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Connecting new 
knowledge to old: 
Uncovering hidden premises  
in mathematical explanations

Understanding is a major goal of mathematics. Indeed, 
it is one of the four proficiencies in the Australian 
Curriculum: Mathematics (AC:M). But what does it  
truly mean to “understand” mathematics? Peter  
Sullivan, past President of the Australian Association  
of Mathematics Teachers, states that: 

...understanding really is about forming con-
nections between what is known, what needs 
to be known, and how the various aspects of a 
particular concept are connected to other aspects 
of learning. (Sullivan, 2016). 

This explanation emphasises that mathematical under-
standing means a coherent, or well-connected, view of 
mathematical ideas. Research has shown that those who 
understand a topic well have connected and organised 
their knowledge around key concepts (National Research 
Council [NRC], 2000, 2001). This helps them under-
stand new concepts more quickly, retain their current 
knowledge more effectively, and transfer their knowledge 
to new situations more easily. In one large-scale study 
involving over 2000 students and 90 teachers, students 
whose teachers emphasised mathematical connections 
made greater gains on numeracy tests than students 
whose teachers did not emphasise connections (Askew, 
Brown, Rhodes, Wiliam, & Johnson, 1997). 

Despite the numerous benefits that stem from a 
coherent mathematical understanding, it is uncommon 
for teachers to encourage students to form a developed 
web of mathematical connections (Mousley, 1999). 
Additionally, when students explain their thinking,  
they frequently do not state how their reasoning  
connects to prior knowledge. This obscures important 
mathematical connections between new knowledge  

and prior knowledge, making it more likely that the 
class will view new mathematical knowledge as isolated 
pieces of information. When students lack mathematical 
coherence, they are more likely to forget new informa-
tion and be unsuccessful in transferring their knowledge 
to new situations (Fennema & Romberg, 1999). 

Even if teachers want to emphasise mathematical 
coherence in their teaching, they may not understand 
how to do so (e.g. Cohen, 1990). Further complicating 
the matter is the fact that lessons that do and do not 
emphasise connections can appear similar, distiguished 
only by subtle differences (Kazemi & Stipek, 2001). 
In this article, I present a framework to help teachers 
prompt their students to explicitly connect new ideas  
back to prior knowledge. Making these sorts of explicit  
connections as a regular practice will help students to 
achieve the understanding proficiency in the Australian 
Curriculum: Mathematics of “mak[ing] connections 
between related concepts and progressively apply[ing] 
the familiar to develop new ideas” (Australian 
Curriculum, Assessment and Reporting Authority 
[ACARA], 2017, p.5).

Making connections more explicit 
—a framework

Whenever we reason or explain our thinking, we always 
assume certain things to be true. This gives us a starting 
point for our reasoning. These starting assumptions are 
called premises. Premises form the crucial link between 
our current reasoning and our body of prior knowledge. 
Ideally, when explaining our thinking to others, we 
would explicitly state all of our premises so that the  
connections we are relying on are evident. In reality 
however, our premises are often left unstated.  

This article describes the benefits of students making explicit connections between new 
concepts and their prior knowledge. In this way students are able to recognise the many 
connections in mathematics to increase their understanding.
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Informed listeners may be able to fill in the blanks in 
their own minds and recognise the unstated connections, 
but less-informed listeners may not be able to do so.

Table 1 shows three different versions of the same 
explanation. The first row is the ‘Less Connected 
Explanation’ and explains why an even number times 
an even number always results in an even number. This 
explanation leaves a premise (the sum of any two even 
numbers is always even) unstated. In the ‘Connected’ 
version of the explanation, this hidden premise has been 
explicitly stated (underlined for emphasis), drawing 
attention to how the explanation relies on prior knowl-
edge. In the ‘Most Connected Explanation’, this premise 
has also been justified. By going a step further and 
explaining why the premise is true, the Most Connected 
Explanation reveals the rich and varied ways that the 
current reasoning connects with prior knowledge.  
 
Table 1. Three versions of the same explanation of why the product 
of two even numbers is always even.

Less Connected  
Explanation:  
(premise unstated)

Multiplication is repeated addition, 
so an even times an even is actually a 
bunch of even numbers added togeth-
er. The sum of all these numbers will 
be even.

Connected  
Explanation:  
(premise explicitly 
stated and under-
lined)

Multiplication is repeated addition, 
so an even times an even is actually a 
bunch of even numbers added togeth-
er. The sum of any two even numbers 
is always even. The sum of all these  
numbers will be even.

Most connected  
explanation:  
(premise explicitly 
stated and un-
derlined, premise 
justified in italics)

Multiplication is repeated addition, 
so an even times an even is actually 
a bunch of even numbers added 
together. Even numbers consist entirely 
of pairs. When we add a bunch of pairs 
together, the result will also consist 
entirely of pairs, so the sum of any two 
even numbers is always even. The sum 
of all these numbers will be even.

