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Introduction
Any mathematics education community (researchers, teacher educators, government officials, 
subject advisors, materials developers, instructional leaders, teachers, trade union officials, etc.) 
ought to seek out, and provide, theoretically sound guidance on how to approach the teaching of 
particular topics in mathematics. Ernest (2014) refers to policy in mathematics education as the 
‘teaching sequence for the subject as planned and experienced by the learner’ and distinguishes 
four aspects which are commonly the focus of mathematics education policy debates:

1.	 the aims, goals, and overall philosophy of the curriculum;
2.	 the planned mathematical content and its sequencing, as in a syllabus;
3.	 the pedagogy employed by teachers, and
4.	 the assessment system. (p. 480)

The four aspects are clearly related to each other, and ought to cohere. Within such mathematics 
communities it is expected and appropriate that there are debates, discussion and contestation 
over what mathematics is, why it has value, and how it ought to be taught. Absence of 
disagreement  – with various positions and their underlying rationales being openly and 
hotly  debated – ought to be cause for concern. Despite the inevitable contestation, there is 
simultaneously a need for ‘sufficient consensus’ to steer the way mathematics is approached in 
schools. 

In South Africa the legislated policy framework provides this ‘sufficient consensus’ and is 
articulated through a national curriculum policy. Such curriculum policy is expected to be subject 
to revisions over time while maintaining sufficient stability to avoid disruptions to a large, yet 
fragile, public schooling system. Currently, South Africans are guided by a national curriculum 
and assessment policy statement (CAPS) for mathematics which gives specific learning outcomes 
for Grade R – Grade 12 (Department of Basic Education [DBE], 2012a, 2012b). More recently 
further guidance has been offered with the publication of a Mathematics Teaching and 
Learning Framework for South Africa: Teaching Mathematics for Understanding (DBE, 2018), hereafter 

This article reflects critically on the guidance offered to South African teachers in two canonical 
texts: the Curriculum and Assessment Policy Statements (CAPS) and Mathematics teaching 
and learning framework for South Africa: Teaching mathematics for understanding (TMU). 
I make explicit my philosophical orientation, and how ‘teaching mathematics for (relational) 
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referred to as the ‘TMU framework’. Importantly, the TMU 
framework does not replace the CAPS (DBE, 2018, pp. 2, 3, 
10, 12). Its purpose is articulated as follows:

This (TMU) Framework is not a new curriculum and does not 
replace the existing curriculum. Instead it supports the 
implementation of the current curriculum through introducing a 
model to help teachers to change the way in which they teach. 
The Framework model and the supporting exemplars are 
provided to offer guidance to teachers that will enable them to 
transform their teaching. This transformation should lead to 
teaching for understanding, so that learning for understanding 
will take place in all mathematics classrooms in South Africa. 
(DBE, 2018, p. 10, emphasis in original)

As such at the heart of the TMU framework is an intention to 
support a transformation in how mathematics is taught in 
South African schools. From the Minister of Education’s 
perspective, the TMU framework is a contribution to ‘the 
urgent need to pay particular attention to the development of 
a new curriculum for initial teacher education, induction and 
continuing professional development’ (DBE, 2018, p. 3). As 
such it may be viewed as an attempt to forge greater 
coherence between the remit of the Department of Higher 
Education and Training (responsible for initial teacher 
education), and that of the various branches within the DBE 
(responsible for national policy relating to assessment, 
curriculum and teacher development) and the various 
provincial Departments of Education (responsible for the 
implementation of national policy at provincial level).

It is worthwhile reflecting on the nature of the transformation 
envisaged for ‘teaching mathematics with understanding’. 
In  this regard I draw on Hiebert (1999), who summarises 
traditional teaching of primary arithmetic as follows:

Most characteristic of traditional mathematics teaching is the 
emphasis on teaching procedures, especially computation 
procedures. Little attention is given to helping students develop 
conceptual ideas, or even to connecting the procedures they are 
learning with the concepts that show why they work. (p. 12)

In contrast, drawing across numerous successful studies in 
the teaching of primary arithmetic, Hiebert (1999) identifies 
their common characteristics, asserting that the hoped for 
and envisaged teaching of mathematics should build 
directly on learners’ entry knowledge and skills, provide 
opportunities for both invention and practice, focus on 
the  analysis of (multiple) methods, and ask students to 
provide explanations.

Notwithstanding its articulated focus on Ernest’s (2014) 
‘aspect 3: pedagogy’, the TMU framework identifies 
implications that go beyond pedagogy. It proposes potential 
changes to curriculum, assessment, learning and teaching 
support materials and information and communication 
technology (DBE, 2018, pp. 76–79). By way of concrete 
example, the DBE in collaboration with the National 
Education Collaborative Trust has developed a detailed 
learning programme (comprising learner workbooks and 
detailed lessons plans) as one interpretation of what is 

advocated for by the TMU framework. This learning 
programme is currently being field tested, and its outcomes 
are expected to inform a planned process for strengthening the 
CAPS (Meeting with DBE curriculum branch, June 4, 2019).

Given the potential influence of the TMU framework, it is 
therefore imperative that both it and the CAPS are reflected 
upon critically. Their similarities and differences should 
be  noted and motivated for. This article focuses on one 
particular aspect of guidance offered to teacher educators 
and mathematics teachers in the TMU framework which 
is  a  clear departure from that which is offered in CAPS: 
the  ‘standard written algorithm (SWA)’ for addition and 
subtraction, as illustrated in Figure 1.

Following Fischer et al. (2019) I use the phrase ‘standard 
written algorithm (SWA)’ which may also be referred to as 
the ‘traditional vertical algorithm’ or ‘condensed column 
method’, among others. The CAPS refer to ‘adding and 
subtracting in columns’ while the TMU framework refers to 
a ‘column method for recording numeric work’.

In South Africa, this particular aspect of the mathematics 
education policy debate relates to how to teach ‘context free 
calculations for addition and subtraction’ in the Foundation 
Phase (DBE, 2012a). The clarification notes in CAPS delay the 
teaching of the SWA to Grade 5 in the Intermediate Phase. In 
contrast, the TMU framework advocates for inclusion of the 
SWA for addition much earlier – in the Foundation Phase 
(which spans Grades R to 3).

Methodology
Research questions
The research questions being reflected on for this article are 
theoretical. I therefore first make clear my philosophical 
orientation towards mathematics which underlies my 
response to two research questions: First, what does 
research offer in relation to whether, when and how to 
approach teaching vertical algorithms? And second, 
how  do the teacher guidelines on addition calculation 
strategies in the CAPS accord with, and differ from, those 
offered in the TMU framework? These questions are 
answered in order to reflect critically on the CAPS and 
TMU framework in order to inform the expected process of 
strengthening CAPS.

Methods and analysis
In pondering these questions I drew on mathematics education 
literature pertaining to learning-teaching trajectories into 
number and multi-digit addition to frame the article and 
inform my document analysis. 
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FIGURE 1: An illustration of the standard written algorithm (SWA) for addition.
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I conducted a detailed content analysis of the two DBE 
documents: the CAPS and the TMU framework. I ‘identified 
visual-quantitative learning supports and written-numeric 
aspects’ (Fuson & Li, 2009) of addition procedures given in 
the two canonical South African texts. For both documents 
my primary focus was on the Foundation Phase (Grades R–3) 
and in the case of CAPS this extended to the Intermediate 
Phase (Grades 4–6). I limited my attention to ‘methods, 
techniques or strategies’ relating to formal written methods 
for addition calculations. I examined every page and took 
notes of multi-digit addition examples. Where the same 
method was repeated in a document I did not include it 
again, as my intention was not to examine frequency of 
occurrence. I then compared the examples offered in the two 
South African documents to each other, and to the research 
evidence presented from the literature. 

On receiving feedback from the peer review process for this 
article, I revisited both of the canonical texts again and 
engaged further with the literature. In addition I met with the 
government officials responsible for mathematics curriculum. 
This meeting provided further details about the purpose 
of the TMU framework and its status in relation to existing 
policy. Following this further research and personal 
engagements I realised the need to, firstly, clarify the conceptual 
distinctions I made with regard to my use of the terms 
‘procedure’, ‘strategy’ and ‘representation’, and, secondly, to 
include a learning programme (considering textbooks, 
learner  books and teacher lessons plans) perspective. 
Although the theoretical findings from academic research 
were of value, I felt I had been remiss in not considering how 
a couple of large-scale mathematics improvement interventions 
approached multi-digit addition.

