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Abstract 
This study builds on prior research by leveraging natural language processing (NLP), click-stream analyses, and 
survey data to predict students’ mathematics success and math identity (namely, self-concept, interest, and value 
of mathematics). Specifically, we combine NLP tools designed to measure lexical sophistication, text cohesion, and 
sentiment with analyses of student click-stream data within an online mathematics tutoring system. We combine 
these data sources to predict elementary students’ success within the system as well as components of their math 
identity as measured though a standardized survey. Data from 147 students was examined longitudinally over a 
year of study. The results indicated links between math success and non-cognitive measures of math identity. 
Additionally, the results indicate that math identity was strongly predicted by click-stream variables and the 
production of more lexically sophisticated and cohesive language. In addition, significant variance in math identity 
was explained by affective and cognitive variables. The results indicate that NLP and click-stream data can combine 
to provide insights into non-cognitive constructs such as math identity. 

 

Notes for Practice 

• Overview: Learning analytics research is beginning to focus on non-cognitive constructs that lend 
themselves to more immediate measures, including fine-grained measures of affective states and 
behavioural disengagement. More distal constructs have also been identified as important in the 
sociological and social-psychological research, including self-discipline (Duckworth & Selignman, 
2005), social belonging (Walton & Cohen, 2011), and academic identities. Despite their known 
importance, there have been fewer publications that use student interactions (e.g., click-stream data 
and language production) to model these distal constructs. 

• Summary of contributions: This study examines how self-concept, interest, and value relate to 
student behaviours within mathematics learning software. The study finds support for the notion that 
math identity constructs are correlated with math success and that language features in student texts 
are predictive of math identity constructs. The study finds some support for the use of click-stream 
variables to predict math identity, but these variables are generally less predictive. The study finds no 
evidence that math identity grows (or reduces) across the year of study analyzed here. 

• Key implications: This study provides a foundation for examining non-cognitive variables using 
language features along with click-stream variables that can assist practitioners and software 
designers in identifying socially relevant math behaviours within online learning systems. 
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1. Introduction 
As educational technology has become more complex, there has been increased research into the non-cognitive factors that 
shape and determine student choices. Over the last decade, researchers in learning analytics have paid close attention to non-
cognitive constructs that lend themselves to more immediate measures, including fine-grained measures of affective states and 
behavioural disengagement, which have been modelled with click-stream data (i.e., interaction data from a learning system; 
Baker & Rossi, 2013; Baker & Ocumpaugh, 2014), physical and physiological sensor data (D’Mello & Kory, 2015), and 
language data (e.g., Dowell & Graesser, 2014). More distal constructs have also been identified as important in the sociological 
and social-psychological research, including self-discipline (Duckworth & Selignman, 2005), social belonging (Walton & 
Cohen, 2011), and academic identities, where a student values a particular academic subject as central to their self-concept 
(Osborne & Jones, 2011). Despite their known importance, there have been fewer publications that use student interactions 
(e.g., click-stream data and language production) to model these distal constructs. Thus, they remain a promising area of 
research for those interested in exploring the degree to which such constructs can be modelled and supported within 
educational technologies. 

One reason that constructs related to identity have been less thoroughly researched may be related to methodological 
challenges. Many studies of identity constructs use qualitative methods that lend themselves better to small-scale analyses 
(e.g., discursive analyses of sociological interviews). These methods make it difficult to obtain standardized and large-scale 
ground-truth data for use in quantitative analysis. Other studies use lengthy surveys, which can also prove challenging for 
large-scale research. To date, few studies have been published that successfully infer coarse-grained survey measures from 
fine-grained log-file data, suggesting another potential issue: it may be difficult to model these mostly slowly shifting 
constructs without first parsing them into meaningful units of analysis (e.g., the discovery with models approach used in 
Ocumpaugh, San Pedro, Lai, Baker, & Borgen, 2016). 

Still, there are dimensions to identity constructs that can make it more amenable to learning analytics approaches. For 
example, while some researchers do examine highly general constructs like learner identity (Baxter & Haycock, 2014; 
Solomon, 2007), academic identity (Reveles, Cordova, & Kelly, 2004; Nasir & Saxe, 2003), or orientation toward school 
(Osterman, 2000), others narrow the scope of the construct they are trying to capture to domain-specific identities, like math 
identity or physics identity (Syed, Azmitia, & Cooper, 2011). Likewise, while some research in math identity treats the 
construct very broadly (e.g., Cass, Hazari, Cribbs, Sadler, & Sonnert, 2011), other research on math identity decomposes the 
broad construct into finer-grained constructs such as student interest in mathematics (Renninger, 2009), mathematics self-
efficacy/self-concept (Bong & Skaalvik, 2003; Pajares & Miller, 1994), and value of mathematics (Hitlin, 2003). These finer 
operationalizations make it possible to study math identity at scale using shorter surveys — providing ground truth that can 
then be used to develop finer-grained models. 

In this study, we examine how constructs related to student math identity — the degree to which mathematics is considered 
an interesting and valuable component of a student’s self-concept — might be modelled by using two different kinds of data 
involving their interactions within a mathematics software system. Specifically, we look at how their click-stream and language 
production data within a system can be used to model the math identity-related constructs of self-concept, interest, and value 
(operationalized using short, validated survey scales adapted from Ryan & Ryan, 2005). We also examine links between math 
identity constructs and success within the system (defined as percentage of beginning level math problems answered correctly) 
and examine changes longitudinally by examining pre-test and post-test data simultaneously. We do so within the context of 
Reasoning Mind, a blended-learning system used by over 100,000 U.S. elementary students each year as part of their regular 
mathematics instruction. In doing so, we investigate how student language in terms of text cohesion, structural patterns, and 
lexical sophistication, along with their system interactions, and time (pre-test and post-test) can predict math identity 
constructs. Our goal is to provide statistical models that can be used by practitioners and software designers to identify math 
behaviours within online learning systems. 

1.1. Math Identity 
Math identity — or the degree to which one considers oneself a “math person” — has become an area of interest among social 
scientists hoping to better understand what drives students to enter Science, Technology, Engineering, and Mathematics 
(STEM) fields (cf. Syed et al., 2011; Syed & Chemers, 2011; Watt et al., 2017). The literature on math identity has focused 
on various ways that students might frame self-definitions. For instance, students with high math identity have been described 
as perceiving themselves as capable of doing mathematics (i.e., self-concept; Hitlin, 2003; Renninger, 2009) or as deliberately 
engaging in mathematics learning (i.e., demonstrating interest in mathematics; Renninger, 2009). Math identity has also been 
described as a way of orienting oneself toward a specific set of values (Hitlin, 2003). In other words, math identity is a form 
of self-definition, where students see themselves as the type of person who is interested in mathematics and values their success 
in that topic. 
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Modelling self-definitions may face challenges that more immediate constructs do not, particularly since they can also be 
susceptible to perceptual biases. For example, Bandura’s (1977) research on self-efficacy discusses the role of self-attributional 
processes and suggests that a student’s cognitive appraisal (self-evaluation of ability) may be susceptible to a form of 
confirmation bias where the student ignores demonstrable achievements and improvements when contrasted with a previously 
established self-definition (Bandura, 1977). In addition to issues related to bias, other challenges may make it difficult to model 
identity-related constructs. For example, researchers who have constructed self-concept measures have worked to ensure that 
this construct is deliberately separate from student performance (Gottfried, 1985; Steinmayr & Spinath, 2009). 

