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Algebra problem solving is one of the most difficult areas in the math-
ematics curriculum for secondary students with learning disabilities
(LD) due to the higher-order reasoning demands and strategic thinking
required. The purpose of this review is to examine how effective algebra
problem-solving interventions conceptualize the cognitive processes of
problem solving, and to examine the types of instructional supports or
strategies embedded in each problem-solving phase to facilitate cognitive
processes. In 11 effective algebra interventions, we identified four concep-
tualizations of the cognitive processes involved in problem solving: (a)
sequential concrete—semi-concrete—abstract, (b) sequential virtual-ab-
stract, (c) integrated concrete—semi-concrete—abstract, and (d) abstract
only. We also found that each intervention incorporated several instruc-
tional strategies (i.e., scaffolds) to support students through the cognitive
process of problem solving. Educational implications, future directions,
and limitations are discussed.
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Algebra is considered the gatekeeper to higher-level mathematics and to
opportunities in educational achievement and postsecondary occupations (Fennell,
2008; Foegen, 2008; National Mathematics Advisory Panel [NMAP], 2008). In
addition, passing Algebra I is a requirement for high school graduation in a growing
number of school districts across the United States (Witzel, 2005). According to
the American Diploma Project Network, 22 states required Algebra I and one state
required Algebra II for high school graduation in 2009. By 2018, the number of states
requiring Algebra I and Algebra II for graduation is anticipated to increase to 29
and 19, respectively. In addition, many studies have emphasized the importance of
teaching and learning mathematics skills, as they are a key requirement for a diverse
array of occupations, especially for many high-wage jobs that do not require a two-
or four-year degree (Hwang & Riccomini, 2016; Cavanagh, 2007; Gonzalez & Kuenzi,
2012). In effect, because understanding elementary algebraic concepts is necessary for
solving various advanced mathematical problems, helping students achieve algebra
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competence increases the probability that they will graduate from high school and
have access to a range of post-secondary education and employment opportunities.

Given the importance of algebra, it is critical to identify effective practices
for improving the performance of all students, especially those who struggle in math-
ematics. The need for special attention to students with learning disabilities (LD) has
been evidenced by the large algebra achievement gap. In the 2013 National Assess-
ment of Educational Progress (NAEP), there was a 46-point discrepancy between av-
erage algebra subtest scores for students with and without disabilities in eighth grade,
and a 40-point difference between average algebra scores in 12th grade. Research
suggests that characteristic deficits in working memory, long-term memory, and or-
ganizational skills contribute to the relatively weak algebra performance of students
with LD (e.g., Geary, Hoard, Nugent, & Bailey, 2012; Scanlon, 2013). These deficits
affect the basic mathematics difficulties of students with LD beginning in elementary
school and continue through middle and high school with increasingly negative ef-
fects in advanced domains (Cawley & Miller, 1989; Impecoven-Lind & Foegen, 2010;
Miller & Mercer, 1997).

Mathematical Problem Solving in Algebra

Problem solving is a complex skill that requires students to understand and
integrate information from the problem, create a mental representation of the prob-
lem, and choose an appropriate solution path (Hudson & Miller, 2006; Montague,
Warger, & Morgan, 2000). Problem solving in algebra can be especially challenging.
Higher-order reasoning demands and strategic thinking required make problem
solving tasks some of the most difficult tasks in the mathematics curriculum, espe-
cially for students with identified LD (Lerner, 2000). Despite its importance, algebraic
problem solving is an ambiguous construct, and various definitions exist. In some
instances, problem solving refers to a single behavior and is evaluated simply by the
correctness of problem solutions. In others, problem solving refers to the accurate
completion of the many steps involved in reaching a correct answer. In addition, de-
terminations about problem-solving ability are sometimes made based on students’
performance on one type of problem. A common example is the practice of using
problem solving as a generic label for word-problem solving.

