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Abstract 

One of the keystones of scientific disciplines is the production and dissemination of quality, valid 
research. Within the Journal of Agricultural Education, traditions passed down from mentor to mentee 
have led to the establishment of magic words and symbols that, while used to meet criteria for 
acceptance for publication, actually obscure and obfuscate the research process. When used 
inappropriately, these terms can suggest appropriate methodology to the uninformed reader or 
reviewer, perpetuating the publication and dissemination of invalid research. Using the theory of 
planned behavior as a framework, this research note seeks to highlight some of the more common 
magic words and symbols used in manuscripts within the Journal of Agricultural Education and offers 
information to enable researchers to cease inappropriate use of these terms in an effort to enhance the 
validity of research published within the journal. This research note was an invited presentation at the 
2019 American Association for Agricultural Education Conference and was approved for publication 
by the Chair of the Journal of Agricultural Education’s Editing Managing Board.  
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Introduction 

According to Kerlinger (1986), research is the “systematic, controlled, empirical, and critical 
investigation of natural phenomena” (p. 10) conducted in such a manner that “investigators can have 
critical confidence in research outcomes” (p.10).  Kerlinger further stated that, metaphorically, 

Every scientist writing a research report has other scientists reading what he [sic] writes while 
he [sic] writes it. Though it is easy to err, to exaggerate, to overgeneralize when writing up 
one’s work, it is not easy to escape the feeling of scientific eyes constantly peering over one’s 
shoulders. (p. 11) 

This statement implies that research reports, including conference papers and journal articles, 
must include the essential information that enables disciplinary peers and the larger scientific 
community to ‘peer over one’s shoulders’ and judge the scientific quality of the researcher’s methods 
and results, and their interpretation of these results. The use of ‘magic’ words and symbols in reporting 
quantitative research obscures others’ view of these essential elements and makes critical evaluation 
difficult, if not impossible. 

According to the Merriam-Webster online dictionary, the word “magic goes back to the 1300s, 
and originally referred to rituals, incantations, or actions thought to have supernatural power over the 
natural world” (n.d., para. 1). Magic words and symbols in the context of this paper are those words 
and symbols, commonly found in research reports and presentations, which, on the surface, seem to 
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explain and clarify, but on closer examination, tend to obscure and obfuscate. However, these words 
continue to hold power over unsuspecting authors, reviewers, and readers.  

We likely use these magic words and symbols because we learn to write research manuscripts 
by mimicking experienced scholars, who, in turn were once beginning scholars mimicking previous 
generations of experienced scholars. Thus, magic words and symbols, once in the lexicon, are difficult 
to dislodge. Furthermore, their widespread use builds an expectation on the part of reviewers that they 
should be included in manuscripts, ensuring that even seasoned researchers will continue to include 
them in the often cynical, but unfortunately not baseless, realization that their use increases the potential 
for a successful manuscript review.  

The American Association for Agricultural Education’s 2016-2020 Research Agenda stated, 
“members of [AAAE] have a long history of conducting high quality applied research” (p. 7). This 
research note seeks to highlight some of the more common “magic” words and symbols used within 
our research in an effort to assist reviewers in discerning between appropriate and inappropriate use of 
terms and methods and encourage researchers to use and report these research methods in appropriate 
ways.  

Theoretical Framework 

This article discusses common errors in agricultural education research through the lens of 
Ajzen’s (1991) Theory of Planned Behavior (TPB). The TPB posits that reasoned actions are the result 
of an individual’s intent to perform the behavior, which, in turn, is determined by the individual’s 
attitude toward the behavior, the peer network’s subjective norm regarding the behavior, and the 
individual’s perceptions of his or her control over the behavior (Ajzen, 1991). In the context of this 
article, the behavioral change targeted is the increased use and reporting of appropriate research 
methods (or the discontinuation of use and reporting of inappropriate research methods) by shifting 
individual and peer network attitudes and by increasing perceived researcher and reviewer control in 
using and requiring these appropriate research methods (Figure 1). The basic premise is that when we 
know better, we can do better.  
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Figure 1. Theory of Planned Behavior (Ajzen, 1991) as applied to improving research methods. 