In this study, we operationalize math identity as mathematics self-concept, mathematics interest, and mathematics value. 
We do so based on research from two different paradigms that suggest these constructs are related to identity and that, when 
broadly examined as non-cognitive constructs, can impact learning and motivation (Bandura, 1977; Cass et al., 2011; Eccles, 
2009; Ryan & Ryan, 2005; Syed & Chemers, 2011). In addition to their appearance in Bandura’s work, these constructs appear 
in Eccles’s (2009) expectancy value theory, where self-efficacy (among a variety of other factors) is hypothesized to influence 
both intrinsic value (interest) and utility value (the usefulness of the task). Specifically, we measure self-concept, interest, and 
value using self-report scales adapted from Ryan and Ryan (2005), who examined relationships between these constructs and 
conditions likely to trigger stereotype threat effects in mathematics performance. We discuss each of our mathematics 
constructs briefly below. 

1.2. Mathematics Self-Concept 
Research in self-concept overlaps considerably with self-efficacy, and in some cases the term “identity” is also used to refer 
to a construct such as self-concept rather than the broader conceptualization we adopt above. All three constructs refer to the 
mental schema a person uses when calculating their ability to negotiate different challenges in their lives. In general, social 
psychologists are more likely to refer to the concept of identity when discussing issues related to social processes, while they 
are more likely to use the term self-concept when discussing internal mental processes (Schlenker & Weigold, 1989). 

In education research, self-concept and self-efficacy are often used to discuss domain-specific evaluations (e.g., self-
concept in mathematics), and they are sometimes used synonymously. However, some education researchers draw a careful 
distinction between these two constructs, limiting the term self-efficacy to self-evaluations of specific tasks, often specifying 
that it must be measured directly after the task has been completed (Bong & Skaalvik, 2003; Pajares & Miller, 1994). For 
example, they might measure self-efficacy by administering a Likert scale immediately after each mathematics problem, asking 
students to indicate their confidence in each answer. In this research tradition, self-concept is a broader measure of ability 
within the domain, where its meaning more closely approaches its use among social psychologists, who define it as a theory 
of self (e.g., Epstein, 1973). 

Self-concept is believed to operate below the level of consciousness, guiding people’s interpretations and expectations of 
external events (cf. Schlenker & Weigold, 1989), yet it may sometimes have contradictory effects. For example, in a situation 
where a student failed a task in a domain for which they have high self-concept, they might be more willing to attempt the task 
again than someone with low self-concept would be. Alternatively, they might interpret the task as flawed since their 
performance did not match the expectations created by their self-concept. 

Both education researchers and social psychologists believe that self-concept develops from experience, so people with 
more shallow or limited experiences (novices) are likely to be more susceptible to changes in self-concept (Epstein, 1973). 
However, other research suggests that developmental issues may differentially influence younger children’s self-concept in 
ways that contradict the development of self-concept in teenagers and adults. That is, constructs like self-concept often start 
high and show declines (rather than starting low and building with mastery experiences), and these declines sometimes occur 
as young as elementary school (Marsh et al., 1983) as student ability to self-evaluate matures (e.g., Stipek, 1981) and their 
self-concepts across different domains begins to diverge (e.g., math self-concept vs. verbal concept, as discussed in Marsh et 
al., 1985). 

Academic self-concept tends to have a reciprocal positive relationship with achievement (Shavelson & Bolus, 1982). High 
self-concept can make students more likely to persist through difficult mathematics, leading to improved academic outcomes, 
while repeated failure could lower self-concept, particularly if a student did not have previous mastery experiences in 
mathematics to serve as a buffer. 

1.3. Interest in Mathematics 
Motivational research defines interest as the propensity to engage with a particular subject over time through both affective 
and cognitive components (Hidi & Renninger, 2006). Studies on the relationship of interest to self-concept have often found 
that self-concept drives intrinsic interest in a given subject (Bandura & Schunk, 1981; Sansone, Weir, Harpster, & Morgan, 
1992), with theorists suggesting that as self-efficacy increases, students feel safer investing effort and attention in a particular 
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topic (Roberts & DelVecchio, 2000). 
Researchers have identified several simple strategies that appear to increase interest in the classroom, such as creating more 

challenging tasks for students or adding variety to the ways in which a student is asked to perform a task. However, others 
caution that some of these strategies may only improve situational interest (e.g., Hidi & Renninger, 2006), suggesting that 
individual interest (intrinsic interest) is almost always self-driven, possibly because it seems to be fed by increased self-
efficacy. Other researchers have found that interest is highly susceptible to contextual effects that vary from student to student 
(cf. Sansone et al., 1992). Researchers in career theory (e.g., Campbell & Hackett, 1986) have found that interest, like self-
efficacy, is directly responsive to performance success and failure. 

Interest is an important complement to self-concept when defining math identity, since its development is known to 
improve self-regulatory strategies (Hidi & Renninger, 2006) and other factors related to identity formation (Eccles, 2009). 
Students with stronger interest in a subject are more likely to persist when confronted with frustrating challenges (Fink, 1998; 
Hidi & Renninger, 2006; Prenzel, 1992), so that strengthening skills in mathematics is a self-feeding cycle. In particular, 
enjoyable or pleasant experiences with a subject are likely necessary to develop the persistence needed to become an expert in 
that subject (Eccles, 2009). 

1.4. Value of Mathematics 
Mathematics value is the degree to which a student thinks that mathematics is or will be useful to their life. Like self-concept 
and interest, value (utility) has been linked to motivation in several different research traditions. Domain-specific value (i.e., 
mathematics value) is thought to be highly influenced by prior knowledge, since limited knowledge can make it difficult for 
a student to connect the utility of a domain-specific task to more personal values (Renninger, 2009). Hitlin (2003) describes 
values as an enduring set of beliefs related to a person’s goal structure, suggesting that people feel most authentic when their 
behaviours align with their values. Gecas (2000) extends this by introducing value-identities, which occur when a value 
becomes a core part of how a person defines themselves across different contexts. 

Within the social psychology and education research, value has been shown to be influenced by self-concept (Chouinard, 
Karsenti, & Roy, 2007). In turn, much like interest, value positively influences the kind of goal-setting practices that increase 
effort and persistence (Chouinard et al., 2007). It also appears to substantially influence interest (Frenzel, Goetz, Pekrun, & 
Watt, 2010). 