Cognitive process of problem solving. Although a uniform definition of
problem solving has not been established, there is general consensus that complex
problem solving requires an integrated set of skills, while simple problem solving
requires a monolithic ability such as ordering or comparing numbers. Mayer (1987,
1989, 1992, 1998) defined problem solving as cognitive processing directed at achiev-
ing a goal when no solution method is obvious to the problem solver and defined
four key characteristics of problem solving. First, the work of problem solving is cog-
nitive and is inferred indirectly from the problem solver’s behavior. Second, problem
solving is a process involving representing and manipulating knowledge in the prob-
lem solver’s cognitive system. Third, problem solving is goal directed because a prob-
lem solver aims to achieve the goal of solving the problem. Fourth, problem solving
is personal because problem solvers’ individual experiences and skills determine their
perceptions of the difficulty or complexity of a problem.
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In addition, Mayer (1987) proposed a theoretical model to describe the un-
derlying cognitive process (and sub-processes) of problem solving. In this model, a
problem solver begins with problem representation and progresses to the problem
solution. During the problem representation phase, students interpret problem situa-
tions or statements and transform the problem with various types of representations
(e.g., concrete objects, symbolic images or sketches, mental representations, or math-
ematical notations). Next, students integrate their representations so that they have
a coherent understanding of the problem. In the problem solution phase, students
devise and execute a solution plan to achieve a goal (Mayer, 1987, 1998). Based on an
understanding of a problem that the student developed in the representation phase,
the student determines the appropriate operation to apply and carries out the solu-
tion plan (e.g., sequence of a solution procedure, number and order of steps required
for the procedure, and computation). The solution phase reflects students’ knowl-
edge of the various possible ways to solve a problem and reveals their chosen method.
For example, when students solve an algebra problem involving fractions to compute
the unknown value x (e.g., x-'/; = 4 %/;), they may want to rename a mixed number
(4 /5) as an improper fraction ('/5) first and do the operations next (x = '/3+"/;="/;
=5), or they may want to do whole number operations and fraction operations sepa-
rately (x ='/3+ 4 *;=(0+4) + ('/s+/;) = 4°/;=5) to achieve an answer.

Structure of the Current Study

Recent work (Hughes, Witzel, Riccomini, Karen, & Kanyongo, 2014; Watt,
Watkins, & Abbitt, 2014) has provided overviews of algebra interventions for stu-
dents with disabilities. In both reviews, researchers categorized interventions and
compared intervention effectiveness by intervention type. All of the reviewed in-
terventions were effective, but comparisons indicated that cognitive model-based
interventions were most effective. Rather than conduct another comparison of in-
tervention effectiveness, the current study took a different approach and examined
the structure of effective interventions in light of cognitive processes. We based our
analysis on Mayer’s (1987) cognitive model, which considers algebra problem-solving
interventions to be cognitive processes; and modeled each intervention as a combina-
tion of subsystems that are composed of a main system of cognitive processes and in-
corporated instructional support facilitating these cognitive processes. The structure
of intervention was conceptualized as T(x) = y, where x denotes inputs (i.e., algebra
problems) and y denotes outputs (i.e., achievement). Sequential cognitive processes,
problem representations, and problem solutions (Mayer, 1987) were considered con-
nected subsystems and represented as T, (T, (x)) = y. We concentrated on examining
different types of cognitive systems, T, consisting of effective algebra interventions
along with instructional components that are embedded into intervention systems.

The present study is concerned with two aspects of algebra problem-solving
interventions: (a) cognitive processes and (b) instructional supports. Based on the
knowledge that the cognitive problem-solving process consists of two primary phas-
es, problem representation and problem solution, we analyzed how effective inter-
ventions specify each of phase and what types of instructional supports or strategies
were embedded within each phase. The purposes of this review were: (a) to examine
how effective algebra problem solving interventions conceptualize and define the
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problem representation and problem solution phases within the cognitive process of
problem solving; (b) to categorize interventions by the characteristics of the cogni-
tive problem solving process students are taught to use; and (c) to examine the types
of instructional support used in each problem solving phase to facilitate cognitive
processes. The following research questions guided the review:
1.  What models of cognitive processing have been used to conceptualize
effective algebra problem-solving interventions for secondary students
with LD?
2. Within each category of cognitive process of a problem-solving inter-
vention, what types of instructional supports have been embedded in
order to facilitate the cognitive problem-solving process?