Purpose 

The purpose of this research note is to focus attention on some of our most commonly used 
magic words and symbols related to instrument validity and reliability, sample size, nonresponse error, 
and the use and reporting of inferential statistics. Ideally, a critical examination of these magic words 
and symbols will help us exorcize them from our lexicon, improving the “critical confidence” 
(Kerlinger, 1986, p. 10) of our research results.   

Discussion 

In this section of the paper, we use our combined 40-plus years of experience in writing and 
reviewing agricultural education research manuscripts to discuss five areas where magic words and 
symbols are often used by members of the profession. Specifically, these areas include our writing 
about instrument validity and reliability, sample selection, nonresponse error, and the use and reporting 
of inferential statistics.  

Instrument Validity 

According to Ary, Jacobs, Sorensen, and Walker (2014), “Validity is the most important 
consideration in developing and evaluating measuring instruments” (p. 225). Instrument validity refers 
to the accuracy and appropriateness of the decisions or inferences that can be made using data collected 
using the instrument (Ary et al., 2014; Huck, 2008; McMillan & Schumacher, 2010). Thus, instrument 
validity is not simply a characteristic of the instrument; rather, validity is a characteristic of the 
instrument, the subjects, and the conditions of administration (Gates, Johnson, & Shoulders, 2018). 

The most common magic phrase related to validity is some variation of the statement, “the 
instrument was examined by a panel of experts and judged to be valid” (Gates et al., 2018, p. 193). 
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Although on the surface this phrase seems meaningful, it obscures more than it reveals. For example, 
this ever-popular magic phrase leaves the following questions unanswered: 

1. How many “experts” were on the panel, how were they selected, and what was the nature
of their expertise?

2. What specific instructions were given to the experts and what specific criteria did they
judge in order to assess validity?

3. What specific type(s) of validity was (were) assessed?
4. Was the panel informed about the characteristics of the research subjects, the conditions of

instrument administration, and the specific use to be made of the data generated?

Unfortunately, use of the magic phrase, “the instrument was reviewed by a panel of experts 
and judged to be valid,” often precludes further consideration of these questions, either by the 
researchers themselves or by reviewers and readers. Thus, the question arises, how can the community 
of scholars peer over the [researcher’s] shoulders and have critical confidence in this most important 
consideration in evaluating the quality of the study and its conclusions and recommendations in the 
absence of such important details?   

Less common, but still troubling, is some variation of the magic phrase, “the instrument is a 
widely used measure of [insert construct here] (insert multiple citations here), and was, therefore, 
deemed valid for use in the current study” (as was found in a disconcerting number of manuscripts in 
the Journal of Agricultural Education in a study by Gates et al., 2018). In addition to the failure of this 
magic phrase to address any of the relevant validity questions, common use in the literature is not a 
measure of instrument validity. As an example, the Myers-Briggs Type Indicator (MBTI) is 
administered to over two million people each year (Stein & Swan, 2019) and a Google Scholar search 
for ‘MBTI’ (limited from 2015 to present) yielded over 7,500 hits; however, the National Research 
Council (1990) reported a lack of evidence firmly establishing the validity of the MTBI and reported 
its wide use as “curious” (p. 99).  Again, widespread use does not equal validity; study specific evidence 
is necessary to assure the community of scholars that they can have critical confidence the instrument 
yields the type of data that allows the researcher to make accurate and appropriate decisions concerning 
the individuals completing the instrument. 

According to Huck (2008), the three primary types of validity are content, criterion-related, 
and construct. While it is beyond the scope of this paper to present a full discussion of instrument 
validity, Figure 2 may prove a helpful starting point for assessing content, construct, and criterion 
validity. 

Table 1 

Key questions and evidence for three types of validity (Kerlinger, 1986; Huck 2008) 

Validity 
Type 

Key Question Evidence 

Content Does this instrument (or scale) accurately 
measure a representative sample of the 
intended content? 

Expert judgement 
-- Content experts 
-- Universe of content must 

be clearly specified 

Construct To what extent does the instrument (or scale) 
accurately measure the underlying personality 
or psychological construct? 