Several researchers have found that social influences can influence value (perhaps more than self-concept or interest). In 
particular, parents can have a substantial effect on a child’s mathematics value (Chouinard et al., 2007; Frenzel et al., 2010; 
Harackiewicz, Rozek, Hulleman, & Hyde, 2012), and Renninger (2009) notes that, for younger learners, higher value of a 
domain is more likely when the values of teachers, parents, and peers align. Cumulatively, these findings suggest that value is 
often the last component of math identity to develop unless external influences (e.g., parents) are involved, but they also show 
that value can be more susceptible to social pressures or interventions. 

1.5. Click-Stream Variables and Non-Cognitive Skills 
Fine-grained click-stream data derived from student learning and learning contexts can be used to examine non-cognitive skills 
in learners (Beheshitha, Hatala, Gašević, & Joksimović, 2016; Pardo, Han, & Ellis, 2016). It has also become increasingly 
easy to collect in computer-based learning systems (Greene, Muis, & Pieschl, 2010), making it a mainstay of learning analytics 
(Gašević, Dawson, & Siemens, 2015). Click-stream data has led to increased opportunities to explore human learning 
behaviours in ways that were difficult to make explicit before. While click-stream data may sometimes provide an incomplete 
picture of student experiences with a learning system, it can provide real-time, fine-grained, unobtrusive access to student 
behaviours (Knight, Buckingham Shum, & Littleton, 2013). 

Click-stream data has proven a useful addition to studies that rely exclusively on self-report for research on student 
behaviours. For example, Winne and Jamieson-Noel (2002) studied undergraduate student self-reports about study tactics and 
observed that learners tend to overestimate their use of study tactics. Dupeyrat & Marine (2005) also report that behavioural 
measures of effort are more predictive of learning than are student self-reports. Other studies have reported that observed 
outcomes as operationalized through click-stream data are more strongly associated with achievement than self-reported values 
because click-stream data has lower biases than subjective reflections (Zhou & Winne, 2012). Thus, many researchers are 
beginning to combine click-stream data and self-reported measures to model non-cognitive skills instead of relying on one or 
the other (Beheshitha et al., 2016; Pardo et al., 2016). In one study, McQuiggan, Mott, and Lester (2008) developed models of 
learner self-efficacy from university students’ click-stream data, using self-reports as ground truth. In another example, Lust, 
Elen, and Clarebout (2013) collected self-reports of self-efficacy and achievement goal orientations from undergraduate 
students and associated these variables with learning strategies identified through click-stream data. 
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While research related to these non-cognitive constructs are common in the context of mathematics education research, 
there have been relatively few efforts to model these constructs through click-stream data. Notably, these include models 
related to non-cognitive constructs in mathematics, including achievement goal orientation (Beheshitha et al., 2016) and self-
regulation more generally (e.g., Pardo et al., 2016), while others have investigated math self-efficacy and interest (Lust et al., 
2013). Many of these studies have focused on models related to fairly immediate measures. For instance, early work relied on 
a variety of sensor data to model a constellation of related non-cognitive constructs in mathematics including confidence, 
frustration, excitement, and interest (Cooper et al., 2009). Other work has tried to model less-immediate measures of such 
constructs. For instance, Ocumpaugh et al. (2016) used click-stream data produced by students in middle school to predict 
measures of high-school STEM interest and self-efficacy. Similarly, click-stream data during middle school has been used to 
predict students’ choice of eventual college majors (San Pedro, Ocumpaugh, Baker, & Heffernan, 2014). More recent work 
highlights the crucial role of school demographics on the relationship between clickstream variables in an online math tutor 
and students’ motivational measures indicating the influence of broader student social context while modelling non-cognitive 
factors (Karumbaiah, Ocumpaugh, & Baker, 2019). 

1.6. Natural Language Processing (NLP) Variables and Non-cognitive Skills 
NLP allows for the computational examination of the linguistic properties of text in order to understand natural language 
samples (e.g., student emails sent within an online tutoring system) and their relationships to practical items (e.g., math 
identity). Traditional NLP tools generally queried a text to better understand the level of complexity in terms of syntactic and 
lexical properties. Contemporary tools build on these features but also provide measurements of text organization and structure 
(e.g., cohesion) and sentiment analysis. NLP approaches have become more common in learning analytics studies in the last 
ten years, especially for adult learners, and are commonly used to better understand student writing (Allen, Likens, & 
McNamara, 2018; Botarleanu, Dascalu, Sirbu, Crossley, & Trausan-Matu 2018), text readability (Crossley, Skalicky, & 
Dascalu, 2019), and student success in massive open online classes (MOOCs; Crossley, Paquette, Dascalu, McNamara, & 
Baker, 2016; Wen, Yang, & Rosé, 2014a, 2014b) and other online learning environments (Crossley, Barnes, Lynch, & 
McNamara, 2017; Crossley, Karumbaiah, Labrum, Ocumpaugh, & Baker, 2019). 

A few studies have examined how NLP features in student texts can be used to identify non-cognitive factors. However, 
much of this work focuses on adult learners. For instance, Moon, Potdar, and Martin (2014) used emotion terms and semantic 
similarity among participants to identify student leaders in two computer science MOOCs. Studies by Dascalu and colleagues 
examine how NLP features related to cohesion network analysis (CNA) can examine collaborative and participation patterns 
by students in online forums in MOOCs and other learning environments (Dascalu et al., 2018; Sirbu, Dascalu, Crossley, 
McNamara, & Trausan-Matu, 2019). While less common, at least one study has examined math identity using NLP features 
in elementary children (Crossley et al., 2018). In this study, language features in student writing were used to model student 
math identity in an online mathematics tutoring system. Crossley et al. examined relationships between student language and 
survey measures of math identity and found that NLP features were able to predict a significant amount of the variance in each 
math identity variable. Specifically, students who used more positive language were more likely to have a positive math identity 
while those who produced more negative language were more likely to have lower math identity. Students with stronger math 
identity also used more respectful language, less power-related language, and language that was calmer. Students with stronger 
math identity were also more likely to produce more sophisticated words. Crossley et al. also reported weak to medium 
relationships between mathematics success in the system and math identity. 

1.7. Current Study 
The current study builds on Crossley et al. (2018), which used NLP tools to model end-of-year math success (performance) 
within Reasoning Mind. Like the Crossley et al. study, we model three non-cognitive constructs related to math identity: math 
interest, math value, and math self-concept. However, we build on the original study in two ways. First, we include several 
click-stream variables as predictors of these math identity constructs, thus combining dispositional, log data, and text data. 
Second, the data in the current study is longitudinal (including both start-of-year and end-of-year language, math performance, 
and survey measures), allowing us to examine whether time is a predictor of math identity changes. By including these 
additional measures, we can examine differences across a year of study while also allowing us to better understand how 
individual variance, as determined by repeated participant data, can explain math identity beyond language and click-stream 
variables. 