In order to include some engagement with guidance 
relating to multi-digit addition as offered to teachers (rather 
than researchers), I purposively selected two well-known 
early grade mathematics learning programmes: Everyday 
Mathematics from the USA (see Bell et al., 2015) and 
Mathematics Recovery / Count Me in Too which originated in 
Australia and is now used in several countries (Wright, 
Martland, Stafford, & Stanger, 2006). I selected these two 
programmes as they are well documented, have been 
developed by universities over decades, were widely used, 
and have been empirically researched to show positive 
results at a large scale in primary schools mathematics. See 
Ward (2009) and Riordan and Noyce (2001) for Everyday 
Mathematics, and Wright et al. (2006) for Mathematics 
Recovery. These are also programmes which accord with the 
orientation to mathematics as teaching for relational, rather 
than instrumental, understanding (Skemp, 1987), adopted 
and made explicit in this article.

Clarifying the use of the terms ‘strategy’, 
‘procedure’ and ‘representation’
There is some conceptual fuzziness with regard to 
distinguishing a range of terms: procedure, method, model, 
strategy, algorithm, representation and technique. The various 

interpretations of, and contestations relating to, each of these 
terms is beyond the scope of this article. As such, I simply 
make explicit the ways in which these terms are used in 
the South African CAPS and TMU framework, and then how 
I use ‘strategy’, ‘procedure’ and ‘representation’ to analyse the 
documents, in this article. 

The CAPS explain that ‘in the early grades children should be 
exposed to mathematical experiences that give them many 
opportunities ‘to do, talk and record their mathematical 
thinking’ (DBE, 2012a, p. 10). This distinguishes the act of 
doing mathematics, from orally communicating about 
mathematics (to self and others), and from recording 
mathematics. The CAPS uses the term ‘techniques’ which it 
presents as a synonym for ‘methods or strategies’ offering a 
list of techniques appropriate for each grade in the Foundation 
Phase (DBE, 2012a, p. 21).

To me, the CAPS does not adequately distinguish a strategy 
(way of thinking), from a representation (how such thinking 
is recorded), from a procedure (a generalised step-by-step 
rule or process on how to create a particular representation to 
depict a particular strategy). Drawing on Kilpatrick, Swafford 
and Findell’s (2001) definition of mathematical proficiency, 
the TMU framework deliberately distinguishes strategies 
from procedures:

Procedures: The processes through which mathematics is done. 
Much of school mathematics involves procedural working 
which learners need to be able to perform fluently.

Strategies: The approaches used to do mathematical procedures 
and perform mathematical calculations. Learners should be able 
to use a variety of strategies and to devise their own strategies 
when they solve mathematical problems and do mathematical 
calculations. (DBE, 2018, p. 7)

I view a procedure as a specific step-by-step process which 
can always be followed to implement a particular strategy 
for  a calculation (and hence, over time, procedures can be 
performed fluently). Procedures may be followed mentally 
(as internal representations) or communicated using words 
(mathematics talk to self or others) or by drawings, number 
symbols, operations, gestures and so on (and so making use 
of external representations). 

The notion of a ‘representation’ as used in mathematics 
education becomes important here as this draws attention to 
the particular way in which a procedure is recorded:

As most commonly interpreted in education, mathematical 
representations are visible or tangible productions – such as 
diagrams, number lines, graphs, arrangements of concrete objects 
or manipulatives, physical models, mathematical expressions, 
formulas and equations, or depictions on the screen of a computer 
or calculator – that encode, stand for, or embody mathematical 
ideas or relationships... To call something a representation thus 
includes reference to some meaning or signification it is taken to 
have. (Goldin, 2014, p. 409)

Thomas (2014) argues that algorithms are a type of mathematical 
procedure: ‘the idea of an algorithm is closely related to what, 
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in mathematics education terms, are often called procedures, 
since these may be accomplished using algorithms’ (p. 37). 

I view a strategy as a mental process – a particular way of 
thinking or approach to a calculation. As such strategies 
are  internally represented to self, and then a strategy may 
be  externally represented to others in numerous ways. 
Importantly, there is not a one-to-one mapping between a 
strategy and a representation. A particular strategy may 
be  represented in multiple ways. For example to calculate 
34 + 7 = … a child may use a ‘count on in ones strategy’, and 
represent this in many ways: orally, using mathematics 
drawings or on a number line, as shown in Figure 2. How to 
make use of a particular representation to communicate a 
strategy can be broken down into a generalised step-by-step 
process which is referred to as a procedure.

The standard written algorithm for addition, as shown 
in  Figure 1, records the steps of a procedure, with a 
representation using digits arranged in base-ten place-value 
columns, where a strategy of ‘break up both numbers using 
place value’ is adopted for addition calculations. The break-
up-both-numbers strategy can be represented in other ways 
too, and the SWA is not the only representation to support 
this strategy.

Philosophical orientation
When critiquing canonical texts or policy documents, the 
critical commentary ought to make clear its philosophical 
positioning. There are underlying philosophies of what 
mathematics is, which mathematics is worth knowing, and 
how one might expect children to learn. These approaches 

are based on values and beliefs and necessarily differ by 
country, by national curriculum and by individual. It is 
therefore worthwhile to make explicit my philosophical 
orientation to mathematics learning. 

I take mathematics learning to involve learning ways of 
thinking. This approach has been succinctly defined by 
Carpenter, Franke and Levi (2003) as follows:

Learning mathematics involves learning ways of thinking. 
It  involves learning powerful mathematical ideas rather than 
a  collection of disconnected procedures for carrying out 
calculations. But it also entails learning to generate those ideas, 
how to express them using words and symbols, and how to 
justify to oneself and others that those ideas are true. (Carpenter 
et al., 2003, p. 1)

My view on mathematics learning is compatible with how 
mathematics is defined in the South African CAPS:

Mathematics is a language that makes use of symbols and 
notations for describing numerical, geometric and graphical 
relationships. It is a human activity that involves observing, 
representing and investigating patterns and qualitative 
relationships in physical and social phenomena and between 
mathematical objects themselves. It helps to develop mental 
processes that enhance logical and critical thinking, accuracy 
and problem-solving that will contribute to decision-making. 
(DBE, 2012a, p. 8)

Notice the slight shift in emphasis in these definitions. 
While Carpenter et al. (2003) attend to mathematics 
learning – which is described as a way of thinking – the 
CAPS attends to the mathematics itself, acknowledging it 
as part of human activity which helps to develop mental 
processes (ways of thinking).

It is worth emphasising that I take mathematics learning to 
involve learning powerful ideas rather than a collection 
of  disconnected procedures for carrying out calculations 
(Carpenter et al., 2003). My position is informed by the fact 
that the nature of mathematics (and what is worth learning) 
has changed as a result of near ubiquitous and cheap access 
to calculating devices (such as calculators, computers and 
mobile phones). This change in access to technology for 
calculations has implications for mathematics pedagogy:

In society today, there is general acceptance that ‘drill and 
practice’ of taught routines will not prepare children for life in 
technological society and that teaching approaches need to focus 
on the links that demonstrate the logical structure underlying 
numbers and number operations. Rather than being shown how 
to do written calculations, children are to be encouraged to work 
mentally to observe patterns to predict results and to talk about 
the connections that can be made. (Anghileri, 2000, p. 2)

This view has driven much of the mathematics reform 
agenda, as evident in the NCTM Standards in the USA 
(see, for example, Kilpatrick, Martin, & Schifter, 2003). Skemp 
(1987) made an important contribution to this debate by 
distinguishing instrumental understanding (‘rules without 
reasons’) from relational understanding (‘knowing what 
to  do and why’). The former involves ‘memorising which 

Representa�on Learner communica�on
of representa�on

Procedure

Oral and gestures 34 (in my head)
Counts on in ones
(using the small number 
sequence): 35, 36, 37, 38.
39, 40, 41 Keeps track of 7
counts using fingers.

Unit-wise ‘coun�ng on’, using
fingers
Start with the first number:34
(in my head) Count on in ones
(using the small number
sequence): 35, 36, 37, 38, 39,
40, 41
Keep track of second number
(7 counts) on fingers.