Correlation with variables known to 
be related to construct 

Known group discrimination 
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Confirmatory factor analysis 

Criterion Does this instrument (or scale) accurately 
predict scores on (or occurrence of) target 
criterion? 

Accuracy of prediction of criterion 
based on instrument (or scale) score 

Instrument Reliability 

Borg and Gall (1983) defined instrument reliability as “the level of internal consistency or 
stability of [a] measuring device over time” (p. 281). Coefficient alpha is the proper procedure for 
assessing the internal consistency of responses to a summated scale, while the coefficient of stability is 
the proper procedure for assessing the stability of responses to an instrument or scale (Warmbrod, 
2014).   

Internal consistency, and thus coefficient alpha, is only meaningful when applied to summated 
scales in which responses to two or more individual items are combined to create a single overall 
measure of some underlying construct. When applied correctly, coefficient alpha provides an estimate 
of the degree to which items in a summated scale measure a single, unidimensional latent construct 
(Pedhazur & Schmelkin, 1991). In such instances, coefficient alpha should be calculated and reported 
on all appropriate summated scales and/or subscales. Warmbrod (2014) described correct procedures 
for reporting and interpreting scores from Likert-type scales.  

When coefficient alpha is reported as a measure of instrument (or scale) reliability and the 
results are reported on an item-by-item basis (not as a summated scale), coefficient alpha is being used 
as a magic phrase and is worse than meaningless, as it leads the uninformed reader to assess the 
instrument’s reliability via an inappropriate tool. If each item is presented as measuring a distinct 
variable (we will offer the example of an item assessing one’s interest in eating hamburgers and another 
assessing one’s political affiliation), the concept of internal consistency is meaningless because there 
is simply no reason these two items should necessarily be answered in a consistent pattern; people can 
enjoy hamburgers (or not) regardless of political affiliation. In such cases, what is a reader to make of 
any reported value for coefficient alpha? Yet, in a review of quantitative articles published in the 
Journal of Agricultural Education between 1995 and 2012, Warmbrod (2014) found that 143 (41.9%) 
of 344 articles incorrectly reported coefficient alpha as the measure of instrument reliability and then 
reported results on an individual item basis. This incorrect reporting of coefficient alpha has no place 
in agricultural education research; manuscripts reporting inappropriate measures of reliability are in 
direct violation of the profession’s expectations of publishing high quality research! 

The coefficient of stability (sometimes called test-retest reliability) is the correct form of 
reliability for instruments where results are reported on an item-by-item basis (Warmbrod, 2014). To 
determine the coefficient of stability, the instrument is administered to a group of individuals similar to 
the target sample, and then, after a delay (generally one to two weeks [Multon, 2010]), the same 
instrument is administered to the same individuals a second time. Item-level responses to the first and 
second administrations are correlated, the correlations are transformed into z scores, the z scores are 
averaged, and the average z score is transformed back to a correlation coefficient and reported as the 
coefficient of stability. This z score transformation is necessary, because correlation coefficients are 
ordinal level data and cannot be directly averaged. As shown in Table 1, the mean of the four 
respondents’ test-retest correlation coefficients is r = .50; however, the mean z equivalent is 0.718, 
which transforms back into the equivalent mean correlation of r = .62.  

Table 2 
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Results of calculating mean of correlation coefficients versus the mean of z score transformations 

r r to z z to r 

.10 0.100 

.20 0.203 

.80 1.099 

.90 1.472 
             M = .50           M = 0.718       r = .62 

The coefficient of stability should be calculated and reported for the entire instrument or for 
each applicable instrument section, as appropriate. Alternately, the range of correlations and mean 
correlation for the entire instrument or appropriate sections may be reported. 

In establishing the coefficient of stability, it is important that the individuals used and the 
methods and conditions of administration be completely described and be as similar as possible to the 
individuals and conditions of testing used in the main study. In addition, the time between 
administrations should be reported. 

Sample Size 

Agricultural education researchers are often interested in using sample statistics to estimate 
population parameters. For example, a researcher might study a representative sample of agricultural 
science teachers to estimate the level of job satisfaction of the population of agricultural science 
teachers in a state. One primary concern in such situations is the size of the sample necessary to 
represent the population at a specified level of precision.  