We use survey data to derive our math identity variables. To derive the language features for this study, we use NLP tools 
to extract language features from student emails to a virtual pedagogical agent within Reasoning Mind. As in the previous 
study, several NLP tools were applied, allowing us to extract language information related to text cohesion, lexical 
sophistication, and sentiment. Our click-stream data was extracted from the online tutoring data and focused on actions within 
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the system, entries into various modes of the system, and temporal data related to time spent in those modes. From the system, 
we also collected a single variable of math success by averaging students’ success at answering math questions within the 
system. We collected data in two concurrent semesters (fall and spring) from students who typically used the system for several 
days each week, allowing us to track performance over time. Thus, in this study, we investigate three research questions: 

RQ1. Are there relationships between math identity variables and mathematics success? 
RQ2. Do math identity and mathematics success variables change over time (i.e., between pre- and post-year survey 

measures)? 
RQ3. Are linguistic and click-stream features significant predictors of self-reported student traits related to mathematics 

value, interest, and self-concept over two semesters of study while controlling for student variance (i.e., pre- and 
post-year survey variance)? 

2. METHOD 
2.1. Reasoning Mind 
We collected data from Reasoning Mind Foundations, a blended learning mathematics program for grades 2–5, distributed by 
Imagine Learning. Foundations students learn mathematics in an engaging, animated world at their own pace, while teachers 
use the system’s real-time data to provide one-on-one and small-group interventions (Miller et al., 2015). The algorithms and 
pedagogical logic underlying Foundations (previously called Genie 2) are described in detail by Khachatryan et al. (2014), 
and a more thorough description of the system in general is given in Crossley et al. (2018). 

Students using the Foundations curriculum start the system by entering the City Landscape (see Figure 1). From here, they 
click on virtual buildings, each of which correspond to a different mode of use (see Table 1). Not all modes in Foundations are 
instructional (e.g., the Mailbox and My Place modes), and some modes are further divided into smaller modules and content 
areas, which vary in their instructional capacity (e.g., the Guided Study and Game Room modes). 

 

 
Figure 1. City landscape in Reasoning Mind’s Foundations. 

 
Students can send emails to the main character in the system, the Genie, a pedagogical agent who encourages students in 

their work throughout the system. The presence of the Genie and the ability to email it were implemented to increase both 
learning and enjoyment for students using the system (Khachatryan et al., 2014). Messages sent to the Genie are answered by 
Reasoning Mind employees who maintain a consistent persona by referencing an extensive biography of the Genie. The Genie 
is only able to reply to messages; emails to students are not initiated by the Genie. 
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Table 1: Modes and Modules that Differentiate Student Experiences in Foundations 
Mode Module Description 

City Landscape  Main screen; the student selects a mode to enter from here and is taken 
here when exiting the mode. 

Guided Study Introduction The main study mode. Each objective begins with an Introduction and 
then the student works through the instructional content presented in the 
Theory module. A Notes Test is given to check the students’ 
understanding of the theory before they proceed to the Problems modules 
and finally end with a Review. 

Theory 

Notes Test 

Problems 

Review 

Wall of Mastery  Additional practice mode; the students can select which content they want 
to practice. 

Office  Assignments created by the teacher are accessed in this mode. 
Homework  Homework assigned to the student is accessed and submitted in this 

mode. 
The Genie  The Genie’s house; this is an entertainment mode where students can see 

the Genie and play games. 
Mailbox  Email functionality mode. 
Shopping Mall  The place to purchase items, which can be used in the My Place mode. 
Game Room Math Race A two-player game in which students race to the finish line by answering 

problems quickly and correctly. 
Division Game A one-player game for practicing mental division calculation skills. 
Multiplication 
Game 

A one-player game for practicing mental multiplication calculation skills. 

Dino Island A one-player game for practicing proportions. 

Riddle Machine 
A one-player game for practicing mathematics problems of slightly 
higher difficulty than would be encountered in Guided Study or Wall of 
Mastery. 

Library  Reference material (e.g., Glossary, Genie’s Rules) 

My Place  An entertainment mode in which the student may interact with purchased 
items (e.g., decorate a room, watch short movies, read books). 

 

2.2. Participants 
The students sampled in this study came from a sample of 34,602 students who used Foundations from August 1, 2016 to June 
17, 2017. The students were from 462 different schools located in 99 different districts, mostly in Texas. We included only 
those students who had attempted A-level math problems in both the fall and spring semester. We selected A-level problems 
because they are the lowest level math problems in the system and all students answer them, whereas B- and C-level problems 
are assigned less consistently. As an additional criterion for inclusion in our analyses, students included in this study needed 
to have written at least 50 words within the Genie email system (the minimum number of words needed to develop a linguistic 
profile). From the available data, 1,036 students met these criteria. However, we only included those who completed a math 
identity pre-test survey (given in the fall of 2016) and a math identity post-test survey (given in the spring of 2017) within the 
Genie email system. This subset of the data consisted of 147 students from 32 different schools in 11 districts in Texas. 

 

2.3. Survey Data 
The measures used in the present study consisted of three 4-point scales adapted from Mingle (2013). The same survey was 
administered at the start and end of the 2016–2017 school year. The first was mathematics self-concept, which comprised five 
items that captured the degree to which the student sees themself as a “math person” (e.g., “I have always been good at math”). 
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The second was interest in math, which consisted of four items that captured intrinsic curiosity or enjoyment of math (e.g., 
“How much do you like math?”). The last scale measured the value of math and consisted of five items that captured the 
degree to which students find math to be useful (e.g., “How important is it to you to get good grades in math class?”). The 
survey scale was from 1 (“not at all important”) to 4 (“very important”). Please see the Appendix for the math identity survey 
questions used in this study. The Cronbach α values of these scales were 0.72, 0.69, and 0.72 respectively. The survey 
responses under each construct were aggregated by averaging the individual responses. Examples of aggregated email chains 
sent by two 4th grade students (one classified as having low and one as having high math identity) are presented in Table 2. 

Table 2. Example Emails for Reasoning Mind Students 
Classified as low math identity  Classified as high math identity 
I might dye my hair red or blue -Your bestie 
 
Hi Genie! What did you do for Valentine's Day? Your 
coolest friend 
 
Hi Genie! What are you gonna do for Saint Partick’s day? 
Your Friend. Ps. you better wear green or i’ll pinch you 
MWHAHAHAH 
 
Dear Genie, I gave a bunch of candy to all my friends! 
Sadly, Its was raining. Your friend, 

Dear Genie, I love Reasoning Minds. How did you come 
up with it? 
 
Hello, Genie! | Genie, I have been sending messages and I 
never got a reply. What happened? Are you okay? Did 
you get sick or something? If you tell me why you were 
not answering, I will forgive you. 
 
Genie, will you teach me how to do 2-digit by 2-digit, 
please? I keep on trying, but I just don’t grasp the 
concept.  

 

2.4. Math Success 
For this paper, math success is operationalized as students’ average performance on A-level problems, the only problem level 
completed by all students using Reasoning Mind. B- and C-level problems are not just more difficult, but they are used in 
different ways by different teachers. Some teachers assign them to all students, other teachers either do not assign them at all 
or assign them only as challenge problems that students can optionally complete. 