Mathema�cal 
drawing 

Unit-wise ‘coun�ng on’, using
tallies 
Start with first number: 34.
34 (in my head)
Count on in ones (using the
small number sequence): 35, 
36, 37, 38, 39, 40, 41
Keep track of second number
(7 counts) using marks in ones

Number line Unit-wise ‘coun�ng on’, using
hops on a number line
Draw a line
Start at with the first number:
34.
Hop in ones (small number
sequence).
Keep track of the second
number (7 hops) to reach 41.

34

34 + 7 = 41

+7

34 35 36 37 38 39 40 41

FIGURE 2: Exemplar representations and related procedures for a ‘count on in 
ones’ strategy for 34+7.
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problems a method works for and which not, and also 
learning a different method for each new class of problems’ 
(Skemp, 1987, p. 159), and is about developing ‘proficiency 
in  a number of mathematical techniques’ (p. 156). While 
methods (without understanding) may be potentially useful 
in the short term, in the longer term this is quite detrimental, 
and generally involves conceiving of mathematics as a set of 
isolated, unrelated set of techniques which should be 
memorised (Star, 2014, p. 305).

The TMU framework emphasises teaching mathematics with 
‘understanding’, which could refer to either relational or 
instrumental understanding. However, the TMU framework 
refers to a purposeful move to conceptual understanding 
rather than memorisation of procedures in this extract:

Although the four key dimensions (conceptual understanding, 
mathematics procedures, strategic competence, and reasoning) 
are interdependent and should be properly linked to optimise 
effective teaching and learning of mathematics, it could be 
argued that more emphasis should be placed on conceptual 
understanding since this is the metaphorical foundation on 
which all other dimensions build. The emphasis on conceptual 
understanding is a purposeful move to address the common 
teaching and learning practice which is characterised 
by  memorisation of mathematical procedures with little 
understanding of how they were derived, why they work and 
when they are relevant. (DBE, 2018, p. 13)

Further evidence of support for relational rather than 
instrumental understanding appears in other parts of the 
TMU framework too:

Modern societies and economies are in a constant state of flux. 
It is no longer sufficient for learners only to learn how to 
reproduce the steps in the calculations that they are shown by 
teachers. (p. 15)

If children learn procedures without understanding, their 
knowledge may be limited to meaningless routines. (p. 16) 

Mathematics is not simply a collection of isolated procedures 
and facts; it consists of a web of interconnected concepts and 
relationships. If learners are taught mathematics as a series of 
disconnected procedures that need to be learnt off by heart, 
they are likely to experience mathematics as meaningless. It 
will also mean that they have more to memorise which deprives 
them of the opportunity to develop higher order thinking skills. 
(p. 18)

These quotes reveal that the TMU framework hopes to 
contribute to a shift away from reproduction of steps to 
calculations shown by teachers and meaningless routines, 
towards mathematics as a web of interconnected concepts 
and relationships. 

The attempt to shift away from learning mathematics as 
instrumental understanding is not new in South Africa. 
Spending significant time on mastering taught written 
routines for quick and accurate calculation in school 
mathematics has been questioned for over three decades. 
Olivier (1992) argued that ‘when the emphasis is on promoting 
understanding of number and algorithmic thinking, and not 

on speed and accuracy, the standard contracted and refined 
algorithms should be abandoned’ (p. 217). This forms part 
of global debates on whether to include written algorithms 
at all in mathematics curricula. Kamii and Dominick (1997) 
made a strong appeal ‘that the time has come to stop 
teaching the algorithms and, instead, encourage children to 
make the mental relationships necessary to build number 
sense’ (p. 60).

I do not share Kamii and Dominick’s (1997) view that 
teaching written algorithms is irrelevant and should not be 
part of primary curricula. In this regard I follow Kilpatrick et 
al.’s (2001) conception of having five strands of mathematical 
proficiency: conceptual understanding, procedural fluency, 
strategic competence, adaptive reasoning and a productive 
disposition. This framing recognises that procedural fluency 
is a valuable strand of mathematical proficiency. My reasons 
for adopting this orientation are varied.

Firstly, I concur with Olivier (1992) that promoting procedural 
fluency in the use of the standard contracted and refined 
algorithms (SWA) should be abandoned. Rather, Olivier 
advocates that the learning of calculation should promote 
understanding of number, algorithmic thinking and cultural 
transmission. I also think there is intrinsic value in studying 
a variety of algorithms and socio-cultural mathematical 
artefacts developed in particular contexts for particular 
periods of time. This value has been strengthened with the 
future-looking focus on coding and the ‘algorithmics’ which 
underlies artificial intelligence.

Secondly, having a reliable ‘go-to’ algorithm for enacting a 
particular calculation strategy (strategic competence) frees 
up time and attention for other important mathematical 
processes such as adaptive reasoning, proof and explanation. 
I emphasise that I do not consider the ‘go-to’ algorithm to 
imply that the same strategy and representation must be 
used by all children in a class. I expect that children have 
their own go-to algorithm which is appropriately efficient 
for their grade level.

Thirdly, if we consider teachers to be products of their own 
mathematical learning experiences (see Roberts, 2017), then 
the mathematical procedures that teachers have already 
automated is a resource which they bring with them into 
their own (re-)learning of mathematics. Offering expanded 
written methods using columns (such as the ‘write all 
totals’  algorithm discussed below) would build directly on 
South African teachers’ existing knowledge and skills about 
column algorithms.

Discussion
What does research offer in relation to when, 
and how, to approach teaching SWA? 
I identified what, in my view, are fundamental insights about 
the developmental progression of young children’s sense 
of numbers from counting to efficient calculation strategies. 
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Each key insight is briefly discussed in turn, drawing on the 
literature informing it. I first consider the various strong 
justifications to delay the introduction of the SWA as a taught 
way of recording the ‘break-up both numbers’ strategy. I then 
discuss the important considerations on how to use columns 
methods (of which SWA is a very condensed form) when a 
‘break up both numbers’ strategy is used.

Insight 1: The strategies that children use for single-digit addition 
and subtraction are well documented. 

Researching young children’s thinking in a project referred to 
as Cognitively Guided Instruction, Carpenter and Fennema 
(1999) identified three calculation strategies commonly used 
for solving additive relation problems and also considered 
these in a hierarchy of mathematical sophistication: direct 
modelling, counting, and calculating. Direct modelling refers 
to the use of concrete apparatus such as manipulatives (like 
counters, or fingers) to enact a situation that closely resembles 
the problem situation. By counting, Carpenter and Fennema 
refer to strategies that make use of unit counting to calculate. 
For ‘counting in ones’, calculation strategies vary in levels of 
sophistication:

•	 Count all.
•	 Count on (from the first number, and then from the larger 

number).
•	 Count up to reach a target.

In this case counting strategies refer to unit counting, rather 
than counting in groups (such as twos, fives or tens). 
Calculating refers to more sophisticated strategies which do 
not use unit counting. Calculating strategies may use:

•	 Counting in groups or counting on in groups (using the 
medium and large number sequences of counting in tens 
and hundreds, from any number).

•	 Building on known facts (often knowledge of bonds of 
five and ten to ‘fill up or make tens’ and doubling or 
halving).

•	 The relationship between the numbers in the calculation 
for solving.

All of these single-digit calculation strategies are also used for 
multi-digit calculations. At first learners need to ‘fill up the 
ten’ for calculations resulting in a solution that is more than 
ten. Later the same strategies are used to fill up any multiple 
of ten. A ‘make a ten’ (or multiple of ten) strategy is included 
in ‘building on known facts’. Knowledge of the bonds of ten 
(the whole number pairs which sum to 10: 1 and 9, 2 and 8, 3 
and 7, etc.) is therefore central, as is knowledge of breaking 
down single digit numbers. Using ‘the relationship between 
numbers’ includes solving a subtraction calculation using an 
unknown addend. So 9 – 7 = …, is solved as 7 + … = 9. Here 
any addition or subtraction fact is seen as belonging to a 
family of equivalent number sentences. In line with this 
trajectory, Fuson and Li (2009) provide levels for the counting 
pathway into number making use of: count all, count on, 
‘make a ten’ and doubles as key methods.

It is important to notice that these trajectories do not expand 
on the shift into formal written calculations. Their focus is 
primarily on the early grades (R–3).