One widely used and cited method of determining sample size is the Krejcie and Morgan (1970) 
formula, or the use of tables derived from the formula. However, this formula is intended for 
determining samples when estimating population proportions (or percentages) at a specific probability 
and level of accuracy. This is clearly indicated by the actual Krejcie and Morgan (1970, p. 607) formula: 

𝑛𝑛 =
(𝜒𝜒2)(𝑁𝑁)(𝑃𝑃)(1 − 𝑃𝑃)

[(𝑑𝑑2)(𝑁𝑁 − 1) + (𝜒𝜒2)(𝑃𝑃)(1 − 𝑃𝑃)]
 

where, 
n = the required sample size 
χ2 = table value of chi square for 1 df at desired confidence (generally 95%) level 
N = the population size  
P = the population proportion (generally assumed to be .50 to maximize sample size) 
d = the level of accuracy of the estimate expressed as a proportion 

Note quantities P and d (as well as the chi square value) in the formula refer to proportions 
(percentages). This is because the Krejcie and Morgan (1970) formula is intended to calculate the 
sample size, n, necessary to construct a confidence interval (generally + 5%) around the sample 
percentage that will, in 95% (confidence level) of all samples equal to n, contain the true population 
percentage. Thus, use of Krejcie and Morgan to determine sample size is appropriate when the objective 
is to estimate population percentages from sample percentages.   
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In cases where the objective is to use sample statistics to estimate population means with a 
specified degree of confidence at a specified level of precision, the Krejcie and Morgan (1970) formula 
is generally too conservative (results in overly large samples); instead, Cochran’s (1977) sample size 
formula (below) should be used.  

n = (𝑡𝑡𝛼𝛼 𝑠𝑠
𝐸𝐸

)2 
Where, 
n = sample size 
t𝛼𝛼 = t-critical @ alpha (1 – Confidence Level) for appropriate df 
s = estimate of population standard deviation (either from previous research or pilot study or 

estimated as Number of points on scale/6) 
E = margin of error 

As an example, assume we wish to estimate the population (N = 400) mean for teacher job 
satisfaction using a 7-point summated scale (1 = low to 7 = high). Further assume we want a 95% 
probability that our sample mean will be +

 0.25 of the true population mean. Using an estimated SD of 
1.17 (7-point scale / 6), Cochran’s sample size formula gives an initial required sample size of ni = 85 
as shown below.  

ni = (1.969 𝑥𝑥 1.17
0.25

)2

= 9.212

= 84.8  85 

However, because this sample is drawn from a finite population (N = 400) and the initial sample 
size is greater than 5% of the population (0.05 x 400 = 20), Cochran (1977, p. 78) recommended 
adjusting the initial sample size using the following formula:  

nadj = 𝑛𝑛𝑛𝑛

1+𝑛𝑛𝑛𝑛𝑁𝑁
where, 

nadj = the final adjusted sample size 
ni = the initial calculated sample size 
N = the population size 

This results in a final, adjusted sample size of n = 71, as shown below. 

nadj = 85

1+ 85
400

= 85
1.21

= 70.25  71 

By comparison, application of the Krejcie and Morgan (1970) sample size formula (or 
associated table) would result in a required sample size (n) of 196. Thus, calculation of the appropriate 
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sample size (n = 71) would both reduce the resources devoted to data collection and allow concentrated 
efforts to increase the response rate, all while achieving the specified level of accuracy.  

When multiple items are included in a survey, Cochran (1977) recommended calculating 
required sample sizes for each item and then selecting the largest calculated sample size. Cochran also 
recommended increasing sample size based on the anticipated response rate so that the requisite number 
of responses are received.  

The default sample size calculators for both Qualtrics (2018) and SurveyMonkey (n.d.) are 
based on the Krejcie and Morgan (1970) formula. Thus, researchers using these online tools must 
exercise independent scholarly judgement about the appropriateness of these calculators for their 
specific research project.  

