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Introduction

The solution of problems and the provision of proofs have always played 
a crucial part in mathematics. In fact, they are the heart and soul of this 

discipline. Moreover, the use of different techniques and methods of proof 
in the same mathematical field, or by combining fields, for the same specific 
problem, can show the interrelations between the fields, as well as the richness, 
beauty and elegance of mathematics.

Mathematics educators agree that linking mathematical ideas by using 
more than one approach to solving the same problem (e.g., proving the 
same statement) is an essential element in the development of mathematical 
reasoning (Polya, 1973; Schoenfeld, 1985; NCTM, 2000). Problem-solving in 
different ways requires and develops mathematical knowledge (Polya,1973), 
and encourages flexibility and creativity in the individual’s mathematical 
thinking (Krutetskii, 1976; Silver, 1997; Tall, 2007; Liekin & Lev, 2007). 

In addition to the specific roles of proof in mathematics, we suggest that 
attempts to also prove a certain result (or solve a problem) using methods from 
several other different areas of mathematics (geometry, trigonometry, analytic 
geometry, vectors, complex numbers, etc.) are very important in developing 
deeper mathematical understanding, creativity, and appreciation of the value 
of argumentation and proof in learning different topics of mathematics. Our 
approach, that of presenting multiple proofs to the same problem, as a device 
for constructing mathematical connections is supported by (Polya,1973,1981; 
Schoenfeld, 1988; NCTM, 2000; Ersoz, 2009; Levav-Waynberg & Leikin, 2009). 

Very similar to our notion of ‘One problem, multiple solutions/proofs’ is 
the idea of multiple solution tasks (MST) presented by (Liekin & Lev, 2007; 
Levav-Waynberg & Leikin, 2009; Liekin, 2009). MSTs contain an explicit 
requirement for proving a statement in multiple ways. The differences 
between the proofs are based on using: 
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1.	 different representations of a mathematical concept; 
2.	 different properties (definitions or theorems) of mathematical concepts 

from a particular mathematical topic; 
3.	 different mathematics tools and theorems from different branches of 

mathematics; 
4.	 different tools and theorems from different subjects (not necessarily 

mathematics); 
5.	 different strategies of problem solving. 

In our case, we apply the third type of differences between the proofs; we 
shall present various solutions to the problems using the tools and theorems 
of Euclidean geometry, analytic geometry, trigonometry, and vectors. Adding 
the concept of multiple solutions/proofs for one problem into the curriculum 
of mathematics studies, as well as MSTs, allows the development of connected 
mathematical knowledge not only for students but for their teachers as well. 

Based on many years of experience in teaching mathematics in high school, 
in academic courses and from the process of constructing and training pre-
service teachers, we have established the major importance of possessing 
comprehensive command of different mathematical tools, which permit one 
to deal with complex problems and with challenges that require use of various 
solution strategies.

Reasoning by using a dynamic geometry software (DGS)

The introduction of dynamic geometry software (such as GeoGebra) into 
classrooms creates a challenge to the praxis of theorem acquisition and 
deductive proof in the study and teaching of Euclidean geometry. Students/
learners can experiment through different dragging modalities on geometrical 
objects that they construct, and consequently infer properties, generalities, 
and conjectures about the geometrical artefact. The dragging operation on a 
geometrical object enables students to apprehend a whole class of objects in 
which the conjectured attribute is invariant, and hence, the students become 
convinced that their conjecture will always be true (De Villiers, 1998; Leung 
& Lopez-Real, 2002). 

Student activity

In the framework of a course in a combination of subjects taught to pre-
service teachers in mathematics, at the end of the school year we presented 
two geometric problems to a group of 20 students. Each student was asked 
to solve these problems using a large number of methods. It was suggested 
for them to solve it using: geometry of the plane, trigonometry, analytical 
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geometry, vectors and complex numbers. Each of them was required to solve 
it independently, and to try to find several methods. Indeed, many proofs 
were found, part of them were completely different and used different 
mathematical tools.

The students studied the beautiful geometrical property of the second 
problem, by using dynamic geometric software. The applet enabled dragging 
objects that caused the size of segments to be changed while conservation the 
property (Ben-Chaim, Katz & Stupel, 2016). 