METHOD

Search Criteria and Procedure

The current study examined and integrated recent peer-reviewed experi-
mental studies that have addressed the significant effectiveness of algebra problem
solving interventions for middle school and high school students with LD. Three
criteria were used to identify studies for inclusion. First, intervention studies must
have included algebra content, regardless of problem type (e.g., word problems or
computation). Although there is a common conception that problem solving is lim-
ited to word-problem solving, we also included computation problem solving in-
terventions because, according to Mayer (1987), two phases of the cognitive process
should always occur when solving any type of mathematical problem, not only word
problems. Although pre-algebraic ideas and basic skills are broadly taught during the
elementary period (e.g., whole number operations, conceptual knowledge of ratio-
nal numbers), we did not include studies testing interventions of pre-algebraic skills
in the current review because the use of unknown variables is not fully considered
or introduced in elementary mathematics (Common Core State Standard Initiative
[CCSSI], 2012; Miller & Mercer, 1993).

We included studies that tested intervention effects on problem solving or
application of “algebraic knowledge,” so we excluded intervention studies designed
exclusively to increase procedural skills and those focused on academic behavior
(e.g., finding keywords and mnemonic-only and peer-tutoring strategies; e.g., All-
sopp, 1997). In addition, we only included interventions that reported positive effects
on algebra problem solving. In single-case design studies, effects were examined with
systematic visual inspection of level, trend, and variability in data within and across
study conditions (Horner et al., 2005) and/or statistical calculations (e.g., percentage
of nonoverlapping data and Tau-U) when provided. We defined a positive effect as an
increase in the means from the baseline to the intervention conditions. In group de-
sign, positive effects were defined as a significant mean difference or change between
pre- and posttest conditions or control and intervention group performance.

Second, studies published after 1990 were included to capture research re-
flecting the standards outlined in the National Council of Teachers of Mathematics
Principles and Standards publication (NCTM, 2008, 2014), as trends and educational
philosophies have changed over time. Third, participants were limited to U.S. middle
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and high school students in Grades 6 to 12 identified as having LD. This study used
the Individuals with Disabilities Education Improvement Act (IDEA, 2004) defini-
tion of LD, in which LD is described as a psychological processing disorder. Partici-
pants in included studies were identified as having LD using one of the three methods
depending on the method used in their home state (ability-achievement discrepancy
model, response-to-intervention model, and patterns of strengths and weaknesses).
We excluded studies with participants at the college level because our primary inter-
est is in algebra intervention for school-aged students.

Using these three criteria, a systematic literature search was conducted to
identify potential articles for inclusion. First, three electronic databases, ERIC, Pro-
Quest, and PsychINFO, were used with a combination of the following descriptors in
abstracts: learning disab*, learning struggles, learning difficult*, math disab*, math*,
algebra*, middle school, high school, secondary school, problem-solving. Addition-
ally, well-published researchers in the area of algebra, including Maccini, Montague,
and Strickland, were used as search descriptors. Second, an ancestral search as well
as an examination of the reference lists of relevant studies (e.g., Hughes et al., 2014)
were conducted. Third, a hand search of the major journals in the areas of special
education, learning disabilities, mathematics education was conducted that includ-
ed the following journals: Education ¢ Treatment of Children, Exceptional Children,
Learning Disabilities Quarterly, Learning Disabilities Research & Practice, Journal of
Learning Disabilities, Journal of Special Education, Remedial and Special Education,
Learning Disabilities Contemporary Journal, and Learning Disabilities: A Multidisci-
plinary Journal. As a result, a total of 10 studies met the inclusion criteria for this
review. One study (Ives, 2007) was composed of two sub-studies (Studies 1 and 2) to
provide systematic replication, where Study 2 investigated extended skills and con-
tent with different participants. Both of Ives’s (2007) sub-studies were considered
independent studies, so 11 potential studies were identified. After we examined all 11
interventions and found that they were effective in increasing algebra problem solv-
ing performance, they were all included in the review.