 

2.5. Genie Email Corpus 
Our language sample for this analysis consisted of within-system email messages sent from the selected participants to the 
Genie. These messages were aggregated into a single file for each student, allowing us to investigate an individual student’s 
linguistic activity more thoroughly, even in cases where the student sent a series of short messages. On average, students sent 
8.73 (SD=10.2) messages to the Genie with an average length of 816.2 (SD=1546.4) characters. 

Data cleaning procedures were implemented to reduce the amount of noise in the data. First, non-ASCII characters were 
removed, as these could interfere with the NLP tools. Second, all texts were automatically spell-checked and corrected using 
an open-source Python spelling correction library (autocorrect 0.3.0). After taking these preliminary data-cleaning steps, we 
removed random, non-mathematics symbols (e.g., “#,” “@,” and “&” but not currencies, percentages, timestamps, and 
ordinals). We also removed repeating words (e.g., “I love love love love love you Genie”), excessively long character strings 
(e.g., “agneggenepwbaegbepwxzmew”), and strings with repeating characters (e.g., “wooofffffrrrddd”) and mixed-characters 
(e.g.,“$wofrd$”). Next, all non-dictionary, invalid words were removed from the data. We defined invalid words as those that 
could not be located within the synonym sets (synsets) in WordNet (Miller, 1995), and which also did not contain valid English 
phonotactic patterns. That is, a word was phonotactically invalid if it consisted of all consonants (always invalid), or if any 
pair of characters (digraph) in the word were invalid in the English language (e.g., “rlap” or “tsitl”). Finally, we removed all 
repeating, non-overlapping groups of words (e.g., “this word this word this word”). Only word groups of lengths two, three, 
and four were removed by this approach. 

2.6. Natural Language Processing Tools 
We selected NLP features that measure lexical sophistication, text cohesion, syntactic complexity sentiment analysis, and 
topic similarity as predictors of math success. We did so based on suggestions found in Crossley et al. (2018) and other studies 
that have examined links between NLP features and math success (Crossley et al., 2017, 2019). We used several NLP tools to 
calculate the selected linguistic features from our corpus of aggregated messages to the Genie, including the Tool for the 
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Automatic Analysis of Lexical Sophistication (TAALES; Kyle, Crossley, & Berger, 2018), the Tool for the Automatic 
Analysis of Cohesion (TAACO; Crossley, Kyle, & McNamara, 2016a), the Tool for the Automatic Analysis of Syntactic 
Sophistication and Complexity (TAASSC; Kyle & Crossley, 2017), and the SEntiment ANalysis and Cognition Engine 
(SEANCE; Crossley, Kyle, & McNamara, 2016b). In addition, we developed specific indices related to topics commonly 
discussed with the Genie email system using Latent Dirichlet Allocation (LDA). The features are discussed briefly below. 

TAALES reports on several indices related to basic lexical information, lexical frequency, lexical range, lexical registers, 
word information features, and psycholinguistic variables including how long it takes to name a word aloud. For instance, the 
tool uses the Contemporary Corpus of American English (COCA; Davies, 2008) to compute the number of texts in which a 
word appears (i.e., range) to examine the specificity of words or the proportion of common bigrams in a text. The tool also 
reports on several phonological, orthographic, and phonographic neighbours that words must calculate how many near 
neighbours, based on sound or spelling, a word has. TAALES also reports on the strength of associations between words in 
the text to assess the expectancy of adjacent and nearby words. 

TAACO incorporates a variety of classic and recently developed indices related to text cohesion to provide linguistic 
counts for both sentence and paragraph markers of cohesion. For example, TAACO calculates type token ratio (TTR) indices 
(which measure word repetition), sentence overlap indices that assess lexical and semantic similarity between sentences or 
paragraphs, and a variety of connective indices including additive connectives (i.e., and, moreover). 

TAASSC measures large- and fine-grained clausal and phrasal indices of syntactic complexity and usage-based indices of 
syntactic sophistication. Syntactic sophistication indices focus on verb-argument constructions and their frequency and/or verb 
and argument association strength. 

SEANCE is a sentiment analysis tool that contains several pre-developed word vectors that measure sentiment, cognition, 
and social order. SEANCE also provides a negation feature and a part of speech (POS) tagger. Examples of affective variables 
reports by SEANCE include positive and negative polarity metrics. Cognition examples include words related to attention 
(how much attention a word demands), terms of overstatement (i.e., words of emphasis), and words related to the mental 
processes associated with problem solving. 

 

2.7. Click-stream Data and Grade-level Information 
Reasoning Mind logs the interaction of the students in the system at the level of specific student actions within the interface. 
The log data includes a number of fields such as student identification (student ID, classroom ID, etc.), timestamp, mode, 
module type, event type (login, enter mode, problem shown, submit, etc.), and problem information (content type, dataset, try 
number, input type, student answer, result, etc.). For each student, we extracted features based on the actions in the 27 modes 
(e.g., City Landscape), the actions within the 11 module types of Guided Study mode (e.g., Introduction, Theory, Problems, 
Homework) and six content types (i.e., A-, B-, and C-level problems as well as Theory, Notes Test, and Speed Game). For 
each mode, we extracted three kinds of features: 1) the sum of entries to the mode (e.g., number of times the student entered 
the City Landscape or Guided Study); 2) the sum of actions performed within the mode/module/content type (e.g., number of 
actions performed in the Problems module type); 3) the total amount of time spent in each mode/content type (e.g., total time 
spent solving A-level problems). In addition, we calculated normalizing features (normalized against time in mode vs. time in 
system, etc.) and features measuring the number of hints, the number of virtual prizes purchased, and problem accuracies. In 
total, we mined 111 features from Reasoning Mind’s log data, consisting of 110 click-stream features and student grade-level. 

 

2.8. Statistical Analysis 
Prior to analysis, all numeric scores were standardized. We used linear mixed effects (LME) models in R (R Core Team, 2018) 
using the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) to develop models of math identity scores over time (i.e., 
across the fall and spring semesters by using both the pre- and post-year survey scores). LME models were chosen because 
they offer statistical advantages over traditional repeated measures analyses of variance (RM ANOVAs). Specifically, LMEs 
account for both pooled and individual variance among students as opposed to just a pooled group mean; it does this by 
including students as random effects (i.e., assigning a unique intercept for each student, resulting in more accurate estimates 
based on individual student variation). These are reported as marginal R2 and conditional R2, which show the effects of fixed 
factors in explaining math identity constructs and the effects of variance from individual students on math identity constructs, 
respectively. 

A unique LME model was generated for each math identity construct (i.e., three models). For each model, grade level, 
linguistics and affect features, and click-stream variables were treated as fixed effects (i.e., predictor variables), with 2nd grade 
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serving as the base-line for the grade-level feature. We also included students as random effects to measure the effects of 
successive sampling, which can affect the strength of relationships between dependent and independent variables. 