	 It is important to emphasise that all three versions 
of the explanation are mathematically sound. The only 
difference is how explicit the connections to prior 
knowledge are. The Most Connected Explanation clearly 
lays out how it builds upon established knowledge of 
even and odd. The Less Connected Explanation assumes 
that its listeners can identify these connections on their 
own. If the Less Connected Explanation took place in a 
classroom that had just discussed the additive properties 
of even and odd, then the listeners would probably be 
able to recognise the implicit connections on their own. 
However, if the class had not recently discussed the 

additive properties of even and odd, then it is doubtful 
whether all listeners could mentally make these connec-
tions. In other words, the amount of detail that must be 
provided to help students make connections will always 
depend on the particular group of students and their 
current level of mathematical knowledge. A premise that 
is well-established and clearly recognised among one 
group of students may not be so for a different group.

Suppose a Less Connected Explanation is given 
and the teacher is unsure if students are connecting 
it to their prior knowledge. What can be done in this 
situation? Challenging the explanation at the right 
point will usually cause a premise to be explicitly stated. 
For example, if the Less Connected Explanation from 
Table 1 was given, the teacher could ask, “How do you 
know that the sum of these even numbers will be even?” 
The student will probably reply that the sum of even 
numbers is always even. At this point, the explanation 
has moved to the ‘Connected’ level because the premise 
has now been explicitly stated. The teacher could then 
draw out a justification for the premise by asking, “Why 
is the sum of two even numbers always even?” Once 
this justification has been given, the explanation has 
moved to the Most Connected level because the premise 
has been stated and justified. The previously implicit 
connections to prior knowledge are now visible for the 
entire class. Listeners are no longer required to make 
these connections for themselves as they try to follow 
the reasoning.

When trying to draw out the implicit connections 
in an explanation, teachers may find that the students 
are unable to recognise their own premises or justify 
them. In the rest of this article, I provide a few examples 
of this happening. These examples come from a U.S. 
classroom of fifth-grade students (ages 10–11) and all 
occurred within the first few weeks of the school year. 

Example 1
In this situation, the class was reviewing the various 
properties of numbers using the number 15 as an 
example. When Emma mentioned that 15 was odd,  
the teacher asked for an explanation of why.
Teacher: 	 Why is 15 odd?
Emma: 	 5 is odd.
Teacher: 	 Keep going! This isn’t the number 5.  

This is the number 15.
Emma: 	 5 is odd, so 15 is odd because it ends  

in the number 5.
Teacher: 	 Why? I don’t understand.
Emma: 	 So 5 is odd, and 15 is odd. So 15 is odd, 

because it has 5 as the last number, and 5  
isn’t divisible by 2. 
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Teacher: 	 Okay, but this is the number 15.
Emma: 	 I know. The 5 is not divisible by 2.  

The ten doesn’t matter.
Teacher: 	 Why not? Why doesn’t the ten matter?  

It seems kind of important. Without it,  
we don’t have the number 15. 

Emma: 	 But it doesn’t matter when you’re deciding 
even and odd.

Teacher:	 Why doesn’t it matter? Why can I just  
focus on the ones place?

	 (long pause)

Table 2 shows Emma’s explanation using the 
framework. The initial explanation was very brief and 
did not state the premise, making it a Less Connected 
Explanation. By challenging and questioning the 
explanation, the teacher drew out an explicit statement 
of the premise. By stating that “the ten doesn’t matter” 
and that “15 is odd because it ends in the number 5,” 
Emma’s premise became evident: the ones place deter-
mines whether a number is even or odd. The explana-
tion was now a Connected Explanation. Trying to move 
to the Most Connected level, the teacher asked Emma 
to justify this premise. In response, Emma stated, 
“[The tens place] doesn’t matter when you’re deciding 
even and odd.” This was not an explanation of why the 
premise was true, but was simply a restatement of the 
premise. The teacher once again asked for a justifica-
tion, this time to the entire class. After a long pause, it 
became evident that the class did not understand why 
the ones place determined whether a number was even 
or odd. Because of this disconnect in the class’s mathe-
matical knowledge, the explanation could not reach the 
Most Connected level. In response, the teacher decided 
to review place value with her students and work 
towards making an explicit connection between it and 
even/odd. After some time, students recognised that the 
tens digit always represents an even quantity. Combined 
with the additive properties of even and odd, students 
eventually understood the Most Connected Explanation 
shown in Table 2 and recognised a connection between 
two areas of maths that they had previously assumed 
were unrelated.

Example 2
In this example, Noah explained how he multiplied  
6 × 20 to get 120. 
Noah: 	 I did 6 times 2 and then I added a zero.
Teacher: 	 He said, “I multiplied 6 times 2, which is 12, 

and then I added zero.” (writes 12 + 0 = 12). 
So is this what he just did? Is 12 plus 0 equal 
to 12? So he’s saying the answer is 12. Do you 
agree ?