REsuLTS

Among the 11 studies, more than 80% of students were in Grades 6 to 8,
indicating that studies on algebra intervention for students with LD have been more
heavily focused on middle school than high school. Two types of research design
emerged: single-case design (Huchinson, 1993; Maccini & Hughes, 2000; Maccini &
Ruhl, 2000; Scheuermann, Deshler, & Schumaker, 2007; Strickland & Maccini, 2012)
and group design (Huchinson, 1993; Witzel, Mercer & Miller, 2003; Ives, 2007; Witzel,
2005). All the interventions in identified studies were effective in that they showed a
significant difference between baseline (pre-test) and intervention (post-test) condi-
tions and/or a difference between control and intervention groups that favored in-
tervention. We did not report and combine effect sizes by intervention type because
there have been arguments against finding a common effect size metric between the
two research methods and among the different types of dependent measures the
studies employed (e.g., accuracy percentage and number of problems correct). More
importantly, the main purpose of this study was to examine the features of cognitive
processes and instructional supports that composed effective algebra interventions,
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rather than comparing effectiveness across intervention types. In order to investigate
and answer the research questions, the 11 identified studies were examined in terms
of (a) cognitive process of algebra problem-solving intervention and (b) instruction-
al supports embedded in each intervention type.

Table 1. Cognitive Process of Algebra Intervention

o Two Phase of Cognitive Process
Cognitive

Process Study
Type Problem Problem
Representation Solution

Hutchinson, 1993;

Maccini & Hughes,
Sequential  2000; Maccini & Ruhl, Problem ——2 € ALA A Execution 32 Auswer
C-S-A 2000; Witzel et al., ‘
2003; Scheuermann et

E Instructional Supports
al., 2007; Witzel, 2005
. Satsangi & Bouck, provtem Ll v “_- ,M
Sequential 5 Ghin & Bryant, o T o+ el oo
V-A 2017 %

{ Instructional Supports

Integrated ~ Strickland & Maccini robiem [ K % N ] || recution
C-S-A (2012) D 1 T *

|
{ Instructional Supports

Problem Y A |_T Execution 2% Answer
A-only Ives (2007) ‘

Instructional Supports

Answer

Note. C-S-A=concrete—semi-concrete—abstract intervention; V-A= virtual-abstract

Cognitive Process of Algebra Interventions

The seven intervention types that emerged in the 11 included studies were
classified by the features of their cognitive process, particularly how they specified
each phase of the problem-solving process (i.e., problem representation and
problem solution) in order to structure a connected system. As a result, we found
four systems of cognitive processing: (a) sequential concrete—semi-concrete—abstract
intervention (C-S-A; Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl,
2000; Scheuermann et al., 2007; Witzel et al., 2003; Witzel, 2005); (b) sequential
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virtual-abstract intervention (V-A; Satsangi & Bouck, 2015; Shin & Bryant, 2017),;(c)
integrated concrete—semi-concrete—abstract intervention (C-S-A-I; Strickland &
Maccini, 2012); and (d) abstract-only intervention (A-only; Ives, 2007).

As shown in the Table 1, the problem representation phase served as a
broad category for representing problems that allow for any type of representation.
All interventions except abstract-only interventions broke down the problem
representation phase into several sub-phases. In C-S-A and C-S-A-I interventions,
problem representations were divided into three stages (concrete, semi-concrete,
and abstract) either sequentially or simultaneously; while in A-only interventions,
the cognitive process was fixed to the abstract stage with symbolic manipulations
only. Meanwhile, in sequential V-A interventions, concrete and semi-concrete
representation stages (Cand S, respectively) were replaced with a virtual representation
stage (V), where students were provided a virtual space to manipulate and represent
problems on a computer screen. Fach cognitive processing intervention category is
described in the next section along with embedded instructional supports.

Instructional Support

In addition to the intervention categories characterized by a cognitive pro-
cess, we examined the instructional supports or strategies integrated within each in-
tervention that were used to support the cognitive problem-solving process. Results
indicate that all interventions used an explicit instruction lesson format. In all stud-
ies, one or more of the six components of explicit instruction (advance organizer,
modeling, guided practice, independent practice, post-test, and feedback/rewards)
were integrated through the entire cognitive process. In some studies (e.g., Hutchin-
son, 1993; Maccini & Hughes, 2000; Ives, 2007), lesson plans were scripted to facilitate
instructional procedures and fidelity.