To help control for over-fitting, we removed several variables prior to analysis. First, we conducted correlations (where 
possible) between the dependent variables and the independent variables. Any independent variable that did not demonstrate 
at least a small relationship with the dependent variable (r ≥ 0.100) was removed from the analysis. Next, we checked for 
multicollinearity between the remaining independent variables using variance inflation factors (VIF) with a threshold set to 5 
(i.e., high multicollinearity). All variables showing VIF above 5 were removed from the analysis and the remaining variables 
were used in the LME analysis. After variable pruning, we were left with 33 variables for modelling math self-concept, 32 for 
math interest, and 35 variables of math value. For each dependent variable, an initial LME model was run with all independent 
variables. After an initial model was constructed, we used a (backwards) stepwise variable selection technique to eliminate 
non-significant effects. The features remaining after stepwise variable selection process were used in the final models. 

Several other statistical packages to aid in our construction and interpretation of our models. We used lmerTest 
(Kuznetsova, Brockhoff, & Christensen, 2017) to derive p-values from the models and to perform automatic backward 
elimination of variables in the LME models and the MuMIn package (Barton, 2018) to obtain two measures of variance 
explained: a marginal R2 measuring the variance explained by the fixed effects only, and a conditional R2 measuring the 
variance explained by the fixed and random effects combined. 

3. RESULTS 
3.1. Descriptive Statistics of Data 
Descriptive statistics for the math success and identity variables are presented in Table 3. The descriptive statistics demonstrate 
that all variable means were above potential midpoints indicating that students scored relatively high on the A-level math 
problems and judged themselves to have higher than average math self-concept, interest, and value. For comparison, the mean 
A-level problem accuracy for a sample of ~11,000 students from the same year was 0.795, which is slightly lower than the 
mean score for the sub-sample in this analysis (0.838). Math value showed tendencies towards being non-normally distributed 
with skewness above 2. 

Table 3. Descriptive Statistics for Math Success and Identity Variables 

Variable Mean 
Standard 
Deviation Skewness Kurtosis 

Math success (A-level problem accuracy) 0.838 0.105 –1.191 1.935 
Math self-concept 2.946 0.704 –0.292 –0.722 
Math interest 2.980 0.834 –0.614 –0.475 
Math value 3.659 0.409 –1.865 4.588 

 

3.2. Correlations between Math Identity Constructs and Mathematics Performance 
To examine associations across the three math identity constructs and to assess links between math identity and mathematics 
scores, Pearson correlations were computed for both pre-test and post-test scores. For the purposes of this study, mathematics 
scores were limited to those derived from A-level mathematics problems within the Reasoning Mind system. The results 
(Table 4) indicate that all three math identity constructs (self-concept, interest, and value) were positively and significantly 
correlated with performance on A-level mathematics problems and with each other. Medium effects were reported for the 
relationship between mathematics performance and self-concept (0.308) while weak effects were reported for its relationship 
with interest (0.163) and value (0.181). Correlations between the math identity constructs themselves were also moderate 
(0.384–0.487), a result that aligns with their association in the literature. 

Table 4. Correlations Between Mathematics Performance and Math Identity Variables 
Variables A-level accuracy Self-concept Interest 
Self-concept 0.308**   
Interest 0.163* 0.432**  
Value 0.181* 0.384** 0.487** 

* p < .010, ** p < .001 
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3.3. LME Model for Mathematics Self-Concept 
An LME model predicting math self-concept as the dependent variable reported significant main effects for one click-stream 
variable and three linguistic features. The model reported a marginal R2 of 0.062 and a conditional R2 of 0.713, suggesting that 
most of the variance explained was in successive sampling of participants. Table 5 displays the estimates, percent of estimate, 
standard errors, t-values, and p-values for the fixed effects entered into this model. 

Table 5. LME Model Predicting Math Self-Concept 
Fixed effect Variable 

type 
Estimate % of 

estimate 
Std. Error t p 

(intercept)  0.000 
 

0.071 0.000 1.000 
Time in A-level problems CS –0.189 0.398 0.047 –4.022 0.000 
Additive connectives TAACO 0.097 0.203 0.042 2.307 0.022 
TTR (adjectives) TAACO –0.096 0.202 0.043 –2.244 0.026 
Word range (COCA news) FW TAALES 0.094 0.197 0.042 2.243 0.026 

FW = function words; CS = click-stream 
 

In general, the click-stream effects indicate that students who had higher self-concept spent less time solving A-level 
mathematics problems. Linguistically, students who had higher self-concept used more additive connectives and general 
function words (those found in a greater range of texts), results associated with more accessible text. These students also 
repeated more adjectives in their messages to the Genie, a pattern typical of narrative writing (Crossley, Kyle, & McNamara, 
2016c). 

3.4. LME Model for Mathematics Interest 
An LME model predicting math interest as the dependent variable reported significant main effects for one click-stream 
variable and six linguistic features. The model reported a marginal R2 of 0.116 and a conditional R2 of 0.637, suggesting that 
most of the variance explained was in successive sampling of participants. Table 6 displays the estimates, percent of estimate, 
standard errors, t-values, and p-values for the fixed effects entered into this model. 

Table 6. LME Model Predicting Math Interest 
Fixed effect Variable 

type 
Estimate % of 

estimate 
Std. 
Error 

t p 

(intercept)  0.000 
 

0.069 0.000 1.000 
Phonographic neighbours CW TAALES –0.140 0.156 0.050 –2.817 0.005 
Problem solving words SEANCE –0.136 0.152 0.058 –2.366 0.019 
Overstatement words SEANCE –0.131 0.147 0.054 –2.446 0.015 
Proportion of bigrams (COCA 
magazine) 

TAALES 0.125 0.140 0.054 2.305 0.022 

Number of entries to My Place CS 0.125 0.140 0.057 2.213 0.028 
Positive terms (Hu Liu norms) SEANCE 0.122 0.137 0.048 2.543 0.012 
Word associations (delta p verb 
cue) SD 

TAALES 0.114 0.128 0.047 2.451 0.015 

CW = content words; SD = standard deviation; CS = click-stream 
 

Only one click-stream feature was included in the interest model. Students who had higher interest entered their My Place 
rooms more often to store and access their purchased virtual prizes. Two sets of linguistic features were included in the interest 
model. Cognitively and affectively, students with higher interest scores used fewer problem-solving and overstatement terms 
coupled with more positive terms. This indicates that these learners used a greater number of positive words, fewer words of 
emphasis, and fewer words related to the mental processes associated with problem solving. In terms of linguistic structures, 
students with higher interest scores used words with fewer phonographic neighbours (an indication of greater lexical 
sophistication) and a greater proportion of expected bigrams (an indication of producing expected structural patterns). Students 
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with higher interest scores also showed higher standard deviations in the strength of associations between verbs and other 
words, which indicates that these students used phrases that demonstrated a greater variety of association strength (i.e., 
demonstrated greater phrasal knowledge). 