Table 2. Three versions of Emma’s explanation that the number 15 
is odd.

Less Connected  
Explanation:  
(as stated by student)

15 is odd because 5 is odd.

Connected Explanation: 
(premise explicitly 
 stated and underlined)

The ones place determines 
whether a number is even or 
odd. 15 is odd because 5 is 
odd.

Most Connected  
Explanation:  
(premise explicitly stated 
and underlined, premise 
justified in italics)

A digit in the tens place always 
represents an even quantity 
since it is being multiplied by 
ten and can therefore be evenly 
divided by two. Since even + 
even = even, and even + odd = 
odd, this means the ones place 
determines whether a number 
is even or odd. 15 is odd 
because 5 is odd.

 
Table 3. Three versions of Noah’s explanation that 6 x 20 = 120.

Less Connected 
Explanation:
(as stated by student)

 I did 6 times 2 and then I 
added a zero and got 120.

Connected Explanation:  
(premise explicitly stated 
and underlined)

I first decomposed 20 into 
2 ×10. I did 6 times 2. Adding 
a zero is equivalent to multi-
plying by ten. I added a zero 
and got 120.

Most Connected  
Explanation:  
(premise explicitly stated 
and underlined, premise 
justified in italics)

I first decomposed 20 into 2 
x10. I did 6 times 2. Adding a 
zero is equivalent to multiply-
ing by ten, since multiplying by 
ten moves each digit up to the 
next-larger place value. I added 
a zero and got 120.

Noah: 	 You don’t add a zero, you like, put a zero 
behind the twelve.

Teacher: 	 So I put a zero behind the twelve. Like that? 
(writes 12    0)

Class: 	 No. 
Teacher: 	 Why am I being so silly here? 
Natalie: 	 You’re adding a zero to the ones place.
Teacher: 	 (writes 12 + 0 = 12) But here I’m adding a 

zero to the ones place, right? You know what 
you’re doing. I want you to be explicit in your 
thinking.

In Noah’s original explanation, the premise (adding a 
zero is equivalent to multiplying by ten) was not explic-
itly stated, so the explanation was at the Less Connected 
level. The teacher began challenging Noah’s explanation 
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to draw out a statement of the premise. However, unlike  
the previous example, the class struggled to articulate the 
premise. Although Noah and others initially appeared 
to know that adding a zero to the end of a number was 
a shortcut for multiplying by ten, they were unable to 
clearly state this. Despite being able to use this computa-
tional shortcut, the students were unable to incorporate 
it as part of an explanation, suggesting that their under-
standing of the shortcut was superficial and isolated from 
their other mathematical knowledge. Even after some 
additional ‘pair-share’ time, students remained hesitant 
about what was happening mathematically when a zero 
was added to the end of a number. The lack of coherence 
in students’ mathematical knowledge had caused the 
explanation to become stuck at the Less Connected 
level. Recognising this disconnect, the teacher reviewed 
place value in a way that helped them to connect it to 
multiplication.

Benefits of explicit connections

When students can use various strategies to perform  
calculations and solve problems, it can be easy to assume 
that they understand the underlying concepts and have 
connected these concepts to their prior knowledge. 
However, as the examples illustrate, this may not be the  
case. Even if students can use a strategy correctly, on a 
conceptual level that strategy may be an isolated piece 
of knowledge in their minds. As both examples also 
illustrate, it is not uncommon for students to leave their 
premises unstated and unjustified, obscuring the connec-
tions to prior knowledge. When these connections are 
obscured, other students miss out on valuable oppor-
tunities to form a more coherent understanding of 
mathematics. 

Drawing out implicit connections can also be a 
diagnostic tool that allows the teacher to identify areas 
where students have fragmented knowledge. This is 
particularly useful at the beginning of the academic year 
for determining if the class needs to step back and review 
fundamental concepts and connections. Although both 
examples in this article occurred in a fifth-grade class-
room, much of the content the class discussed came from 
earlier years (e.g. place value, multiplying by ten). The 
press for explicit connections, done at the beginning of 
the school year, familiarised the teacher with her stu-
dents’ mathematical foundations. By addressing discon-
nects in their knowledge, the teacher enabled her students 
to more fully participate in future mathematics.

As a final benefit, making connections explicit  
helps prepare students for the increasingly complex 
and formal reasoning, known as proofs, that they must 
employ in their future maths classes. Researchers believe 
that emphasising explicit connections early can ease 
this transition to proofs by familiarising students with 
the type of thinking that is required (Knuth & Elliot, 
1998). At all levels, as students recognise the many con-
nections that permeate mathematics, they will begin to 
achieve the Understanding Proficiency in the AC:M and 
“build a robust knowledge of adaptable and transferable 
mathematical concepts … progressively apply[ing] the 
familiar to develop new ideas” (ACARA, 2017, p.5).
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