Sequential C-S-A. The sequential C-S-A cognitive process intervention
category specifies that the problem representation phase has sequential stages:
concrete (C) and semi-concrete (S). Interventions in the sequential C-S-A category
involved a three-stage, graduated instructional sequence beginning with manipulation
of concrete objects (C), followed by using drawings or pictorial representation (S),
and ending with students using abstract mathematic symbols or notation (A).
After students represented problems following the three sequential representation
stages, they chose and applied operators to solve problems in the problem-solution
phase. Six studies (Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl,
2000; Witzel et al., 2003; Witzel, 2005; Scheuermann et al., 2007) used sequential
C-S-A interventions, but these interventions included a variety of different types
of instructional supports. Two of the six studies (Witzel et al., 2003; Witzel, 2005)
used C-S-A exclusively, while the remaining four studies (Hutchinson, 1993; Maccini
& Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann et al., 2007) embedded
instructional supports and strategies within C-S-A. Witzel et al. (2003) and Witzel
(2005) tested the effects of C-S-A interventions on students’ algebra performance
with no embedded instructional strategies or supports. They particularly focused on
algebraic transformation of equations with a single variable. The interventions in
both studies consisted of 19 lessons that included five transformation skills to solve
equations (e.g., reducing expressions and solving inverse operations).
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While two studies examined effectiveness of using only C-S-A, Hutchinson
(1993) combined meta-cognitive strategies, such as structured worksheets, self-
questioning prompt cards, and lesson scripts, with C-S-A sequence interventions in
order to help students shift from the problem representation stage to the problem
solution stage. In addition, three studies (Maccini & Hughes, 2000; Maccini &
Ruhl, 2000; Scheuermann et al., 2007) employed C-S-A interventions that also
incorporated other problem-solving strategies. The C-S-A cognitive process was
inherent in the problem-solving process and provided the framework for students
to develop solution plans for algebra problems, while strategies and supports were
embedded to make the process more efficient. These added strategies supported and
catalyzed the cognitive process of the incremental steps in the C-S-A sequence in
order to move students into the problem solution phase and also support them to
become self-directed learners. Two of these three studies (Maccini & Hughes, 2000;
Maccini & Ruhl, 2000) combined C-S-A with the STAR strategy (Search the word
problem, Translate the words into an equation in picture form, Answer the problem,
and Review the solution; Maccini, 1998), which is a mnemonic device and a type
of meta-cognitive strategy that includes a self-monitoring component and helps
students remember the sequence of problem solving steps. Each step in the STAR
strategy is repeated for every phase of C-S-A. There was a small variation between
the two studies in how each applied STAR to the stage of C-S-A. Maccini and Hughes
(2000) applied only the first two steps of STAR (S and T) in the S stage, but used
all four steps (S, T, A, and R) in the C and A stages; while Maccini and Ruhl (2000)
applied S and T in both the C and S stages and every step of STAR was in the A stage.

Similar to the application of C-S-A with the STAR strategy, Scheuermann
et al. (2007) integrated the explicit inquiry routine strategy and C-S-A, where three
steps of a scaffolded inquiry process (tell me how, tell your neighbor how, tell yourself
how) were woven into the intervention to facilitate the C-S-A process. Intervention
content was broken down into instructional bites, and for each instructional bite,
the students and teacher worked through the steps of scaffolded inquiry within each
phase of C-S-A. This process was designed to facilitate the transition of student’s cog-
nition through the C, S, and A phases of representation. Instruction then proceeded
to the next instructional bite and students were expected to independently demon-
strate mastery within C-S-A. This three-step scaffolded inquiry process is similar
to STAR in that both strategies function as scaffolds to promote students’ cognitive
problem-solving process; however, the scaffolded inquiry routine incorporates a sup-
portive scaffold into the explorative nature of inquiry (Coyne, Kameenui, & Carnine,
2007; Goos, 2004; Rosenshine, & Meister, 1992).