3.5. LME Model for Mathematics Value 
An LME model predicting math value as the dependent variable reported significant main effects for cognitive and linguistic 
features, but no click-stream variables were significant. The model reported a marginal R2 of 0.085 and a conditional R2 of 
0.567, suggesting that most of the variance was explained in successive sampling of participants. Table 7 displays the 
estimates, percent of estimate, standard errors, t-values, and p-values for the fixed effects entered into this model. 

Table 7. LME Model Predicting Math Value 
Fixed effect Variable 

type 
Estimate % of 

estimate 
Std. Error t p 

(intercept)  0.000 
 

0.070 0.000 1.000 
Semantic overlap between sentences 
(LSA) 

TAACO 0.173 0.305 0.053 3.296 0.001 

Word naming latencies standard 
deviations (FW) 

TAALES –0.134 0.236 0.050 –2.694 0.008 

Attention words SEANCE 0.145 0.255 0.050 2.906 0.004 
Construction frequency types 
(COCA fiction) 

TAASSC 0.116 0.204 0.048 2.417 0.016 

FW = function words; LSA = latent semantic analysis 
 

Linguistically, students who had higher scores for mathematics value produced text that was more semantically cohesive 
and produced more frequent syntactic constructions (i.e., more frequent verb argument constructions) indicating greater 
coherence between sentences and more frequent constructions that should make a message easier to read. The function words 
they produced also showed lower variance in word-naming scores, a timing measure that indicates that the students were 
producing fewer words at both the easy and more sophisticated ends of the extreme. In terms of cognitive variables, students 
with higher mathematics value scores used more attention words, a category operationalized as how much cognitive attention 
a word demands. 

4. DISCUSSION 
The purpose of this study was to examine links between language and click-stream variables in an educational software system 
for mathematics and three components of math identity, as measured by student survey responses. In addition, the study 
examined links between math identity variables and success within the system. At least one previous study had examined math 
identity using language features using a cross-sectional data analyses (Crossley et al., 2018) and several others have examined 
the relationship between click stream data and math identity (Slater, Ocumpaugh, Baker, Lib, & Labrum, 2018; Karumbaiah, 
Ocumpaugh, & Baker, 2019; Karumbaiah, Ocumpaugh, Labrum, & Baker, 2019). The current study builds on these studies 
modelling these constructs using a combination of click-stream data and language data and looking at changes in math identity 
across the academic school year. 

Overall, we find similarities across math identity constructs as reported by correlations among the variables. We also find 
small to medium correlations among the math identity variables and mathematics success, with self-concept showing the 
strongest overlap with within-system mathematics problem solving. Linguistically, all math identity variables were at least 
partially predicted by lexical sophistication features (e.g., those identified by TAALES). Additionally, cohesion features (e.g., 
those identified by TAACO) were significant predictors in models of value and self-concept while language features related 
to sentiment and/or cognition (e.g., those identified by SEANCE) were significant predictors in models of value and interest. 

The patterns reported in our linear mixed effects (LME) models provide a language profile for students with higher self-
reported math identity. Specifically, these students produce more sophisticated words (i.e., words with fewer phonographic 
neighbours), but the range of sophistication for their function words was lower (i.e., words with lower variance in word naming 
speeds). They also produce text that is more cohesive, as demonstrated by a higher rate of overlap of semantic ideas, the use 
of more connectives, and a greater repetition of words. These students also followed expected structural patterns (e.g., patterns 
found in large-scale language corpora produced by proficient adult writers) including the production of less specific function 
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words, more expected bigrams, and more frequent verb argument constructions. In terms of sentiment and cognition variables, 
students with greater math identity used more positive terms, fewer words related to problem solving, and fewer words 
indicating emphasis and cognitive attention. 

Fewer click-stream features were included in the models and, in some cases (math value), no click-stream features were 
significant predictors of math identity constructs. It might seem counter-intuitive at first that these features indicated that more 
successful students were spending less time working A-level problems (for self-concept) and more time in their virtual rooms 
(interest). However, less time in A-level problems means that students completed these more basic questions more quickly and 
were able to spend more time in other areas of the system, including their virtual rooms. 

One limitation of this work is that the associations found in the LME models are relatively weak. As the marginal R2 values 
show, the language and click-stream features explained between 6% and 12% of variance in the math identity constructs. A 
larger portion of the variance (48% and 68%) was explained by random variance associated with the participants, much of 
which is likely the result of individual differences among the students. 

Additionally, as reported in the LME models, time (fall pre-test and spring post-test) was not predictive of self-reported 
math identity variables, indicating no substantial links between math identity and time among the students in our sample (i.e., 
no longitudinal relationship) when time was co-varied with click-stream and linguistic features. To examine if differences 
existed between the math identity variables as a function of time, post-hoc paired t-tests were conducted for each variable (self-
concept, interest, and value) and are reported here. The post-hoc analyses found no significant differences (p > 0.05) as a 
function of time for any of the variables. These results are encouraging, since it may be normal to see decreases in self-concept 
during this developmental phase (Marsh et al., 1983; Marsh et al., 1985; Stipek, 1981). Instead, these students seem to be 
maintaining relatively high values, which might suggest that Reasoning Mind is providing students with effective 
metacognitive support. 

In the absence of time effect, our findings provide a greater understanding of how language and click-stream variables 
interact with math identity constructs and provide a pathway for future analyses. We discuss each model in turn below as well 
as discuss potential explanations for the variance explained by the participants themselves. 

4.1. Mathematics Self-Concept 
The first model we constructed was for self-concept, defined as a broad measure of confidence in one’s mathematics ability 
related to one’s theory of self. Our click-stream and language features explained 6% of the variance, indicating a weak 
correlation with self-concept while participant repetition explained over 60% of the variance (i.e., the successive 
measurements of participants was strongly correlated with their survey scores). 

The strongest predictor in the LME model was time spent in A-level content; however, the coefficient was negative, 
indicating that students who spent less time in A-level content had higher self-concept. This indicates that students with greater 
self-reported ability spent less time on lower-level problems. This is also supported in the correlation analysis, which 
demonstrated medium relationships between self-concept scores and success in A-level content. 

In terms of language use, students with higher self-reported self-concept produced text that had more cohesive features 
(i.e., additive connectives), tended to repeat adjectives, and used function words that were less specific (i.e., commonly used 
across texts). These linguistic features provide a profile of higher self-concept students as those who produce language that is 
more cohesive and easier to process. This may indicate that these students with higher self-concept (i.e., theory of self) produce 
emails that are more accessible/readable. 

4.2. Mathematics Interest 
Our second model explored math interest, which can be defined as the propensity to engage with a particular subject over 
time, with both affective and cognitive components. Like our self-concept model, the greatest amount of variance (62%) was 
explained by the random factor of participant (i.e., successive sampling). The fixed factors in the model explained around 12% 
of the variance in the math interest scores, indicating a medium effect size. 

From a lexical perspective, students with higher interest used more sophisticated words, as demonstrated by their use of 
words with fewer phonographic neighbours and words with a greater range of associations (indicating knowledge of more 
potential associations). At the same time, these students produced more bi-grams that are commonly found in language, which 
suggests that they had knowledge of a greater variety of phases than students who self-reported lower math interest scores. 
Thus, linguistically, these students produced more sophisticated words within expected lexical frameworks. 