After presenting the problems we shall give some of the solutions found by 
the students.

Problem 1

Presentation of the problem
Given is the square ABCD, whose side length is a. Through vertexes A and B 
we draw straight lines, which form an angle of 15° with the side AB. The lines 
intersect at point O (see Figure 1).

A

D C

B

a

15°

a a

O

15°

Figure 1

Prove that the triangle ∆DOC is equilateral.

Method A
The triangles ∆DOA and ∆COB are congruent according to the Side–Angle–
Side theorem. From the congruence it follows that OD = OC. On the side AB 
we build the equilateral triangle ∆ABE directed outwards (see Figure 2). The 
quadrilateral AOBE is a kite, therefore its diagonals, which intersect at point F, 
are perpendicular. From angle calculations, ∠EAO = ∠AOE = 75°, therefore  
EA = EO = AD = a.

DA||OE (due to their perpendicularity to AB). Therefore the quadrilateral 
DOEA is a parallelogram (due to two equal and opposite sides), but since in 
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this parallelogram there are two equal adjacent sides (DA = EA = a), it is a 
rhombus. Hence also DO = a, and the triangle is equilateral. 

A

D C

B

a

15°

a a

a

O

15°

E

a a

60°

75°

Figure 2

Note: Above we signed that OD = OC and so the triangle ∆DOC is isosceles. 
Therefore it is enough to prove that one of its angles is 60°. This fact is used 
later in methods B, D, and F.

Method B
Through the vertices B and C we draw straight lines that form an angle of 15° 
with the side BC. The lines intersect at point O'. See Figure 3.

A

D C

B

a

15°

a

O

15°

60°

60°

15°

15°

O'

Figure 3
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Then the isosceles triangles ∆AOB and ∆BO'C are congruent according to 
the Angle–Side–Angle theorem, therefore BO = BO'. ∠OBO' = 90° – 15° – 15° 
= 60°. So the triangle ∆BOO' is equilateral and OO' = O'B = O'C, ∠OO'B = 60°. 
By calculating the angles, we obtain: ∠BO'C = 150°, ∠OO'C = 360° – 60° – 150° 
= 150°, ∠OCO' = 15°. It follows that ∠OCB = 30°, and therefore, ∠DCO = 60° 
and the triangle ∆DOC is equilateral. 

Using this method the proof can be presented in the style of a proof without 
words (PWW; see Figure 4).

A

D C

B

a

a

O

O'

Figure 4

Method C
We present an indirect proof. The triangle ∆DCO' is equilateral. Hence, the 
angle ∠O'CB = 30° is a vertex angle in the isosceles triangle ∆O'CE (see Figure 5).

Therefore, ∠CBO' = 75°. Since the angle at the vertex B is of 90°, this 
requires that the vertices O and O' coincide—in contradiction to the datum, 
i.e., ∆DOC is equilateral.

A

D C

B

a

15°

a

O

15° 75°

30°

O'

a

a

a

Figure 5
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Method D
We draw the diagonals of the square, and denote by E their point of intersection. 
The continuation of AO intersects the diagonal at the point F and the side BC 
at the point G (see Figure 6). By calculating the angle, we obtain ∠CAO = 30°. 
We connect point F with the vertex C. FD is a mid-perpendicular to the 
diagonal AC.

A

D C

B

a

15°

a

O

15°
30°

E

G

F

Figure 6

From the properties of a mid-perpendicular, we obtain:
∠EAO = ∠ECF = 30°; ∠EFA = ∠EFC = 60°.

From a calculation of the angles we obtain:
∠CFO = ∠CFB = 120°, ∠FCB = 15°, ∠FOB = ∠FBO = 30° ⇒ FO = FB

The triangles: ∆CFO and ∆CFB are congruent according to the Side–Angle–
Side theorem. Hence ∠OCF = ∠FCB = 15° and ∠OCB = 30° ⇒ ∠OCD = 60°, 
therefore the triangle ∆ODC is equilateral.