In four studies (Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Witzel et
al., 2003; Witzel, 2005), we observed a difference in the method used in intervention
instruction for representing coefficients and variables during the problem
representation phase. In two studies, coefficients were represented with the number
of variables during the first two stages (C and S; e.g., 5x is represented by “five x”;
Maccini & Hughes, 2000; Maccini & Ruhl, 2000), while in two other studies the
coefficient and variable were represented as independent units (e.g., 5xis represented
by “5” and “x”; Witzel et al., 2003; Witzel, 2005). Authors of another two studies
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insisted that representing coefficients by the number of variables might induce
confusion in algebra learning because students learn to differentiate coefficients from
exponents when they learn to solve more complex equations. In response to this issue,
two studies (Witzel et al., 2003; Witzel, 2005) suggested representing coefficients and
variables independently by considering each a separate unit, so that every component
of linear functions are expressed and arranged. For example, when given “5x = 15,
the coefficient marker for 5 and blocks for the variable x are used separately, instead
of arranging five blocks to represent 5x. When representing the other components,
such as the equal sign or the constant, 15, four studies (Maccini & Hughes, 2000;
Maccini & Ruhl, 2000; Witzel et al., 2003; Witzel, 2005) were done in the same way.

Sequential V-A. Two studies (Satsangi & Bouck, 2015; Shin & Bryant, 2017)
were categorized as using the sequential V-A cognitive process, where concrete ma-
nipulatives were replaced with virtual manipulatives. This practice reflects the in-
creased use of computer-based technology in education. V-A interventions used the
same framework for the cognitive problem solving process as sequential C-S-A in-
terventions, but the platform for problem representation was transferred to a virtual
space. The virtual space was provided via a software program or an internet website.
When given an algebra problem, students manipulated the shapes on the screen that
were needed to solve the problem. For example, they drew shapes, increased or de-
creased the size and color of blocks, and moved blocks around to rearrange them. Pri-
or to the intervention in both studies, teachers provided instructional lessons about
basic concepts of algebraic topics (e.g., area and perimeter), reviewed essential math-
ematics vocabulary, and modeled how to solve problems using virtual manipulatives.
During the intervention, students’ work was guided by the teachers’ instructions in a
step-by-step manner.

In both studies, several instructional components were used in conjunction
with sequential V-A. Satsangi and Bouck (2015) concentrated on the sole effect of
virtual manipulatives, but used teacher modeling, guided practice, feedback, and in-
dependent practice to support student learning in a virtual environment. Shin and
Bryant’s (2017) intervention also focused on the use of virtual manipulatives to tran-
sition students’ reasoning and thinking to abstract mathematics, but they examined
the combined effect of multiple intervention components, including cognitive and
metacognitive strategies, explicit and systematic instruction, and virtual manipula-
tives. The effectiveness of their intervention could have been derived from the inter-
play between the various components integrated into the intervention.

Integrated C-S-A (C-S-A-I). An integrated version of C-S-A, C-S-A-],
modifies the C-S-A cognitive process by implementing the three stages simultaneously
(rather than in sequence). The integration and simultaneous presentation of the stages
is the biggest difference between C-S-A-I intervention and the eight interventions that
involved sequential cognitive processes (C-S-A and V-A). In C-S-A-I interventions,
the three stages of representation were not introduced linearly over time, but
presented simultaneously, which promoted interaction and successful transfer among
the C, S, and A stages. The intervention used in Strickland and Maccini’s (2012) study
employed the C-S-A-I cognitive process and integrated a graphic organizer (in this
case, a box plot) along with explicit instructional components as an instructional
support. The graphic organizer helped students visually organize and remember the
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steps of the problem-solving process, and supported students in learning to alternate
between representation phases.

A-Only. Ives’s (2007) two studies tested interventions where only an A
phase representations were used. Unlike C-S-A, V-A, and C-S-A-I, the problem
representation phase was not specified, so students did not have opportunities to
use scaffolded C or S representations of the problem. Instead, to find the value of an
unknown variable, students were only provided a graphic organizer to help organize
the symbolic notation in complex algebraic manipulations. Each cell in the graphic
organizer functioned as a flow chart to help students solve equations by providing
a sequence of steps. Although students’ cognition was limited to the A stage while
solving problems, the graphic organizer provided graphical scaffolding to reduce
cognitive load by dividing complex problem solving procedures and translating
verbal elements into graphic ones (e.g., box plot, arrows, and lines).

