML or Presentation MathML in any 
particular application, developers are thus 
confronted with a trade-off between the 
unambiguous semantics of the former, and the 
more comprehensive repertoire of mathematical 
notations that can be represented by the latter. 
In addition to having interesting potential to 
enhance accessibility, as will be noted 
subsequently in this paper, Content MathML is 
also suitable for processing by general-purpose 
software, such as symbolic algebra systems that 
depend on a representation of the underlying 
meaning of mathematical expressions. The 
fragments of code in Figure 1 illustrate the 
contrast between the Presentation MathML and the 
Content MathML representations of the same 
elementary linear equation. 

 

The syntactic verbosity of MathML (evident in 
Figure 1) entails that it is difficult to write or edit 
by hand. Instead, either a graphical, mathematical 
editor may be used, or the MathML may be 
generated via conversion from another format, 
such as the linear textual notation used in the TEX 

 typesetting system.3

Review of Relevant Implementations of 

MathML 

Whereas MathML has been implemented and 
deployed for a variety of purposes, the focus of this 
section lies in those applications which are most 
directly relevant to enhancing access for people 
with disabilities. Historically significant research 
projects intended to improve the accessibility of 
mathematics to people who are blind, some of 
which are based on presentation MathML, have 

2The authors note that ‘[t]he base set of content elements is chosen to be adequate for simple coding of most of the 
formulas used from kindergarten to the end of high school in the United States, and probably beyond through the first two 
years of college, that is up to A-Level or Baccalaureate level in Europe’. (World Wide Web Consortium, 2014, § 4.1.2). 

3Some tools and techniques for creating accessible content in MathML are documented in Michigan State 
University, n.d., 2019. 
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been reviewed elsewhere in the literature 
(Archambault, 2009; Karshmer et al., 2007). For the 
most part, these projects took the form of specialized 
tools for reading and editing mathematical content 
nonvisually. The narrow scope of such software, 
which focused on working with mathematical 
notation, and its separateness from the applications 
and assistive technologies already familiar to 
users, may in part explain its lack of success in 
making the transition from completed research 
projects to widespread use in practice. As 
discussed in a detailed exposition by Soiffer and 
Noble, 2019, developments in recent years have 
taken a somewhat different turn, emphasizing 
the integration of support for reading and 
navigating mathematical notation directly into 
assistive technologies themselves, especially 
screen readers. 

<mrow>

<mi>a</mi> <mi>x</mi> 

<mo>=</mo> <mi>b</mi> 

< / mrow> 

(a) The equation ax = b, given in Presentation

MathML.

<apply> 

<eq/> 

<apply> 

<times/> 

<ci>a</ci>

<ci>x</ci>

</apply> 

<ci>b</ci>

</apply>

(b) The equation ax = b, given in Content MathML.

Figure 1. Contrasting examples of Presentation 
MathML and Content MathML. In the former case, the 
multiplication is implicit in the algebraic expression, 
whereas it is explicit in the latter as an operator 
applied to two arguments. 

Thus, in the popular Microsoft Windows 
environment, both the JAWS for Windows and 

NVDA screen readers enable reading and 
interactive navigation of presentation MathML, 
which may be presented simultaneously in 
spoken form and in Nemeth Code braille via a 
refreshable display. In the case of NVDA, the 
MathPlayer plug-in (Soiffer, 2005, 2009) is 
required, whereas the developers of JAWS chose 
to implement support for MathML independently. 
Likewise, the VoiceOver screen reader in 
Apple’s iOS operating system can render 
presentation MathML in speech or as Nemeth 
Code braille. Spoken rendering is also available 
from the VoiceOver screen reader in Mac OS, 
whereas the braille representation in this 
environment presently falls short of offering 
Nemeth or other mathematical codes. Also 
significant is the implementation of spoken 
rendering and interactive navigation of 
Presentation MathML in the ChromeVox screen 
reader (Sorge et al., 2014), which led to further 
development of the Speech Rule Engine 
originally created for ChromeVox as a stand-
alone software project. 