Insight 2: Children’s shift from counting in ones to efficient 
calculation strategies takes years

Efficient calculation strategies – which include use of formal 
written algorithms – take more than 3 or 4 years of formal 
schooling. From the Netherlands, Van den Heuvel-Panhuizen 
(2008) provides a ‘learning-teaching trajectory’ of young 
children’s likely progression for whole number calculation, 
but this trajectory makes specific reference to the expected 
progression towards more structured representations of 
number and additive relations. Structured representations 
make use of quick-5, quick-10 and quick-100 arrangements, 
which refer to drawings or arrangements in which the objects 
or markings are spatially arranged so that it is quick and easy 
to identify groups of 5 or 10 or 100. Importantly such a 
learning-teaching trajectory is not seen as strictly linear but 
includes discontinuities, individual differences in learning 
processes and so each level has a ‘certain bandwidth’ (Van 
den Heuvel-Panhuizen, 2008, p. 13).

Working within this Dutch tradition, Treffers and Buys (2008) 
provide attainment targets which are viewed as ‘benchmarks’, 
or reference points against which the development of children 
can be assessed. The teaching-learning trajectory in Table 1 
outlines 10 broad levels of development from counting to 
calculating, adapted from Treffers (2008a), Treffers (2008b) 
and Treffers and Buys (2008) in Van den Heuvel-Panhuizen 
(2008).

The Treffers and Buys (2008) framework (Table 1) is a coarse-
grained delineation of development levels which spans 
7 years. When focusing on two-digit addition, levels 6–10 in 
the Treffers and and Buys (2008) framework are relevant. 
Building on this tradition, Kühne, Lombard and Moodley 
(2013) developed a ‘learning pathway for number’ for 
the  South African context which reduced the 10 levels to 
4  stages spanning from prior to schooling to Grade 5. 
In  its  summary form, the ‘learning pathway for number’ 

TABLE 1: Treffers and Buys’s trajectory from counting to calculating.
Level Descriptor Approximate age

1 Learning to count Approximately age 2
2 Context-bound counting-and-calculating -
3 Object-bound counting-and-calculating -
4 Towards pure counting-and-calculating via symbolisation -
5 Calculation by counting where necessary by counting 

materials
-

6 From counting to structuring -
7 Calculation by structuring with the help of suitable 

models
-

8 Formal calculation up to 20 using numbers as mental 
objects for smart and flexible calculation without the 
need for structured materials 

-

9 Counting up to 100 -
10 Calculating up to 100 Approximately 

age 9 (Grades 3–4)

Source: Van den Heuvel-Panhuizen, M. (2008). Children learn mathematics: A learning-
teaching trajectory with intermediate attainment targets for calculation with whole numbers 
in primary school. Rotterdam: Sense Publishers
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is  primarily organised by an increasing number range. 
However, in its detail it refers back to the Treffers and Buys 
framework and its reference to structuring (Kühne et al., 
2013, p. 83).

This is not the first, nor the only, learning-teaching trajectory 
for number concept development. For example, Murray 
and Olivier (1989) formulated a theoretical model describing 
four increasingly abstract levels of types of computational 
strategies with two-digit numbers in a given range: count 
all, counting on, decade wise counting (the medium number 
sequence), but with a multi-digit conception, and condensed 
column methods (pp. 5–7). In addition to supporting the 
global evidence that the shift from counting to calculating 
takes time (as evident in their South African empirical 
data), Murray and Olivier make an important observation: 
‘Level 3 understanding provides sufficiently powerful 
computational strategies, so that the introduction of the 
standard written algorithms may be delayed, if they should 
be taught at all’ (p. 9).

Insight 3: As South African children learn base-ten place value 
in  a  multilingual context for number names, deep conceptual 
understanding may take additional time

The South African context is important here: most Foundation 
Phase children learn mathematics in African languages and 
are introduced to English as an additional language. Starting 
in Grade 2 children are expected to count orally with meaning 
up to 100, and to write the number symbols up to 100. 
Counting orally with meaning up to 100 means that children 
have to create an association between five aspects of each 
number: the visual stimulus, the chain of sounds for the 
spoken number word, the ten-wise place value structure of 
the number words, the written number words, and the 
number symbols (see Fuson & Li, 2009; Fuson et al., 1997). 
They then change to learning mathematics in English in 
Grade 4.

Figure 3 illustrates the five aspects of the number 23, in the 
South African language context, where an African language 
(such as isiXhosa or Sesotho) as well as English proficiency 
with multi-digit numbers is required.

Using multi-digit number names with meaning requires 
children to notice word parts and associate these with 
decades and ones (Fuson & Li, 2009). The number words 
for a multi-digit number are linked in a chain of sounds. In 
English, the number symbol ‘34’ is said and heard as a 
continuous chain of sounds: ‘thir-ty-four’. This often leads 
to children linking (concatenating) the number symbols 
when writing multi-digit numbers. So thirty-four is written 
incorrectly as ‘304’. Place value is part of the how numbers 
are named in some African languages (as with Mandarin). 
This is not the case for English. When teaching in English, 
children must first learn that ‘eleven’ means ‘1 ten and 1’, 
and twelve means ‘1 ten and 2’ etc. In English the base-ten 

place value structure of numbers is not explicit in the 
English number names. The words ‘three-tens-four’ would 
be more regular and transparent than ‘thirty-four’. Similarly, 
‘one-ten-three’ would be more regular and transparent than 
‘thirteen’.

Becoming secure with these five associations between the 
visual stimuli (of the real or imagined aggregate, the written 
number word, the written number symbol) and oral stimuli 
(of the chain of sounds for the spoken number name) takes 
time. When reading and writing is not yet fluent this is more 
difficult. When two languages are at play, additional time is 
required. All of these associations – together with fluency in 
reading and writing number symbols and operators – are 
prerequisites for formal written calculation methods. As a 
result, the introduction of formal written methods ought to 
be delayed until use of written number symbols and spoken 
number names is secure.

Insight 4: The standard written algorithm has been found to be 
error prone and to support an incorrect ‘single-digit-conception’ of 
place value

There is much research that coheres on the finding that using 
a column method for addition and subtraction encourages a 
digit-wise conception rather than a multi-digit conception of 
large numbers. Fuson et al. (1997) refer to a ‘concatenated 
single-digit conception’. The term ‘concatenate’ derives 
from the Latin ‘con-’ (link) and ‘catenare’ (chain). In this 
article I  use the simple phrase ‘digit-wise’ to refer to 
‘concatenated single-digit’. With a digit-wise conception 234 
is conceptualised as ‘two-three-four’ where each digit does 

Aspect S�mulus English isiXhosa Sesotho

1

A visual s�mulus depic�ng a
number of objects.

This could be imagined from
situa�on or a story problem,
or shown visually as concrete
objects, iconic pictures of a
set of objects, or a more
indexical depic�on of the
objects.

2
A chain of sounds which
makes up the number word

twen-ty-
three

a-ma-shu-mi
-a-ma-bi-ni-
a-nan-ta-thu

ma-sho-me
-a-ma-be-li-
a-me-tso-e-
me-ra-ro

3

The 10-wise place value
structure implicit in the
number name, number
symbol

2 tens and 3 units
(Transparent in number words for
isiXhosa and Sesotho, but not
transparent for English)

4

The number name wri�en
using le�ers of the alphabet
and pronounced using a
chain of sounds.

Twenty-
three

amashumi
amabini 
anantathu

mashome a 
mabeli a
metso e 
meraro

5
A mul�-digit number symbol
making use of only 10 digits
(0, 1, 2..., 8, 9)

23

FIGURE 3: Five aspects of oral counting multi-digit numbers with understanding.
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not have its actual value. With a multi-digit conception, the 
magnitude of the number is explicit and 234 is conceptualised 
as ‘2 hundreds 3 tens and 4 ones’. 

Various studies have shown that children may have an 
adequate multi-digit conception which they use for addition 
and subtraction calculations that are presented horizontally 
or in word problems. However, when presented with the 
same calculation vertically, they use a digit-wise conception 
and make errors (Fuson et al., 1997, citing Cobb and Wheatley, 
1988, Davis, 1984, and unpublished South African data from 
Murray). These findings cohere with the low success rates in 
using the SWA evident among South African children 
(Murray & Olivier, 1989).