Sentiment and cognition variables were also significant predictors of math interest. Specifically, students with higher math 
interest used more positive terms and fewer problem-solving and overstatement terms. These findings indicate that students 
with higher math interest were more positive in general when interacting with Genie and likely did not ask the Genie for 
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problem solving help or overstate issues by using emphatic words. Thus, these students likely sought less content help from 
the Genie. 

Lastly, students with higher math interest spent more time in My Place, a space dedicated to leisure and entertainment, 
where students can furnish and redecorate a room, read books, or watch movies. We interpret this as indicating that students 
with higher math interest were more likely to have earned the points required to indulge in the activities related to this virtual 
space. 

4.3. Math Value 
Our third model examined links between language and click-stream variables and math value, which can be defined as the 
degree to which a student thinks that mathematics is or will be useful to their life. The model for math value explained about 
9% of the variance based on language features alone (i.e., no click-stream variables were included), a weak to medium effect 
size. 

The strongest predictor of math value was semantic overlap between sentences, indicating that students with higher math 
value produced more cohesive text. These students also used more words that led to cognitive attention, demonstrating an 
implicit use of words that garner interest. These students also showed less variety in their production of easy and difficult 
words (in terms of naming response times) indicating the ability to produce both less and more sophisticated words. Lastly, 
these students used more frequent verb argument construction types (i.e., more common syntactic structure). In general, this 
provides a language profile of students with higher math value as those that produce messages to the Genie that are more 
cohesive and easier to process (i.e., more common syntactic constructions and less variety in word difficulty). 

4.4. General Trends 
Overall, the three models begin to converge on a student with higher math interest as a student who writes more cohesively 
(i.e., greater overlap of ideas and greater use of cohesive features) and tends to write in expected patterns (i.e., more expected 
bi-grams, more general terms, and the use of more frequent verb-argument constructions). In addition, these students use more 
sophisticated words, but not necessarily a greater variety of sophisticated words. This finding indicates that these students 
have begun to develop patterns of text cohesion that are common in elementary students (Bereiter & Scardamalia, 1987; 
Berninger, Fuller, & Whitaker 1996) as well as beginning to norm their writing patterns to that of more proficient English 
writers. Thus, these students may be converging on the probabilistic language trends found in proficient writers, while students 
with lower math identity may not have acquired or noticed these patterns. Noticing these patterns may be related to general 
abilities to process information and extract information and this general ability may inform mathematics ability as well, 
predicting the significant correlations we see between mathematics success and math identity variables. More and different 
data, such as general tests of cognition, however, is needed to test these assumptions. 

4.5. Practice and Policy Implications 
The models constructed here provide practitioners and software designers with guideposts to begin identifying behaviours 
(linguistic and otherwise) within online learning systems that may indicate whether a student has high or low math identity. 
Combined with work previously presented on these issues (Crossley et al., 2017, 2018, 2019; Karumbaiah, Ocumpaugh, & 
Baker, 2019; Karumbaiah, Ocumpaugh, Labrum, & Baker, 2019; Slater et al., 2018), these models identify a range of features 
that might help to identify students who are most in need of support. Currently, the findings suggest that low-level linguistic 
patterns (e.g., those associated with the use of function words, connectives, TTR, lexical sophistication, and affect) and high-
level linguistic patterns (semantic similarity and verb-argument constructions) may be stronger predictors of math identity 
than most click-stream data, which might be particularly useful information for learning systems that are unable to get students 
to complete surveys of math identity, but still wish to identify those students who are in most need of support. 

The weaker performance of the click-stream variables is unexpected, but given the contrary effects that self-concept might 
have on behaviours and the developmental changes in identity that students are learning to manage, these weak associations 
are not entirely surprising. That is, if students who suffer from low math identity respond differently in their interactions with 
the system, these kinds of behaviours will be more difficult to classify cleanly. Practitioners and designers of learning systems 
should be aware of this result if they are hoping to support the development of stronger math identity among their students. 

More research is needed to improve these models, and one obvious way forward is to revisit previous research on the 
demographic effects on the construction of math identity. In addition to the early work on how self-definitions are known to 
vary by gender, as in Bem’s (1974) research, recent work shows that school-level differences in demographics may influence 
whether the students with high or low math identity are most likely to make use of system help-features (Karumbaiah, 
Ocumpaugh, & Baker, 2019). As language, like help-seeking, is culturally influenced, such explorations could help us to 
improve these models. 
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5. CONCLUSION 
This study examines how three constructs related to math identity — self-concept, interest, and value — are related to student 
behaviours within mathematics learning software. We find support for the notion that math identity constructs are correlated 
with math success as well as support that language features in student texts are predictive of math identity constructs. We find 
some support for the use of click-stream variables to predict math identity, but these variables are generally less predictive. 
Interestingly, we find no evidence that math identity grows (or reduces) across the year of study analyzed here. It may be that 
changes in math identity are incremental and longer timeframes are necessary to see changes. Alternatively, it could be that 
the experience of using this learning system weakens the drop in math identity often seen in young learners. 

This study provides a foundation for examining non-cognitive variables using language features along with click-stream 
variables that can assist practitioners and software designers in identifying socially relevant math behaviours within online 
learning systems. While the current analysis explained only a small amount of the variance, we take solace in the notion that 
the variance explained was significant and meaningful in terms of effect sizes. We presume that with different metrics of math 
interest that are not self-reported, more advanced language features, and the inclusion of individual differences on the part of 
participants, we may be able to explain a greater amount of variance in future studies. 
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Appendix: Math Identity Survey Questions 
 

Self-Concept 
1 How are you doing in math this year? 
 Bad Not good Good Great 
2 Is math harder for you than subjects like reading or science? 
 A lot harder A little harder A little easier Much easier 
3 Are you better at math than most of the other kids in your class? 
 Not as good Almost as good A little better A lot better 
4 I have always been good at math. 
 Not true Somewhat true Mostly true Very true 
5 I have always been smart. 
 Not true Somewhat true Mostly true Very true 
 

Interest 
6 Math is one of the most important subjects to me. 
 Not at all important Not that important Important Very Important 
7 I find working on math assignments 
 Interesting Somewhat interesting Somewhat boring Boring 
8 How much do you like math? 
 Hate Dislike Like Love 
9 Compared to other things you learn in school, how much do you like math? 
 Much less A little less A little more A lot more 

 

Value 
10 How important is it to you to get good grades in math class? 
 Not at all important Not that important Important Very Important 
11 In math, it is most important to me to learn the math my teacher teaches. 
 Not at all important Not that important Important Very Important 
12 Doing well in math is important to me. 
 Not at all important Not that important Important Very Important 
13 It is important to me to be able to solve math problems. 
 Not at all important Not that important Important Very Important 
14 If I practice, I can change how good I am at math. 
 Not true Somewhat true Mostly true Very true 