A notable advance in nonvisual entry and editing 
of mathematical notation occurred with the 
development of an equation editor capable of 
converting Content MathML simultaneously to 
Presentation MathML for visual rendering, and 
to Nemeth Code braille, while also converting 
Nemeth Code entered via the keyboard of a 
refreshable braille display to Content MathML 
(Dooley et al., 2016). Together, these features 
enable real-time display of interactively edited 
mathematical expressions on screen and in 
braille, with input taken from either a qwerty 
keyboard or a braille keyboard. By adopting 
Content MathML as the authoritative internal 
format in which expressions are represented by 
the program, inaccuracies of conversion that 
could result from ambiguities in the notation are 
avoided. The equation editor is implemented as a 
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Web-based application, thus furthering the trend 
toward incorporating accessibility of 
mathematics into general software environments 
rather than building special-purpose tools. 

To assist students and professionals with editing 
notation in documents prepared for use by the 
popular LATEX typesetting system, Sorge, 2016 
demonstrated an extension to the Emacspeak 
audio desktop environment (Raman, 1997) that 
enables spoken presentation and interactive 
navigation of mathematics occurring in LATEX 
content.4 This extension enables the rich 
facilities for working with LATEX documents 
already available within the Emacs editing 
environment to be fully utilized, while providing 
a spoken rendering of the mathematical notation 
that is significantly superior to reading the syntax 
of the LATEX markup directly with a screen 
reader. In addition, a mechanism is provided to 
ease the detection and correction of errors in the 
LATEX syntax via the auditory interface. 

The adoption of MathML on the Web at large has 
been constrained by a history of inadequate an 
inconsistent implementations of the standard in 
Web browsers. As a result, it has become the 
practice among some publishers and Web site 
developers to avoid delivering MathML to the 
user’s browser, opting instead to serve notation 
directly as a rasterized image. Unless visually 
hidden MathML is also included in the markup, 
this practice effectively prevents assistive 
technologies from processing the structure and 
content of the notation, and therefore from 
supporting flexible presentation and interaction 
features valuable to users. These features include 
synchronized highlighting, simultaneous spoken 
and braille presentation, or interactive navigation 

of subexpressions. Overcoming the technical 
grounds for such publishing strategies is thus of 
great import in improving accessibility in 
practice. The problematic situation regarding the 
implementation of MathML in Web browsers 
has prompted two initiatives of significance to 
the future of mathematics accessibility. 

First, tools have been implemented in JavaScript 
that can render MathML or other representations 
of mathematical notation graphically in a 
browser. The best known of these systems is 
MathJax, which can process notation given in 
Presentation MathML, TEX, or ASCIIMath 
format. The current release of MathJax 
implements a variety of accessibility-related 
features that the user can activate and control via 
a context menu. These capabilities include 
spoken representations in any of several speech 
styles, as well as Nemeth Code braille, achieved 
by using Speech Rule engine to generate labels 
and WAI-ARIA (World Wide Web Consortium, 
2017) live regions for processing by a screen 
reader. Interactive structural navigation of the 
notation is supported, as is selective highlighting 
of subexpressions, and enlargement of the visual 
presentation (Cervone et al., 2016; Cervone & 
Sorge, 2019). As authors of MathJax 
acknowledge, however, limitations of WAI-
ARIA preclude seamless integration of braille 
output into the user’s reading experience 
(Cervone & Sorge, 2019). 

Second, there have recently emerged renewed 
efforts to improve the quality and consistency 
of support for MathML in open-source Web 
browsers, including the development of an 
implementation for browsers based on the 
Chromium project, notably, Google Chrome 

4This is achieved by converting the LATEX representation of the notation to Presentation MathML via 
MathJax. 
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and, more recently, Microsoft Edge (Igalia, 
S.L., 2019). These implementations are being
developed in parallel with work by the
recently formed MathML Refresh Community
group on the MathML Core specification
(W3C MathML Refresh Community Group,
2019), a draft document which aims to define
the visual rendering requirements for a subset
of Presentation MathML precisely, and to
integrate it better with fundamental
technologies of the Web. If successful, these
initiatives can be expected to overcome the
principal limitations of previous browser-
based implementations, leading to high
performance in Web-based applications and to
delivering a better quality of visual rendering.
Some of the implications of this work for
accessibility are noted in the next section.