Common errors in using the column algorithm are also 
documented by Kamii and Dominik (1997), including the 
misconception of digit-wise conceptions of number for 
calculating highlighted by Fuson et al. (1997). To avoid the 
digit-wise misconception, calculation methods for arithmetic 
emphasise a holistic concept of the numbers, where ‘numbers 
are kept as wholes in any partition’ (p. 41). As a result, in the 
early grades teachers are advised to avoid procedures that 
treat individual digits within a number independently. This 
caution applies to the SWA where individual digits are 
treated independently. Olivier (1992) argued that the SWA is 
prone to error ‘because the techniques are difficult to 
understand relationally’, explaining that regrouping (at 
times referred to carrying or borrowing) is probably the 
source of most errors with SWA (p. 217). 

In their small-scale study of 21 Grade 4 students, Flanders, 
Torbeyns and Verschaffel (2013) found greater speed and 
accuracy when the written algorithm was used in comparison 
to mental computation. Significantly, this study was 
conducted with fourth graders (beyond Foundation Phase), 
and within an instructional culture ‘wherein routine mastery 
of written algorithms was emphasised’ (p. 139). In contrast, a 
recent study in France used a single subtraction word 
problem but had a larger sample of 2 619 Grade 2 learners 
(Fischer et al., 2019). It found that the column method was the 
seventh most accurate out of the 11 strategies and associated 
representations used by the children. The authors found that 
‘a great number of students applied blindly the column 
procedure’ with the most successful students using multiple 
procedures. As a result, Fischer et al. (2019) argued for 
‘delayed teaching of the written algorithm’ (p. 13).

I therefore note that the SWA in the early grades (Grades R–3) 
has been found to encourage the incorrect digit-wise 
conception of the place value of multi-digit numbers and has 
been found to be error prone. Retaining numbers as whole 
numbers (such as 37 being 30 and 7) and not as digits (3 tens 
and 7 ones) in any partition is encouraged to avoid the digit-
wise conception of multi-digit numbers. 

Insight 5: Cognitive load is an important consideration when 
reflecting on ways of recording the ‘break up both numbers’ strategy.

Given the above insights, it is not surprising that if it is to be 
used, the introduction and development of SWA needs to 
be slow and incremental to ensure that a robust conceptual 
understanding of place value is first established. Several 
alternative representations to record a ‘break up both 
numbers strategy’ appear in the education literature. Some of 
these make reference to manipulatives or concrete materials. 
Shifts towards arranging discrete objects or using structured 
materials in 5-wise and 10-wise groups are encouraged 
(Roberts, 2015; Saka & Roberts, 2018).

In my experience, particularly with an urban small class 
setting, disruptive learner behaviour was a significant feature 
of the mathematics classroom (See Roberts & Venkat, 2016). 
Using manipulatives in very large classes (of 45 or more) 
would also be unfeasible. The same was evident in the 
USA, where in a Foundation Phase intervention, Fuson and 
Li  (2009) found that the use of manipulatives (bottle tops, 
dienes blocks, counters) created classroom management 
issues and were difficult to show to a whole class to explain 
multi-digit addition and subtraction. They therefore turned 
to using concrete materials only initially (to make 10-sticks or 
strips and 100-squares on centimetre dot grids). This initial 
introduction soon moved into making sketches of quick-10s 
and quick-100s using 5-wise groups so that a viewer could 
see quickly (at a glance) how many there were in a drawing, 
as shown in Figure 4.

Futon and Li’s (2009) argument and suggested structured 
drawings draw on a review of Asian texts (Chinese, Korean 
and Japanese) as well as their empirical research with 
children using the Math Expressions texts in the USA. Fuson 
and Li (2009) offer various written methods for formal 
written calculations, but argue that the ‘new groups below’ 
and ‘write all totals’ (with its horizontal variation of 
‘expanded notation form’) representations shown in Figure 5 
are the most mathematically desirable and accessible addition 
methods. 

Rather than have children overload their working memory, 
teachers should encourage children to:

•	 record intermediate steps (rather than expecting these to 
be held mentally)

•	 work flexibly in terms of either from ‘right to left’, or ‘left 
to right’

•	 use structured drawings, together with expanded written 
methods.

Source: Adapted from Fuson, K.C., & Li, Y. (2009). Cross-cultural issues in linguistic, visual-
quantitative, and written-numeric supports for mathematical thinking. ZDM: The International 
Journal on Mathematics Education, 41, 793–808 (p. 801). 

FIGURE 4: Mathematics drawings as a representation of place value. 

3 hundreds 7 tens  9 ones1 ten is 10 ones 10 tens is 100 ones
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Methods that record intermediate steps (rather than 
expecting these to be held mentally), and that allow for 
flexible working in terms of from right to left, or left to right, 
are advocated for. 

Insight 6: Mathematics Recovery and Everyday Mathematics 
both introduce multi-digit addition with invented strategies, then 
using a ‘break up the second number’ strategy (and only Everyday 
Mathematics offers expanded written methods for communicating 
the ‘break up both numbers’ strategy).

The two learning programmes reviewed, which have shown 
positive effects at a large scale, both prioritise learner 
invented strategies when operations are first introduced. 
They then guide learners towards multi-digit addition using 
a ‘break up the second number’ strategy.

In the Mathematics Recovery learning programme, Wright 
et al. (2006) make clear the prerequisite knowledge required 
for a child to be able to add and subtract multi-digit numbers, 
including: counting by tens off the decades (counting using 
the medium number sequence from any number), counting 
by hundreds off the hundreds (counting using the large 
number sequence from any number), and adding tens to any 
two-digit number. Their teaching activities make use of a 
‘break up the second number strategy’ which can be 
represented on an empty number line or using bundling 
sticks (manipulatives in ones, tens and hundreds). Wright 
offers no teaching activities for the ‘break up both numbers 
strategy’.

The authors of Everyday Mathematics are explicit in 
describing the first introduction to algorithms as an ‘invented 
procedures phase’: ‘When they are first learning an operation, 
Everyday  Mathematics students are asked to solve problems 
involving the operation before they have developed or 
learned systematic procedures for solving such problems’ 
(Bell et al., no date, p. 4). In the Everyday Mathematics learning 
programme, the introduction of written algorithms for 
addition and subtraction are introduced in Grade 2, but 
proficiency in the use of at least one algorithm for each 

operation is only expected in Grade 4. The SWA is not taught 
(although it may be introduced by children, via their parents). 
Interestingly, after its first few iterations, the authors 
of  Everyday Mathematics introduced a common, widely 
accessible algorithm for each operation and considered this 
to be an important feature for classroom discussion. While 
children should invent and use a wide range of strategies, 
they chose to ensure that all children demonstrated familiarity 
with the ‘write all totals’ algorithm as its focal algorithm for 
addition (see Figure 6). 

Notice that ‘write all totals’ is a four-step procedure (add the 
100s, add the 10s, add the 1s, add partial sums) which is 
recorded using columns. A digit-wise conception is avoided, 
as the 2 hundreds + 4 hundreds is recorded as 600 (and not 
as 6 in the hundreds column). Similarly 60 + 80 is recorded as 
140 and not as 1 hundred, 4 tens and 0 ones. This representation 
in columns also allows learners to work either from left to 
right (starting with the 100s), or from right to left (starting 
with the 1s). Bell et al. (2015) note that children are inclined 
to work from left to right (when not directed by teachers to 
work from right to left), and that allows children to ‘begin the 
problem-solving process with a reasonable estimate of what 
the final answer should be’ (p. 8). This point is identified by 
Kamii and Dominick (1997) when they strongly asserted 
their rejection of algorithms:

Algorithms are harmful to children’s development of numerical 
reasoning for two reasons: (a) They ‘unteach’ place value and 
discourage children from developing number sense, and (b) 
They force children to give up their own thinking. Children’s 
natural way is to think about numbers from left to right. 
However, algorithms require them to give up this thinking and 
to proceed from right to left and to treat each column as ones. 
(p. 58)

Everyday Mathematics also offers another variation on the 
SWA (but not as its focal algorithm) but all addition of partial 
sums precedes any exchanges. See Figure 7.

The procedure here also allows flexible working from left to 
right, or from right to left. Notice here that there are two 
important reductions of cognitive load (compared to the 
SWA). Firstly, all addition is done before any exchanges take 
place. So rather than alternating processes (add then exchange 
as needed) the child can focus first on adding, and only later 
on exchanging. Secondly, the way of recording exchanges is 
documented in the relevant column to try and avoid a digit-
wise conception of place value (so 16 ones is recorded in the 
ones column, before it is exchanged to be 1 ten and 6 ones).