Method E: Proof by trigonometry
We denote by FE the mid-perpendicular to the sides AB and DC (see Figure 7).

A

D C

B15°

a

O

E

F

a
2

Figure 7
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Since
	

tan
θ
2
= 1− cosθ

sinθ

we obtain

	

tan15o = 1− cos30°
sin30°

=
1− 3

2
1
2

= 2− 3

From triangle ∆AOE

	

tan15o = OE
AE

⇒OE = a
2
⋅tan15o = a ⋅ 2− 3

2

⇒ FO = a −OE = a 3
2

Then

	

DO2 = DF2 + FO2

= a
2

⎛
⎝⎜

⎞
⎠⎟

2

+ a 3
2

⎛
⎝⎜

⎞
⎠⎟

2

= a2

⇒DO = a

So the triangle ∆DOC is equilateral.

Method F: Proof using analytic geometry
We consider the square ABCD in a Cartesian coordinate system (see Figure 8). 

A (0, 0)

D (0, a) C (a, a)

B (a, 0)
15°

a

O

E (a/2, 0)

F (a/2, 0)

l

30°

y

x

Figure 8
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FE is the mid-perpendicular to the sides AB and DC. Through vertex A we 
draw the straight line l which forms an angle of 30° with the side BC. Then 
the equation of l is

	
y = 3

3
x or 3x −3y = 0

The equation of the straight line AB is y = 0. Then according to the formula of 
the bisectors of the angles between two straight lines, one can easily obtain the 
equation of straight line AO: y = 2− 3( )x . So the coordinates of point O are:

	

a
2

,
2− 3

2
a

⎛
⎝⎜

⎞
⎠⎟

Therefore

	

OF = a − 2− 3
2

a = a 3
2

⇒ tan∠FDO = a 3
2

:
a
2
= 3

⇒∠FDO = 60o

Problem 2

Presentation of the problem
Given is a square ABCD whose side length is a. A straight line is drawn through 
the vertex A, which intersects the side DC at the point E. The bisector of the 
angle ∠EAB is drawn through the vertex A, which intersects the side BC at the 
point F (see Figure 9).

a

A

D C

Ba

y

x

z

E

F

α
α

Figure 9

Prove that BF + DE = AE (x + y = z).

At the first stage the students were given an applet which allowed the 
point E is dragged along the side BC, including the possibility of dragging 
the point outside the square to the right of the vertex C. During each stage 
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of dragging the lengths the segments and the sum of the relevant segment 
lengths appear on screen. The experience with the applet shows that at each 
stage the properties are conserved. It is possible to reach the applet using the 
following link: https://www.geogebra.org/m/VnpDPzg4

We denote: ∠EAB = 2a, BF = x, DE = y, AE = z.

Method A
From point F we drop a perpendicular FG to the segment AE (see Figure 10). 
From the property of a point on an angle bisector, we have BF = FG = x.

a

A

D C

B

y

x

z

E

F

α
α

G

x

N

Figure 10

We calculate the area of the square ABCD from the areas of the four triangles 
from which it is composed: 

	 SABCD = SΔABF + SΔFCE + SΔEFA + SΔADE

	
a2 = a ⋅x

2 +
(a −x) (a − y)

2 + z ⋅x
2 +

a ⋅ y
2

After simplification we obtain a2 = x(y + z).
By using the Pythagorean theorem in the triangle ADE, we have a2 = z2 – y2.
By substituting this relation we obtain z2 – y2 = x(y + z),  
i.e., (z – y)(z + y) = x(y + z).
After cancelling (y + z) from both sides, we obtain x + y = z.

Method B
From the point E we drop a perpendicular EN to the side AB. We denote by 
M the point of intersection of this perpendicular with the angle bisector AF 
(see Figure 10). By using the angle bisector theorem in the triangle AEN, we 
obtain:

	

z
y = EM

MN
	

(1)
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The triangles AMN and AFB are similar, therefore we can write the proportion:

	

y
a = MN

x

⇒ MN =
x ⋅ y
a 	

(2)

	
EM = a −MN =

a2 −xy
a

	
(3)

We substitute the relations (2) and (3) in (1), to obtain a2 = x(y + z).
Using the Pythagorean theorem in the triangle ADE, we obtain x + y = z.