COMMENTARY AND PROSPECTS 

As is apparent, software developers in recent 
years have pursued different architectural 
options in implementing mathematics on the 
Web, and in striving to make it more 
accessible to users with disabilities. First, 
there is a choice between implementing the 
visual rendering of MathML directly in the 
browser, and implementing it elsewhere—for 
example, on a server, or in scripts loaded by 
Web pages. This decision has important 
consequences for the way in which 
accessibility-related features such as 
highlighting and enlargement are 
implemented, in particular, the need for 
assistive technologies that function at the 
operating system level in providing this 
support. A related architectural decision is 
whether to deliver the underlying 
mathematical expressions, as MathML, to the 
browser, or whether to forward only the 
graphical representation. If only the typeset 

output were provided, a mechanism other than 
MathML would need to be devised and
standardized to carry the structure and content 
of the notation to any assistive technology that 
required it, whether functioning within the 
browser or at the operating system level. 

Second, there is a choice of whether to 
implement nonvisual rendering of mathematical 
expressions within assistive technologies (screen 
readers and read-aloud systems), or whether to 
do so in scripts executed by the browser—
delivering only the final speech or braille output 
to the assistive technology. The former option 
enables assistive technology developers to 
integrate the reading and navigation of 
mathematical expressions most effectively into 
the user interface of each software product, 
leading to a more consistently designed 
experience from the user’s perspective, while 
also supporting mathematical notation occurring 
outside the context of the Web, for instance in 
desktop-based word processors. Consistency of 
keyboard commands and touch gestures, 
navigation functions, and respect for users’ 
preferences within and across applications are 
among the advantages that can be assured by this 
approach. This option also places responsibility 
for the quality of the nonvisual rendering firmly 
in the hands of assistive technology creators. 
Anecdotal experience and informal experiments 
known to the author indicate that, among screen 
readers specifically, the quality of 
implementations of Presentation MathML 
currently varies considerably. The availability of 
high-quality, specialized software components 
that may be used by assistive technology to 
render mathematical notation, such as Speech 
rule Engine and MathPlayer, could, if further 
adopted, ameliorate this difficulty. 



Vol. 23, No. 1 - 2020 ; Journal of Science Education for Students with Disabilities 

8 

With regard to the latter option, the extent to 
which mathematical rendering can be effectively 
left to scripts operating within the browsing 
environment is limited by the features of current 
Web standards, notably WAI-ARIA. A proposal 
to allow braille-specific labels in WAI-ARIA has 
recently been advanced. In addition, the W3C is 
currently exploring technical approaches to 
enabling spoken presentation, including 
pronunciation and pauses, to be specified 
directly in Web-based content—a capability that 
could be used, among other purposes, in the 
spoken rendering of mathematical notation. 
Although this would enable improvement in the 
quality of nonvisual rendering and interaction 
provided by tools such as MathJax, it would not 
address the challenge of user interface 
consistency and of effective integration with the 
user’s chosen assistive technologies. On the 
other hand, rendering of the notation within the 
browser’s scripting environment circumvents the 
limitations and inconsistencies of the processing 
of MathML by assistive technologies, thus 
offering the potential to deliver a presentation of 
higher quality and with greater consistency 
across platforms. 

Although it is possible for both browser-based 
and assistive technology-based nonvisual 
rendering solutions to coexist, only one can be 
applied to the presentation of any given content 
to the user. This offers the user an awkward and 
potentially confusing choice of rendering 
technology, while dividing standardization and 
software development efforts between pursuit 
of two distinct architectures. In the absence of a 
resolution in favor of either alternative, it is 
likely that both approaches will continue to 
evolve in parallel. This presents users and 
developers of accessible Web applications with 
trade-offs that may complicate decision-making, 
and ultimately runs the risk of imposing 

technical constraints that compromise the 
usability of interfaces needed for tasks 
involving the reading and manipulation of 
mathematical notation, which are already 
cognitively demanding in their own right. 

Thus, these contrasting architectural approaches 
have resulted in a fragmentation of resources and 
efforts toward enhancing the accessibility of 
mathematical notation. Whereas the earlier era of 
development was characterized by a plurality of 
stand-alone software projects for making notation 
accessible, the current period reflects a 
corresponding diversity of solutions and 
implementations of varying quality among 
browser-based tools and assistive technologies. 
The extent to which MathML is effectively and 
consistently implemented in open-source 
browsers during the coming years may largely 
determine the dominant architectural approach 
taken in the future to providing basic accessibility 
to reading and navigation across the graphical, 
speech, and braille presentational modalities. It is 
also possible that, as has already occurred with 
user interface components more generally 
through the development of WAI-ARIA, the 
reflection of MathML or of other markup 
representing mathematical notation in the 
application programming interfaces used by 
assistive technologies in each operating system 
may be subject to standardization. These 
interfaces are principally used by screen readers, 
although they are intended to serve assistive 
technologies more widely. Such standardization 
would contribute to the accuracy and 
completeness with which screen readers can 
process MathML, but it would not, by itself, 
overcome inconsistencies in the quality of 
different implementations. 