Source: Adapted from Fuson, K.C., & Li, Y. (2009). Cross-cultural issues in linguistic, visual-
quantitative, and written-numeric supports for mathematical thinking. ZDM: The 
International Journal on Mathematics Education, 41, 793–808 (p. 803). https://doi.
org/10.1007/s11858-009-0183-7 
SWA, standard written algorithm.

FIGURE 5: Mathematics drawing and variations on SWA.

Write all totals Expanded nota�on form

189 = 100 + 80 + 9
157 = 100 + 50 + 7

= 200 + 130+ 16
= 346

+

=  346

New groups below

189

189

189

200
130

16
346

157+

157+

189

200
130

16

346

157+

1 1

157

236
346

+

Source: Adapted from Bell, J., Bell, M., Bretzlauf, J., Dillard, Dairyko, M.A., Hartfield, R., … 
Saeker, P. (2015). Everyday mathematics grades 1-3. University of Chicago School 
Mathematics Project. Columbus, OH: McGraw-Hill Education. Retrieved from from http://
everydaymath.uchicago.edu/

FIGURE 6: Example of ‘Write all totals’ or partial sums algorithm in Everyday 
Mathematics.

189

200
130

16
346

157+
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How do the teacher guidelines on addition 
calculation strategies in the CAPS accord with, and 
differ from, those offered in the TMU framework?
As a result of the above distinction between strategy 
and  representation, when analysing the CAPS and TMU 
framework, strategies for addition were distinguished from 
the various representations that could be used as means of 
communication, as shown in Table 2.

The addition strategies (and their related grade progression) 
offered in the CAPS are shown in Figure 8.

The strategies, and the related progression, in CAPS are 
recognisable from the mathematics education literature. 
There  are three important specifications relating to the 
expected progression for addition and subtraction techniques 
which are clearly stated in the CAPS and then exemplified in 
the clarification notes offered to teachers:

•	 Adding and subtracting are considered together – with 
emphasis placed on using these operations as inverses. 
As such the structural relationship between a number 
triple (like 5-3-2) is made explicit. Teachers are expected 
to emphasise that subtraction can be checked using 
addition (5 – 3 = …, can be considered as 3 + … = 5). There 
is therefore an emphasis on families of related number 
sentences for each addition or subtraction fact.

•	 In Foundation Phase ‘break down the second number’ is 
a strong focus as this can be utilised for both addition and 
subtraction without the need for regrouping.

•	 Adding and subtracting in columns is delayed to Grade 5. 
In term 1 a ‘write all totals’ representation for the 
‘break up both numbers strategy’ is presented. From term 
2 onwards this is complemented by a SWA. 

More detail about the CAPS suggested progression for 
addition and subtraction strategies is evident in the 
clarification notes for teachers. Figure 9 documents the 
addition strategies presented in the Foundation Phase 
(DBE, 2012a) and Intermediate Phase (DBE, 2012b) CAPS 
clarification notes by grade. To facilitate comparison, I have 
included the page numbers in the TMU framework that 
depict the same strategies (DBE, 2018). 

It should be noted, however, that progression in relation to 
the strategies for addition and subtraction (and the flexible 
use of various representations to record these strategies) is 

not made explicit in the CAPS document. It only becomes 
apparent when the entire document is analysed in relation to 
the expectations at each grade level.

When comparing CAPS to the TMU framework it should be 
noted that the latter only offers a limited number of exemplar 
tasks. The examples chosen for Foundation Phase relate to 
addition and subtraction of whole numbers, whereas the 
examples chosen for Intermediate Phase relate to rational 
numbers (common fractions in particular). It is therefore to 
be expected that the TMU framework is less comprehensive 
than the CAPS. It is nevertheless instructive to note which 
example types were omitted from the TMU framework 
exemplars. The five main strategies in the CAPS each feature 
in the framework. The particular strategies not referred to in 
the TMU framework are made explicit in Table 3.

The TMU framework has much in common with the CAPS. 
By way of example, both the CAPS and the TMU framework 

TABLE 2: Strategies and representation for addition in CAPS.
Strategies for addition calculations Representations of addition calculations 

(how the strategy is recorded)

1. Count all 
2. Count on
3. Break down the second number
4. Break down both numbers
5. Use known or derived facts

- Concrete apparatus (counters, bead 
- strings, abaci)
- Number lines (structured or empty)
- �Number sentences using number symbols 

and operations
- A whole-part-part diagram
- A triad or number triple
- Calculator
- Horizontal number sentences
- Column or vertical methods

Source: Adapted from Department of Basic Education. (2012a). Curriculum and assessment 
policy statement: Mathematics foundation phase (pp. 14–23). Pretoria: DBE
CAPS, Curriculum and Assessment Policy Statements

Source: Adapted from Bell, J., Bell, M., Bretzlauf, J., Dillard, Dairyko, M.A., Hartfield, R., … 
Saeker, P. (2015). Everyday mathematics grades 1-3. University of Chicago School 
Mathematics Project. Columbus, OH: McGraw-Hill Education. Retrieved from from http://
everydaymath.uchicago.edu/
SWA, standard written algorithm.

FIGURE 7: Everyday Mathematics variation of the SWA.

H
1
1

2 13
14
4

16
6
6

2
3

+
8
5

9
7

T O

Source: Adapted from Department of Basic Education. (2012a). Curriculum and assessment 
policy statement: Mathematics foundation phase (pp. 14–23). Pretoria: DBE
CAPS, Curriculum and Assessment Policy Statements.
†, In CAPS this strategy is referred to as ‘round off in tens’
‡, ‘Rounding off and compensating’ refers to examples like 37 + 9, where 9 is rounded off to 
10, and then 1 is subtracted to compensate. So 37 + 9 = 37 + 10 – 1.

FIGURE 8: Grade progression for addition calculation strategies in CAPS.

Founda�on Phase Intermediate Phase

Strategies (as labelled and referred
to in CAPS) Gr

ad
e 

R

Gr
ad

e 
1

Gr
ad

e 
2

Gr
ad

e 
3

Gr
ad

e 
4

Gr
ad

e 
5

Gr
ad

e 
6

1. Count all

Break down both numbers using 
place value 

p. 21

2. Count on p. 23

3. Break down the second number p. 21 p. 14

Fill up the tens † p. 21

Rounding off and compensa�ng ‡ p. 14

4. Break down both numbers p. 14

Break down both numbers using
expanded nota�on

p. 21 p. 14

p. 14

Es�ma�on p. 14

5. Use known or given facts

Doubling and halving p. 21 p. 14

Using addi�on and subtrac�on as
inverses

p. 14

Representa�ons or tools
Number lines p. 21; p. 23 p. 14

Adding and subtrac�ng in columns p. 14

Calculator p. 14
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recognise the need for learners to use any strategy, but that 
teachers should encourage them away from unit counting, 
towards more efficient strategies, and ways of recording 
calculations.

The TMU framework offers an example of 29 + 15 = … where 
learners are expected to ‘use any method’. It also includes 
examples of ‘break up both numbers’ strategy using 
manipulatives (p. 26 and p. 27), ‘break up the second number 
in expanded notation’ strategy recording this using number 

sentences and on a number line (p. 27), and ‘break up the 
second number’ to fill up the tens, recording this on a number 
line (p. 28).

A major distinction between the TMU framework and CAPS 
is the suggestion in the TMU framework for teachers to 
introduce the SWA in the Foundation Phase (Grades R–3). 
In the TMU framework the SWA is offered as a way to record 
34 + 37 = … using a ‘break up both numbers’ strategy (shown 
in Figure 10). 

Strategies

1. Count all

(a) build up and break down
      collec�ons 

The framework (pp. 23–24, p. 32)

(b) build up numbers in ones

2. Count on

(a) in ones

Grade R

p. 19

p. 18

pp. 70, 201

(b) from the bigger

(c) in tens and ones

3. Break up the second number

(a) fill up the tens†

The framework (pp. 27, 31)

(b) into any parts

(c) use expanded nota�on

The framework (p. 30)

4. Break up both numbers

(a) use place value horizontally

The framework (p. 32)

(b) use place value ver�cally
      (expanded method)

The framework (p. 32)(c) use place value ver�cally (SWA) 

5. Build on known or given facts

(a) the rela�onship between 
      addi�on and subtrac�on

(b) near doubles

The framework (p. 30).