Method C
Proof based on the properties of the angle bisector and the Pythagorean 
Theorem (see Figure 11). 

A

D C

B

x

a

E

F

α
α

G

x

a – yz – a

Figure 11

From the properties of the angle bisector: 
AB = AG = a, FB = FG = x

From the Pythagorean Theorem in the triangle ECF:  
EF2 = (a – y)2 + (a – x)2

From the Pythagorean Theorem in the triangle EGF:  
EF2 = (z – a)2 + x2

From equating the values of EF2, we obtain:  
(z – a)2 + x2 = (a – y)2 + (a – x)2

From the Pythagorean theorem in the triangle EDA: 
a2 = z2 – y2

and by cancelling terms, we obtain z = x + y.
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Method D
We copy ∆ABF in such a manner that the side AB coincides with the side AD 
(see Figure 12).

A

D C

B

x

z

E

F

α
α

F'

90°–α

90°–α

α

2α

y

Figure 12

The triangle DF'EA is an isosceles triangle since it has two equal angles:
∠EF'A = ∠EAF' = 90° – a

Conclusion:	 EF'= EA ⇒ x + y = z

Method E: Proof by trigonometry
From triangle DAFB:	 x = a ⋅ tan a
From triangle DADE:	 y = a ⋅ cot 2a

	
z = a

sin2α

It remains to prove that: 

	

a
sin2α

= a ⋅cot 2α +  a ⋅tanα

We multiply both sides by sin 2a and obtain:

	

a = a ⋅cos2α + a ⋅ sinα ⋅2 ⋅ sinα ⋅cosα
cosα

= a ⋅ 1− 2sin2 α( )+ a ⋅ sinα ⋅2 ⋅ sinα ⋅cosα
cosα

= a
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Method F
We use the rules of analytic geometry. We locate the square in a system of 
coordinates in such a manner that the vertex A coincides with the origin and 
the sides AB and AD lie on the axes x and y, respectively (see Figure 13).

E (b, a)

F

α
α

A (0, 0)

D (0, a) C (a, a)

B (a, 0)

Figure 13

The coordinates of the vertices are A (0, 0), B (a, 0), C (a, a), D (0, a). 
We select a point E on the side DC, whose coordinates are E (b, a), such that 
b < a.
The equation of the side AB is y = 0.
The equation of the line AE is y = a

b x .
Two straight lines are given by their general equations:

	

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0
⎧
⎨
⎩

The equation of the angle bisectors are:

	

a1x  +  b1y  +  c1

a1
2

 +  b1
2

= ±
a2x  +  b2y  +  c2

a2
2

 +  b2
2

In accordance with the general equations of the lines AF and AB:

	

ax − by = 0

y = 0
⎧
⎨
⎩

we obtain that the equations of their angle bisectors are:

	

ax − by

a2 + b2
= ±y

The explicit equation of the angle bisector ∠EAB (the one with the positive 
slope that corresponds to the straight line AF) is: 

	
y = a ⋅x

b + a2 + b2
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Therefore the coordinates of the point F are:

	

a, a2

b  +  a2  +  b2

⎛
⎝⎜

⎞
⎠⎟

From the coordinates of the vertices A, B, C, D, E, F we obtain the lengths of 
the segments:

	

BF = a2

b + a2  +  b2

AE = a2 + b2

DE = b

Then

	

BF + DE = b + a2

b + a2 + b2

= b + a2(b − a2 + b2 )

(b + a2 + b2 )(b − a2 + b2 )

= b −(b + a2 + b2 )

= a2 + b2 = AE

Method G: Proof using vectors
We denote: AD  = u, AB  = v, | u | = | v | = a (see Figure 14). 