A further line of work that can proceed 
independently of the overarching architectural 
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concerns seeks to enrich the semantic clarity of 
expressions written in Presentation MathML, 
therefore enhancing accessibility, in particular the 
quality of spoken rendering. In current practice, 
heuristic strategies must be relied upon to discern 
the mathematical meaning of Presentation 
MathML. For example, the expression |X| could be 
understood, according to context, as signifying the 
absolute value of a real number, the norm of a 
vector, or the cardinality of a set, each of which 
interpretations could be given a different spoken 
presentation.5 Similarly, enhanced spoken rendering 
of chemistry texts could be obtained by 
distinguishing formulae that contain chemical 
symbols from those that should be interpreted as 
algebraic expressions. The MathML Refresh 
Community Group has discussed several alternative 
approaches to enabling authors of mathematical and 
scientific material to disambiguate Presentation 
MathML, any of which could be put forward for 
standardization. These possible mechanisms include 
the use of parallel Presentation MathML and 
equivalent Content MathML,6 as well as the 
creation of new disambiguating markup that could 
be used to clarify the underlying semantics of 
notation written in Presentation MathML. The first 
of these solutions is subject to the limitations of 
what is expressible in Content MathML. The 
second approach would require the development of 
a new markup standard, the scope and nature of 
which would need to be determined, and the 
purpose of which would be to clarify the meaning 
of semantically ambiguous notation. 

Such clarifying markup, as presently 
conceived, could specify the mathematical 
subject-matter of the expression (for example, 
algebra, analysis, or geometry) to indicate its 
meaning, or could be used to specify the 
meaning of the entire 

expression or of a subexpression, based on a list 
of roles defined by identifying notational 
ambiguities occurring in different mathematical 
subdisciplines. This markup could be defined 
directly as an extension of the syntax of 
Presentation MathML, or it could be introduced 
via the WAI-ARIA mechanism by proposing an 
ARIA module for mathematical content. The 
utility of supplying metadata to specify the 
subject-matter of an entire document may also 
be explored, as doing so could be sufficient in 
some cases to determine accurately the meaning 
of notation used in the text. 

The current period of software development in 
this field also continues to focus on solving 
problems of reading and structural navigation, 
with some attention being devoted to the writing 
and editing of notation, but without a deeper 
investigation of how best to support the 
manipulation and rewriting of expressions 
necessary to the practice of ‘doing 
mathematics’. Features of nonvisual user 
interfaces that may reduce the cognitive 
demands associated with editing and 
manipulating notation have been proposed, and 
in some cases implemented. In particular, the 
use of tabular structures, which may be 
represented spatially as well as in a linear 
format, has been investigated as a means of 
facilitating such tasks as polynomial long 
division, solving inequalities, and editing 
automata specified as adjacency matrices 
(Bernareggi, 2010). The ability to mark 
individual algebraic terms and to return to 
marked positions has also been implemented 
(Flores & Archambault, 2014). More extensive 
support for performing operations on algebraic 
expressions has been suggested in a somewhat 
ill-defined proposal by Alajarmeh et al., 2011. 

5This example is due to participants at the Web Accessibility of Mathematics Workshop. 
6Figure 1 illustrates the essence of this approach. 
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However, the efficacy of these strategies and 
their consequences for the cognitive load 
encountered in mathematical problem solving 
remain poorly understood from either an 
empirical or a theoretical point of view.7 Nor 
have such proposals been developed further in 
any of the assistive technologies or Web-based 
applications that enjoy widespread use.  