The framework (p. 32).

The framework (p. 31)

The framework (pp.23–24)

(c) halves

(d) pairs that make ten

The framework (p. 32).

(e) rounding off and compensa�ng

(f) use given facts (inverse 
     rela�onship and ‘if…  then…’)

Grade 1

pp. 142, 109, 110, 143

p. 140

pp. 109, 140

pp. 141, 144

p. 168

p. 194 

pp. 144, 169

p. 169

p. 77

Grade 2

p. 320

p. 169

pp. 229, 261, 289, 319

pp. 269, 320

pp. 321, 320 

pp. 229, 266, 320

p. 263

p. 266

p. 263

pp. 60, 77, 194, 230

Grade 3

pp. 390, 422, 424

pp. 229, 361

p. 347

pp. 390, 421

pp. 389, 390, 353, 421

pp. 356, 393

p. 391

pp. 354, 390, 361, 422

pp. 355, 391

p. 323

(g) formal reference to commuta�ve
      and associa�ve proper�es

Grade 4 

p. 66

pp. 44, 70

p. 44

p. 44

pp. 36, 40 

p. 52

p. 52

pp.36, 40

p. 41

Grade 5

p. 133

p. 123

pp. 134, 157

p. 158

p. 182 (term 3)

pp.123, 127

p. 123

p. 123

po. 123, 135

p. 118

Grade 6 

p. 223

p. 224 (term 1)

p. 223

p. 222

p. 222

p. 222

pp. 222, 223

p. 218

Source: Adapted from Department of Basic Education. (2012a). Curriculum and assessment policy statement: Mathematics foundation phase. Pretoria: DBE; Department of Basic Education. 
(2012b). Curriculum and assessment policy statement: Mathematics intermediate phase. Pretoria: DBE; Department of Basic Education. (2018). Mathematics teaching and learning framework for 
South Africa: Teaching mathematics for understanding. Pretoria: DBE
CAPS, Curriculum and Assessment Policy Statements; TMU, Mathematics teaching and learning framework for South Africa: Teaching mathematics for understanding; SWA, standard written 
algorithm.
†, This may also be called ‘make a ten’ or ‘bridge ten’.

FIGURE 9: Addition strategies presented in CAPS clarification notes and the TMU framework.
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This differs from the guidance offered to teachers in the 
CAPS, where any use of written methods in columns is 
delayed to Grade 5 (DBE, 2012b, p. 157). It is only in term 3 of 
Grade 5 that the SWA appears in the CAPS guidelines for the 
first time, as shown in Figure 11.

In addition, in the TMU framework the SWA is the only 
representation for the ‘break up both numbers’ strategy, and 
no examples of expanded written methods are offered. As 
such the TMU makes a major departure from CAPS when it 
suggests that teachers should make use of concrete apparatus 
to work with ‘breaking down both numbers’ into expanded 
notation in order to introduce the SWA in Foundation Phase. 

Conclusion
I have shown that both the CAPS and the TMU framework 
emphasise the need to teach mathematics for understanding. 
I have argued that the desired understanding is relational 
understanding (‘knowing what to do and why’) not 
instrumental understanding (‘rules without reasons’). I have 
argued that this is in line with the mathematics reform agenda 
where the desired transformation of mathematics teaching 
is  away from teaching meaningless procedures towards 
teaching mathematics that builds directly on learners’ entry 
knowledge and skills, provides opportunities for inventions 
and practice, focuses on the analysis of (multiple) methods, 
and expects learners to provide explanations. 

I point out that the CAPS does not clarify the distinction 
between strategies, representations and procedures. I suggest, 
drawing on the TMU framework, that distinctions between a 
strategy (way of thinking), a representation (how such 
thinking is recorded), and a procedure (a generalised step-
by-step rule or process on how to create a particular 
representation to depict a particular strategy) ought to be 
made explicit. I also note that the expected progression in 
relation to the strategies for addition and subtraction (and the 
flexible use of various representations to record these 
strategies) is not made overt in the CAPS document and is 
only evident when a grade by grade level analysis of 
strategies is conducted.

I make explicit my belief in the value of inculcating both 
conceptual understanding and procedural fluency. I emphasise 
that this does not mean I think algorithms should be the 
starting points of mathematical learning. Nor does my belief 
imply that the elegant and formal SWA ought to be a desired 
destination for all children. In fact, we know that the highly 
condensed SWA was used in a time when accuracy and 
efficient were most prized. In our current context – with 
ubiquitous access to calculators (in computers and mobile 
phones) – efficiency and accuracy are not as highly valued. 
The process of inventing, refining and reflecting on algorithms 
coupled with the ability to communicate with others about 
multiple strategies, and various ways of representing these, is 
of far greater importance and value. It is for this reason that 
I  attend carefully to how I think formal written algorithms 
ought to be introduced to young children, and why I attend to 
various options for recording these (likely to suit a wider range 
of children), which I present in Appendix 1. 

We know from both local and international literature that 
early introduction of the SWA for addition and subtraction 

TABLE 3: Appearance of Foundation Phase strategies in CAPS and TMU framework.
Main  
strategies

In both CAPS and the 
TMU framework

Only in CAPS Only in TMU 
framework

Count all •	 build up and break 
down collections

•	 build up numbers 
in ones

-

Count on •	 in ones •	 from the bigger
•	 in tens and ones

-

Break up the 
second number

•	 fill up the tens
•	 use expanded notation

•	 into any parts -

Break up both 
numbers

•	 use place value 
horizontally

- •	 use place value 
vertically (SWA)

Build on known 
or given facts

•	 pairs that make ten
•	 near doubles
•	 rounding off and 

compensating
•	 use given facts 

(inverse relationship 
and ‘if… then…’)

•	 use the 
relationship 
between addition 
and subtraction

•	 halves

-

Source: Adapted from Department of Basic Education. (2012a). Curriculum and assessment 
policy statement: Mathematics foundation phase. Pretoria: DBE; Department of Basic 
Education. (2018). Mathematics teaching and learning framework for South Africa: Teaching 
mathematics for understanding. Pretoria: DBE
CAPS, Curriculum and Assessment Policy Statements; TMU, Mathematics teaching and 
learning framework for South Africa: Teaching mathematics for understanding; SWA, 
standard written algorithm.

Source: Department of Basic Education. (2018). Mathematics teaching and learning 
framework for South Africa: Teaching mathematics for understanding (p. 32). Pretoria: DBE
SWA, standard written algorithm; TMU, Mathematics teaching and learning framework for 
South Africa: Teaching mathematics for understanding.

FIGURE 10: An example of SWA to solve 34 + 27 = … in the Foundation Phase 
exemplars of the TMU framework.

To add 2-digit numbers you line them up using columns
for tens and units. The units must be in the same column
and the tens must be in the same column. 

Start by adding the units. 4 + 7 = 11
11 is one ten and 1 unit. I must break this into tens and
units.

I must carry the 1 ten into the tens column, so that I can
add it to the other tens. The single unit remains as part
of the answer in the units column

I now add in the tens column. I have 3 tens plus 2 tens
which is 5 tens plus one more ten which i carried over
from the units column. That gives me 6 tens altogether.
I write it in the tens place of the answer.

The answer to 34 + 27 is 61.

The number work of exchanging the ten units for 1 ten should be linked to
concrete work done using base ten blocks where learners see how to exchange
ten units for 1 ten. This  will guide them to understand the conceptual sturcture
embodied in the algorithm. This conceptual work under pinning the procedure
(which again highlights the interconnectedness of the framework dimensions)
will prevent learners from following the steps of the procedure without thinking
about the meaning behind what they are doing. This applies to all methods of
calcula�on. 

T
+1

3 4
2 7

16

U

e.g. 34 + 27 = _

For example: Learners can use columns to work meaningfully and efficiently and
with 2-digit numbers if they talk about what they are doing using place value.

Source: Department of Basic Education. (2012b). Curriculum and assessment policy 
statement: Mathematics intermediate phase (p. 157). Pretoria: DBE
SWA, standard written algorithm; CAPS, Curriculum and Assessment Policy Statements.