In addition to correct use of the Krejcie and Morgan (1970) and Cochran (1977) sample size 
formulas (and internet-based interactive tools based on these formulas), agricultural educators should 
also consider determining sample sizes based on statistical power when designing studies where 
inferential statistics will be used. G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) is a free, versatile, 
and widely used program for determining sample sizes based on statistical power. To use the program, 
one simply selects the statistical test, the anticipated effect size, the test alpha level, and the minimum 
desired statistical power (generally > .80); once these values are set, G*Power calculates the required 
sample size. The calculated results are consistent with Cohen’s (1988) power tables (Johnson & 
Shoulders, 2017). As shown in Figure 2, a three group, one-way ANOVA, tested at the .05 alpha level, 
requires an n of 159 (53 per group) to detect a medium effect (Cohen’s f = 0.25) at the recommended 
minimum power of .80.  

Of course, regardless of the sample size calculation method used, it is recommended practice 
to oversample base on the anticipated response rate (Israel, 2003).  
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Figure 2. A priori sample size selection for a three-group, one-way ANOVA using G*Power (Faul et 
al., 2007).   

Nonresponse Error 

The potential for nonresponse error exists whenever a subset of the sampled population does 
not respond to a survey or other data collection effort. Actual nonresponse error exists when this 
nonresponding subset differs substantially from the respondents on the variables(s) of interest in the 
study (Reio, 2007). In such cases, nonresponse bias (NRB) can be operationalized (Reio, 2007) as, 

NRB = PNR (MRes - MNonrsp) 
where, 
 PNR = proportion of non-respondents 
MRes = the mean (or other statistic) for the respondents 
MNonrsp = the mean (or other statistic) for the non-respondents 

The obvious limitation to the formula is that the mean (or other statistic) for the non-
respondents is unknown! However, the formula is helpful in pointing out two facts; a high response 
rate is not sufficient protection against nonresponse bias when there is a large difference between 
respondents and nonrespondents, and a low response rate may produce an accurate estimate of 
population parameters when there is little or no difference (Johnson & Shoulders, 2107; Rogelberg & 
Stanton, 2007). 
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In agricultural education research, the most frequently used method of testing for nonresponse 
bias is to compare early and late respondents (Johnson & Shoulders, 2017). In this method, respondents 
who complete the survey instrument after some pre-determined cut-off point are classified as late 
respondents and statistically compared to so-called early respondents. When no statistically significant 
differences are found between the two groups (which is usually the case), agricultural education 
researchers invoke the magic words, “Early respondents were compared to late respondents and no 
statistically significant differences were found; thus, the results were generalizable to the population 
(Linder, Murphy, & Briers, 2001).” The very use of these magic words serves to foreclose any further 
possible consideration by the researcher, reviewer, or reader that the 40% who did not respond are 
different in some important way from the 60% who did respond.   

One obvious flaw in comparing early to late respondents to test for nonresponse error is that 
late respondents ARE respondents. According to Rogelberg and Stanton (2007), 

If late respondents differ from nonrespondents, it most likely suggests that some level of 
[nonresponse] bias exists. However, given that late respondents are not ‘pure’ nonrespondents 
in that they did complete the survey, being similar to respondents does not conclusively indicate 
an absence of [nonresponse] bias. (p. 200) 

Thus, comparison of early and late respondents can only indicate the presence of nonresponse bias; it 
cannot prove its absence.  

Johnson and Shoulders (2017) examined the statistical power of tests of nonresponse bias 
reported in articles published in the Journal of Agricultural Education between 2006 and 2015. They 
found that, due to small group sizes, none (0.0%) of the tests achieved an acceptable statistical power 
of .80 at the small effect size, 14.3% achieved a minimum power of .80 at the medium effect size, and 
57% achieved a power of .80 at the large effect size. Johnson and Shoulders (2018) posited that an 
unknown (and unknowable) number of studies may have concluded there was no significant difference 
between early and late respondents (and mistakenly generalized the results) simply because they lacked 
the statistical power to detect small, medium and even large effect differences. The authors presented 
numerous recommendations to improve testing of nonresponse bias in agricultural education research.  