A recently issued accessibility standard 
(International Organization for Standardization 
and International Electrotechnical Commission, 
2019, § 8.2.3) helpfully distinguishes three 
successive levels of ‘accessibility experience’: 
‘technical’, ‘effective and efficient’, and 
‘satisfying’.8 Whereas ‘technical’ accessibility is 
achieved by meeting guidelines such as WCAG 
and other technical requirements, ‘effective and 
efficient’ accessibility refers to the ability of users 
to accomplish tasks using the technology 
successfully and completely, with appropriate 
expenditure of time or other resources relative to 
the accomplished objectives. At the third level, the 
experience is designed to be 
‘satisfying/enjoyable’—that is, eliciting positive 
emotional responses from users. Since the aim of 
ensuring equality of access to mathematical 
content is to support full participation in 
mathematics-related educational and 
career opportunities, all three levels of 
accessibility merit attention. Importantly, the 
cognitive demands of understanding and 
working with mathematical content imply that 
effective and efficient performance of a 
user’s tasks, as is essential for 

success in education or in the workplace, require 
approaches to user interface design which 
minimize extraneous cognitive load. Reaching the 
‘satisfying’ level of accessibility, moreover, can be 
expected to contribute to sustaining users’ interest 
in their work and, at least to some extent, to 
enhance well-being. 

Thus, to direct future software development 
toward user interface designs that are likely to 
support users in completing mathematical tasks 
with effectiveness and efficiency, there is a need 
for greater understanding of the cognitive 
implications of alternative design choices. The 
limited evidence presently available indicates 
that the differences in cognitive demands 
resulting from alternative designs can be 
considerable. By developing task and keyboard-
level cognitive models of the best-case 
performance of screen reader users in solving 
problems that involved inspection of quadratic 
equations, da Paixão Silva et al., 2017 
demonstrated significant differences in 
minimum completion times, which were 
attributable to the user interface choices made in 
supporting structural navigation within formulae 
by three different screen readers. Although the 
details of the authors’ findings are dated due to 
changes in the screen readers themselves,9 and 
the simple cognitive models created do not yield 
much insight into questions of cognitive load, 
this work illustrates the value of investigating 
the demands imposed on the user according to 
different design choices made in supporting 

7The strategies chosen by students who are blind in performing algebraic manipulation have, however, 
been compared experimentally with those of sighted students (Fajardo Flores & Archambault, 2012). No 
significant differences of strategy attributable to vision were found, and demands on working memory were 
judged to be similar between the two populations. 

8The purpose of the standard is to institutionalize development and procurement of accessible 
technologies in the policies and practices of organizations, preferably in ways that lead to outcomes beyond 
the ‘technical’ level. 

9NVDA supports interactive, structural navigation within mathematical expressions (NV Access Limited, 
2019, § 7.1), overcoming a limitation identified by the authors as significant. 

10
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interactive reading of mathematical expressions 
by an assistive technology. Future research 
carried out in conjunction with developments in 
Web browsers and assistive technologies could 
profitably investigate the cognitive demands of 
user interfaces that support reading, navigation, 
and manipulation of mathematical notation, 
leading to designs that better support users in 
completing tasks with efficiency and accuracy. 
Ultimately, satisfaction is clearly a desirable 
design objective, attainment of which would 
constitute true equality for people with 
disabilities.  

CONCLUSIONS 

Currently, the needs of users with disabilities 
in accessing mathematics are partially met at a 
technical level by the available Web browsers, 
assistive technologies, and associated tools. 
Support for reading and interactively 
navigating mathematical notation has 
improved among assistive technologies—
particularly screen readers—in recent years, 
although the quality of implementations 
remains variable, as does the extent of 
implementation of MathML in Web browsers. 
These shortcomings in software development 
have prompted competing architectural 
responses that remain to be resolved in the 
evolution of browsers and of Web standards. 
The challenge of doing mathematics 
effectively, especially in nonvisual modalities, 
can best be met by refining user interfaces for 
applications and assistive technologies through 
processes that take into consideration the 
cognitive demands associated with different 
design options. There is a risk that the costs of 
technical compromises made in the further 
development of browsers, assistive 
technologies, Web standards, and 
mathematically-oriented applications will rest 

upon users with disabilities—specifically, that 
usability will be inadequate, and that 
accessibility will thus progress only so far as 
the technical level, without achieving 
effectiveness, efficiency, or satisfaction. 
Thoughtful investment in appropriate research 
and development activities, however, holds the 
promise of greatly improved outcomes, and of 
overcoming barriers to equality of access to 
mathematical notation delivered via the 
technologies of the Web. 
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