FIGURE 11: First example of SWA in CAPS for Intermediate Phase. 

The ver�cal column method to add.

5 6

6

4

44

57+

2

8

0 0

3

1

1 1 1
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supports the incorrect digit-wise conception of place value 
for multi-digit numbers. We also know that deep conceptual 
understanding of place value is predictive of future 
mathematics attainment, that there are five correct conceptions 
of place value, each of which takes time to develop, and that 
the development from rote counting to efficient calculation 
takes about 7 years. The South African curriculum (CAPS) 
seems to build on this literature as it encourages a slow 
progression in relation to the development of the place 
value  concept and progression with regard to efficiency of 
calculation strategies. In contrast, the TMU deviates from 
both the CAPS and the international literature. It proposes 
that the SWA for addition can be modelled using 
manipulatives, and then used as a written method with digit-
wise tens and ones columns in Foundation Phase. 

In addition, the TMU does not include the expanded column 
methods (such as ‘write all totals’ – either horizontally or 
vertically, which appear in CAPS) as possible alternatives to 
the SWA. The expectation created in the TMU framework is 
that teachers can shift from bundling concrete manipulatives 
for multi-digit numbers to the SWA in Grades R–3. This 
contradicts both the CAPS and insights reported on above. 
The TMU framework is also discordant with the two learning 
programmes – Everyday Mathematics and Mathematics 
Recovery – where addition is introduced using a ‘break up the 
second number’ (which can be applied to subtraction without 
the need for regrouping or exchanges) before the ‘break 
up  both numbers’ strategy is introduced. ‘Break up both 
numbers’ is considered in Everyday Mathematics. When ‘break 
up both numbers’ is introduced, the SWA is avoided and the 
expanded method of ‘write all totals’ is the focal algorithm 
(to be understood but not necessarily used by all learners).

Given how much conceptual knowledge for place value is to 
be constructed – and its critical importance in mathematical 
progression – the move from concrete manipulatives to the 
SWA suggested in the TMU framework is too rapid. The 
introduction of the SWA in Foundation Phase, when it is only 
in Grade 2 that notions of place value are beginning to be 
constructed by learners, is too soon. This creates a lack of 
clarity in our policy landscape, which is only partially 
clarified by the repeated assertion that the TMU framework 
does not replace CAPS.

So, if asked whether, when and how to teach the SWA, 
I  would respond as follows. While some mathematics 
educators reject the teaching of SWA in its totality, I think 
exposure to algorithms in their historic context is worthwhile. 
As the SWA is familiar to South African teachers, I think 
it  is  worthwhile for children to understand it, without 
emphasising speed and accuracy. However, I do not think it 
should be taught in Foundation Phase. I concur with the 
CAPS that the SWA should only be introduced in Grade 5 
when place value in two languages is secure. In Foundation 
Phase I would teach multi-digit addition by first encouraging 
children’s invented strategies, then offering structured 
mathematics drawings and expanded methods. I would 
use ‘write all totals’ as a ‘go-to’ algorithm for the whole class. 

Only once ‘write all totals’ is secure would I introduce the 
SWA as an optional condensed method, which was used at a 
particular time in history, when speed and accuracy were 
valued.
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Appendix 1: Key terms used in this article
Digit: 	 The number symbols 0 to 9 which are used to represent all numbers.
Digit-wise: 	 Naming and thinking about a multi-digit number as comprising of its digits. 356 is ‘three five six’.

Unit-wise: 	 Depicting a number as comprising units (or ones).
Five-wise: 	 Depicting a number as comprising groups of 5.
Ten-wise: 	 Depicting a number as comprising groups of 10. This may include showing each ten as comprising 2 fives.

Quick 5: A drawing or arrangement in which the objects or markings are spatially arranged so that it is quick and easy to identify groups of 5.
Quick 10: A drawing or arrangement in which the objects or markings are spatially arranged so that it is quick and easy to identify groups of 10.
Quick 100: A drawing or arrangement in which the objects or markings are spatially arranged so that it is quick and easy to identify groups of 100.

Structured mathematics drawing: A drawing that clearly shows the five-wise and ten-wise structure of numbers.
Structured apparatus: Apparatus which clearly shows the five-wise and ten-wise structure of a number such as an abacus or a 5-5-5-5 bead 
string. 

Small number sequence: Counting in ones from any number. 15, 16, 17, 18, …
Medium number sequence: Counting in tens from any number. 15, 25, 35, 45, …
Large number sequence: Counting in hundreds from any number. 15; 115, 215, 315, 415, …

Triad: A set of 3 numbers that form an additive relationship. This is also termed a ‘number triple’.
7

6 1

Whole-part-part diagram: A diagram depicting a whole and two parts of an additive relationship. This is a triad or number triple, where a 
context of length is applied.

7

6 1

Structured number line: A number line marked in ones
Semi-structured number line: A number line marked in fives or tens
Empty number line: A number line with no structured markings

Place value: The value of a digit according to its position in a multi-digit number. So the 3 in in 356, has a place value of 3 hundred.
Expanded notation: Break up a number using the place value of each digit. So 356 = 300 + 50 + 6

http://www.pythagoras.org.za�
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Appendix 2: Representations for addition strategies
The SWA, which is familiar to many adults, is a very condensed version of a ‘break up both numbers’ strategy. But the mathematics education 
literature, and the example learning programmes, encourage invented strategies, and a ‘break up the second number’ strategy, before 
children are exposed to the ‘break up both numbers’ strategy. In this Annexure, I show how each strategy may be represented.

Representations for ‘break up the second number’ strategy
If being introduced by a teacher (and not brought or invented by a learner), this strategy should precede the ‘break up both numbers’ strategy. 
This strategy can be used for addition and subtraction and no regrouping (exchanging, borrowing or carrying is needed). This strategy can also 
be used flexibly for missing addend and missing subtrahend problems (such as 189 + … = 346; or 346 - … = 189).

Notice that the ‘break up the second number’ strategy means you don’t break up the first number as well. In these examples you always start 
with 189, which is the first number in 189 + 157 = … 

Expanded notation on an empty number line
+100

189 289 339 346

+50 +7

Expanded notation and number sentences
189 + 100 = 289

289 + 50 = 339

339 + 7 = 346

Fill up the tens on an empty number line

+1 +10

+100
+40 +6

346340300200190189

Representations for ‘break up both numbers’ strategy
If being introduced by a teacher (and not brought or invented by a learner), this strategy should be used after learners are secure with the ‘break up 
both numbers’ strategy for both addition and subtraction. Depending on the numbers, this strategy may require regrouping (carrying or borrowing). 
Also, this strategy can be difficult to use for missing addend and missing subtrahend calculations, such as 189 + … = 346; or 346 - … = 189).

Notice that both 189 and 157 are broken up for 189 + 157 = … 

Expanded notation, and mathematics drawings or manipulatives (horizontal)
A ‘break up both numbers’ strategy, rearranging manipulatives or drawing quick 100s with squares, quick 10s tens with lines, and quick 1s 
with dots, then regrouping.

157+189

189 + 100 = 289

289 + 50 = 339

339 + 7 = 346
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Rearranging mathematics drawings or manipulatives (vertical)
A ‘break up both numbers’ strategy, rearranging manipulatives or drawing quick 100s with squares, quick 10s tens with lines, and quick 1s 
with dots, then regrouping.

= 346

189

157+

Expanded notation in rows
A ‘break up both numbers’ strategy, represented using rows and writing all totals (as whole numbers), then adding in columns.

189 = 100 + 80 + 9
157 = 100 + 50 + 7

 = 200 + 130 + 16
 = 346

+

Write all total or partial sums in columns
A ‘break up both numbers’ strategy, represented using columns and writing all totals (as whole numbers) below.

189

200
130

16
346

157+

Expanded column: Add first then exchange
A ‘break up both numbers’ strategy, represented using columns, writing all totals first (in their place value column), and then exchanging one 
place at a time.

H
1
1

2 13
14
4

16
6
6

2
3

+
8
5

9
7

T O

Standard written algorithm (SWA, condensed, traditional column, vertical)
A ‘break up both numbers’ strategy, represented using columns, exchanging using digits at the top of in place value columns and making use 
of digit-wise place-value (1 hundred 8 tens and 9 ones).

1 8 9
1 5 7
3 4 6

+

1 1
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