Rogelberg and Stanton (2007) classify comparison of early and late respondents as a “lower 
quality” (p. 199) method of testing for nonresponse bias. Although beyond the scope of this manuscript, 
Rogelberg and Stanton (2007) suggested several additional methods of testing for nonresponse bias 
including passive nonresponse analysis, interest-level analysis, active nonresponse analysis, and worst-
case resistance. Agricultural education researchers should become familiar with these methods and 
incorporate them as warranted.  

Reporting of Inferential Statistics and Probabilities 

Agricultural education researchers often seem addicted to inferential statistics and their 
associated p values! So much so that we often force the square pegs of our data into the round holes of 
inferential statistics. We excitedly wave our p < .05 or p < .01 or (oh my!) p < .001 statistical results 
around as if they were bumper stickers from exclusive Ivy League universities to which our sons or 
daughters had just been admitted. Mind you, there is nothing wrong with inferential statistics and p 
values (or even Ivy League colleges for that matter), but they should be used appropriately rather than 
as magic symbols. 

Inferential statistics are correctly used to estimate population parameters from sample statistics. 
In order to make legitimate and meaningful use of inferential statistics, data must be collected from a 
representative sample of the population. When this is the case, researchers use inferential statistics to 
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make inferences from the sample back to the population with a known (or knowable) probability of 
being wrong (Spatz, 2018). In Figure 4, statistics ( and S) from a representative sample (n = 128) 
were appropriately used to estimate the confidence interval (± 2.5) around the population mean (μ) at 
the 95% confidence interval.    

Figure 3. Correct use of inferential statistics requires both a population and a representative sample 
drawn from that population.  

Inferential statistics are incorrectly used when either a census of the entire population is 
conducted or when a representative sample of the entire population is not studied. In the first instance, 
inference is not necessary because the researcher already has population parameters; there is no need 
(or benefit) to estimate a known population parameter. In the second instance, the researcher cannot 
generalize sample results back to a larger population using data obtained from a sample that does not 
represent that larger population.   

In null hypothesis statistical testing (NHST), the p value is the conditional probability of 
obtaining the statistical test value if the null hypothesis is true (Spatz, 2018). The null hypothesis 
generally takes some form of the following: 

H0: In the population, there is no difference in cognitive achievement between students 
taught by Method A, Method B, or Method C; or 
H0: In the population, the correlation between Variable X and Variable Y is equal to zero 
(0); or 
H0: In the population, the mean of Variable X is not equal to [hypothesized value]. 

Typically, in writing null hypotheses, researchers do not include the bolded text. However, it 
is included here to draw attention to the basic fact that all null hypotheses are hypotheses about the 
nature of reality in some population. Writing specifically about testing for group differences (such as 
represented by the first null hypothesis), Borg and Gall (1983) stated, “a test of statistical significance 
is made when we wish to determine how probable it is that the differences we found between our 
samples will also be found in the populations from which they were drawn” (p. 375). Note the specific 
linkage between samples and populations! If there is no population to which results can be generalized, 
there is no valid or logical reason to conduct or report the results of inferential statistical tests and their 
associated probabilities (Borg & Gall, 1983). 
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Making the correct decision on whether or not to use inferential statistics is simple (Figure 
4). When you have data from a sample, representative of a population, and you wish to use the sample 
data to test hypotheses about the corresponding population parameter(s), select and use the 
correct inferential statistic. When you cannot meet both conditions, skip the inferential statistics 
and report population parameters or descriptive statistics, as appropriate (Miller, 1994).  

Figure 4. Decision tree for determining appropriate use of descriptive or inferential statistics. 

Summary 

Magic words and symbols are not adequate substitutes for rigorous thought, adherence to 
accepted standards, and careful and accurate writing when conducting and reporting quantitative 
agricultural education research. This manuscript has highlighted some areas for potential improvement 
in research reported by the profession. Following these suggestions will make it easier for our 
colleagues to ‘peer over our shoulders’ and make substantive judgements about the quality of our 
research and the reasonableness of the resulting conclusions and recommendations. Although none of 
us are perfect, continuous improvement toward this objective is a reasonable and worthwhile goal.  
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