A

D C

B

x

z

E

F

α
α

G

l

y

u

v

Figure 14

z = u + y, l = v + x, z ⋅ l = u ⋅ v + y ⋅ v + u ⋅ x + y ⋅ x
u ⋅ v = y ⋅ x = 0 (since the vectors are perpendicular).
y ⋅ v = | y | ⋅ | v | = y ⋅ a (since the vectors are parallel).
u ⋅ x = | u | ⋅ | x | = x ⋅ a (since the vectors are parallel).
Hence: z ⋅ l = | z | ⋅ | l | ⋅ cos a = z ⋅ l ⋅ cos a = z ⋅ a
And hence: z ⋅ a = x ⋅ a + y ⋅ a ⇒ z = x + y
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Method H: Proof using complex numbers
We place the square in a system of coordinates, where the horizontal axis is 
real and the vertical axis is imaginary, and the vertex A is at the origin (see 
Figure 15). 

E (y, ai)

F (a, xi)

α
α

A (0, 0)

D (0, ai) C (a, ai)

B (a, 0)

y

I

R

x

z1

z2

Figure 15

z1 = a + xi, z2 = y + ai, z1
2 = a2 – x2 + 2axi

Since z2 and z1
2 both have an angle of 2a, one can write down: z1

2 = k ⋅ z2, 
where k is real.
We equate the expressions: a2 – x2 + 2axi = k(y + ai)
and obtain two equations:	 a2 – x2 = ky	 (1)
	 2ax = ka ⇒ k = 2x	 (2)
We substitute k = 2x in the first equation and obtain a2 – x2 = 2xy.
Since a2 = z2 – y2, then z2 – y2 – x2 = 2xy and z = x + y.

Methodical discussion with the students

Towards the end of the activity the students presented the different solutions 
to the entire group. A methodical discussion was held on each solution from 
different aspects, such as: the degree of difficulty of the solution method, 
the elegance and simplicity of the solution, the creativeness of the solution 
method, integration between different fields in mathematics and their tools, 
the extent to which the solutions match the knowledge of the students and the 
program of studies. Subsequently we presented to the students the concept 
of ‘conservation’, based on the conserved property of the sum of the lengths 
of two segments along a third segment by shifting the point E on the side DC.

From this point on, a discussion was held concerning the importance of 
finding several methods of solution of the same task, the fact that in each 
mathematical theorem, and especially in Euclidean geometry, there is a 

A
ustralian S

enior M
athem

atics Journal vol. 3
2

 no. 1

39



single property for several properties that are conserved. A comprehensive 
discussion was held on the geometry conservation properties. By applying 
GeoGebra applets, other examples of conservation properties were presented 
and has been emphasized their contribution to solving problems in geometry 
(Ben-Chaim, Katz & Stupel, 2016). 

In addition, a discussion was held on the importance of using the computerised 
technological tool for testing the correctness of different hypotheses.

The distribution of the different solutions of the students
The distribution of the number of proofs found by the students for problem 
2 (for which were suggested more various methods of solution) appears in 
Table 1.

Table 1

Number of different proofs* 1 2 3 4 5 6

Number of students 2 8 5 3 2 1
* The overall number of different proofs in the same mathematical field.

The distribution of the types of proofs by the mathematical field found by 
the students for problem 2 appears in Table 2.

Table 2

Mathematical 
field of the proof

Geometry Trigonometry
Analytical 
geometry

Vectors
Complex 
numbers

Number of 
students

14 9 3 2 1

Conclusions from the data in the tables

1.	 Only six students managed to solve the task using four methods or more.
2.	 Most of the students (70%) solved the task using the geometrical method.
3.	 45% of the students solved the task using a trigonometric method.
4.	 A small number of the students solved the task using analytical geometry, 

vectors and complex numbers.

Feedback from the students

•	 The different proofs found for the task reinforce the perception of 
mathematics as a field built from different intertwined branches.

•	 At a first glance this seems to be a task in geometry, and without the 
requirement of solving it using traditional methods we wouldn’t have tried 
to solve it using analytical geometry, vectors and complex numbers.
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•	 The proof that the students liked the most, of those shown at the end of 
the activity, is method D (by rotating a triangle), followed by method A (by 
calculating areas).

•	 There is much similarity between the proofs using vectors and the proof 
using complex numbers.

Summary

The authors believe that this activity suggests that the students need to absorb 
the importance of solving tasks using several different methods.
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