Discussion

Mathematical problem solving requires an integrated set of mathematical
knowledge and skills, and various factors (e.g., literacy, computation skills, and
cognitive strategy) contribute to students’ poor achievement in problem solving
(Hwang & Riccomini, 2016; Fuchs & Fuchs, 2002; Vilenius-Tuohimaa, Aunola,
& Nurmi, 2008; Xin, Jitendra, & Deatline-Buchman, 2005). Students’ difficulties
often stem from the fact that they do not know how to execute or move through the
sequential cognitive phases of problem solving and do not know what to do within
each phase. In response to the different types of barriers that students’ face during
problem solving, problem-solving interventions have employed various methods and
strategies. Some interventions specify each phase of the cognitive problem-solving
process, where each stage scaffolds students’ ability to translate a problem to the
next stage (e.g., in C-S-A, the concrete stage prepares students for the semi-concrete
stage, which in turn prepares students for the abstract stage). In addition to refining
a cognitive process based on students’ needs, some interventions set up instructional
scaffolds to help students proceed through the process. For example, some
interventions include cognitive and/or meta-cognitive strategies to guide students
through the problem-solving process (e.g., mnemonics, self-question, and scripted
notes; Montague, 2007), while others include organizational strategies like cue cards
and graphic organizers (e.g., Ives, 2007) to facilitate the cognitive processes required
for problem solving. Although the components of interventions and their emphases
may vary, we characterized the included algebra problem-solving interventions by
the features of the cognitive process as it progresses from a problem to a final answer,
and examined the additional instructional supports or strategies used to scaffold
students’ ability to move through the problem-solving process.

Four Meaningful Observations

The analysis of the features and constructs of effective algebra problem-
solving interventions led us to four observations regarding (a) cognitive process cat-
egories that have been effectively employed in algebra problem-solving interventions
for secondary students with LD (research question 1) and (b) types of instructional

214



Learning Disabilities: A Contemporary Journal 17(2), 205-220, 2019

supports and scaffolds embedded within interventions to facilitate the cognitive
problem-solving process (research question 2).

Cognitive process type. First, we identified four cognitive process catego-
ries in effective algebra interventions (sequential C-S-A, sequential V-A, C-S-A-1, and
A-only). These cognitive processes contain the two main phases (problem represen-
tation and problem solution). Janvier (1987) referred to problem representation as
converting a problem from words into an internal representation with a combination
of something written on paper, something that exists in the form of physical objects,
and a carefully constructed idea in one’s mind. Based on the representation students
create, they move to the problem solution phase, where they apply operators and find
a solution (Mayer, 1987, 1989; Reif & Heller, 1982). The whole thought process in-
volved in solving a problem is defined as a cognitive process. The cognitive problem-
solving process goes through several consecutive stages in which its dimensions are
reduced until it approaches the symbolized, abstract world.

Traditionally, rather than providing gradual steps such as concrete or picto-
rial manipulation, algebra instruction has merely focused on symbolic manipula-
tions executed through repeated practice while solving abstract equations. Therefore,
the cognitive process has been fixed and limited to the abstract stage. Recognizing the
increasing achievement gap between students with and without LD and the contin-
ued difficulties of students with LD in algebra learning, recent reform in mathemat-
ics education has led to the adoption of a functions-based approach to algebra. The
functions-based approach focuses on providing multiple representations to promote
proficiency with procedures and understanding of algebraic concepts. Reflecting this
trend, advocates of sequential C-S-A intervention (Hutchinson, 1993; Maccini &
Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann et al., 2007; Witzel et al., 2003;
Witzel, 2005) have emphasized adding a problem representation phase prior to ap-
plying abstract mathematical operators in the problem solution phase. The repre-
sentation phase was divided into three gradual stages: concrete, semi-concrete (i.e.,
representational, pictorial), and abstract. Sequential C-S-A interventions are consid-
ered multisensory as their procedure relies on visual, auditory, kinesthetic, and tactile
interaction with content.

Second, interventions in the C-S-A and C-S-A-I cognition process catego-
ries are similar in that they both teach students to use concrete, semi-concrete, and
abstract representations. However, C-S-A and C-S-A-I interventions differ in that
C-S-A interventions transition students through the stages in a sequential fashion,
while C-S-A-I interventions engage students in all three stages simultaneously. These
approaches represent different ways of processing information (sequentially or si-
multaneously). Sequential and simultaneous processing capacity can be measured
using the KABC (Kaufman Assessment Battery for Children). The KABC includes
two types of mental processing scales (sequential and simultaneous processing) to
measure students’ overall intelligence. The sequential processing scale primarily
measures short-term memory and consists of subtests that measure problem-solving
skills where the emphasis is on following a sequence or order. The simultaneous pro-
cessing scale examines problem-solving skills that involve several processes at once.
Two students could achieve similar intelligence ratings, but have differing strengths
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and weaknesses on the two scales. In other words, some students may have strength
in processing information sequentially, while others may be better at processing in-
formation simultaneously. Given their strengths and weaknesses in sequential and
simultaneous processing, C-S-A or C-S-A-I may be more effective for any particular
student.

Many studies (e.g., Witzel, Riccomini, & Schneider, 2008; Butler, Miller,
Crehan, Babbitt, & Pierce, 2003; Flores, Hinton, & Strozier, 2014; Miller & Kaffar,
2011) have supported the use of a gradual sequence of representations (e.g., C-S-A
and S-A) for teaching a variety of mathematics content. In addition, an increasing
number of studies have suggested that C-S-A-I interventions are a promising
approach (e.g., Pashler et al., 2007). Yet, there has been a lack of evidence to show
which approach is more effective for teaching algebra to students with LD. Knowing
that students with LD show a wide spectrum of learning characteristics and diverse
abilities in processing information, it is clear that more work is needed to develop and
identify interventions that consider students’ cognitive strengths and preferences and
the needs of teachers.

Third, the use of virtual manipulatives has been replacing concrete and/or
semi-concrete representations. Although a large body of research supports sequential
representation interventions (e.g., C-S-A interventions), there is continuing contro-
versy regarding the efficiency and efficacy of using concrete manipulatives. In terms
of efficiency, secondary math teachers rarely use concrete objects, in part because
they are concerned that objects may not accurately represent a concept (Howard, Per-
ry, & Conroy, 1995). In particular, it can be challenging to represent complex equa-
tions with concrete objects. In terms of efficacy, an increasing number of studies have
reported a positive impact on the algebra learning of students with LD when virtual
manipulatives are used (e.g., Bouck & Flanagan, 2010), and researchers have specu-
lated that virtual manipulatives are particularly suited for students with LD because
they decrease cognitive load (Satsangi & Bouck, 2014).

Instructional support. Fourth, included interventions incorporated sev-
eral different instructional strategies (i.e., scaffolds) to support students’ progress
through the cognitive problem solving process. All included interventions used two
or more components of explicit instruction (advance organizer, modeling, guided
practice, independent practice, post-test, and feedback/rewards), and some interven-
tions also included cognitive, meta-cognitive, or other strategies (e.g., graphic orga-
nizers, structured worksheets, prompt cards, and mnemonics). All of these strategies
were designed to support students as they transitions from phase to phase of the
cognitive process. In addition, strategies broke instructional tasks into smaller steps
and promoted meta-cognition and self-regulated behavior during problem solving.

Each intervention was comprised of multiple instructional components,
which made it challenging to determine exactly which components or combination
of components worked to increase student achievement. The effects of included in-
tervention studies may be due to the interplay between components. Therefore, our
analysis of disassembling interventions into cognitive processes and supporting in-
structional strategies contributes to the field because our findings can serve as a basis
to examine specific effective components rather than a combination of components,
i.e., an intervention. The current review of algebra interventions for students with LD
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has two educational implications. First, teachers are encouraged to choose and apply
interventions that consider students’ cognition process tendencies and that include
additional instructional strategies as needed. Second, additional research should ad-
dress the relationship between students’ cognitive process system preference (e.g.,
sequential vs. integrated or C-S-A vs. V-A) and efficacy of student learning. This re-
search would greatly benefit students with LD by shedding light on effective practices
for accommodating student’s unique cognitive learning characteristics.

Limitations

Three potential limitations of the review were found. First, “algebra” has an
ambiguous definition, so only studies that include algebra as a key term were includ-
ed. Depending on how algebra is defined and viewed (e.g., whether all word-problem
solving is considered algebra, as it includes finding unknown variables), future stud-
ies can expand on the present review by addressing this gap. Second, due to the pur-
pose of the present review (examination of the cognitive processes used in effective
interventions), effect sizes were not calculated within and across intervention types.
Third, we only included published studies that reported positive intervention effects
and assumed each study was methodologically sound and that results were valid.
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