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Introduction

This article summarises activities that happened during the first three 
weeks of a fictitious high-school-level linear algebra section that used 

magic squares as a teaching tool to inspire students to further investigate 
the topics. The author has been working with students from high school and 
college levels for years, and although this situation can be considered very 
realistic, it was not based on a single classroom, it is a product of imagination 
based on actual experience.

This study focuses in the development of activities related to linear algebra 
with use of technology. An active learning method was used as the main 
strategy to motivate discovery. It aligns with the Australian Curriculum not 
only for the encouragement of using computers and calculators but also for 
helping the student understand the concepts and techniques in matrices and 
apply reasoning skills to solve problems with matrices, which are learning 
outcomes from Unit 2 Specialist Mathematics.

Active learning

Educators have embraced innovation to better serve a constantly changing 
student population. Methods that once seemed to be the only rule, now 
are being challenged. With interactive technology available at virtually any 
daily task, students seem to not respond well to the outdated passive learning 
method anymore. Robert Zemsky [16] states that the current undergraduate 
structure is outdated and inadequately services the present and changing 
student demographic.

Prince (2004) defines active learning as “any instructional method that 
engages students in the learning process.” This definition, in theory, includes 
many traditional classroom activities, such as instructor-centred lectures. 
However, in general, modern active learning processes commonly involve 
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peer-assisted and problem-based learning approaches. Michael (Michael, 
2006) highlights the success for active learning, especially the flipped-
classroom method. This approach requires students to gain knowledge before 
going to class, where with peer and faculty support a higher level of cognitive 
work can be performed.

Bonwell and Eison (1991) conclude that active learning leads to better 
students’ attitudes and improvements in students thinking and writing. More 
anecdotal stories seem to support the claim that students learn best when they 
engage with course material and actively participate in their learning.

Our method of instruction follows the standard practices in most recent 
articles. In order to develop competence in a topic, research suggests that 
students need to:
•	 have factual knowledge;
•	 understand facts and ideas in the context of a conceptual framework;
•	 organise knowledge in ways that facilitate retrieval and application. 

(Bransford, 2004)
Students in our linear algebra class will achieve this by the following elements:
•	 gaining first exposure prior to class: with YouTube videos, pre-lesson 

assignments, or reflection upon a topic;
•	 receiving incentive to come well-prepared to class: part of students’ 

semester grade is dependent on how well they are prepared for the time 
in classroom;

•	 performing in-class activities that focus in higher-level cognitive learning: 
once students are well-prepared, class time is used to promote deeper 
learning and to increase their skills at using new material.

About the course

This special and optional linear algebra section was aimed at senior students. 
Class met for three hours a week, divided into two meetings of 75 minutes 
each time. It mocked a college-level class structure and lasted 15 weeks during 
a spring semester. There were 26 students registered, all of them willing to 
have a college degree: 8 saying they will pursue math major, 16 computer 
science major, and 2 preferring a Biology program. 

Demographic data was not available, but students were in majority white 
and Hispanic.

Terenzini et al. (2001) shows that students taught in a way that incorporates 
small-group learning procedures generally achieve better knowledge 
retention than students working by themselves. Hence, during the very first 
day of classes, students were assigned into six different groups, ranging from 
four to five members.
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For privacy, names shall be omitted. In our report, when referring to 
the different student groups, we use letters: A, B, C, D, E, and F. And to the 
students as numbers within the group: A1, A2, and so on.

Although the class requires a textbook, during the first weeks of classes, 
students were encouraged not to use it. The magic square theme was used to 
assist the delivery of the first two chapters only: Systems of Linear Equations 
and Matrix Algebra. Later chapters in the course were: Vector Spaces, Inner 
Products, Linear Transformations, and Eigenvalues and Eigenvectors.

About the ‘magic module’

The goal of starting the course with the ‘magic module’ is a way of introducing 
several linear algebra concepts through an effective approach so students 
would develop solid ideas and intuitions regarding the material. By no means 
the module may substitute the formal and precise approach to linear algebra 
required by a course at this level.

After the completion of the three-week introductory module, students 
would dedicate more time to proofs, and more mathematical precision in 
manipulating matrices, and in how to compute rank, determinants, and more.

Mathematical concepts

For the first weeks, magic squares were used as a theme to motivate deeper 
inquiries regarding some linear algebra concepts, such as solutions of systems 
of linear equations, and some applications of key characteristics of a matrix 
(specifically, rank and inverse).

The following material was only presented to the students after our active 
learning activities.

Magic squares
Magic squares have fascinated mathematicians for centuries. The earliest 
known magic square was a 3 by 3 one recorded around 2800 BC in China. 
Fuh-Hi described the “Loh-Shu”, or “scroll of the river Loh”. Since then, many 
people in many nations have enjoyed, studied, and recorded magic squares.

Recently, several research papers have been published in questions 
involving magic squares. For instance, Benjamin and Yasuda (1999) had 
studied interesting properties for squaring numbers formed on the magic 
squares. Benjamin also published an article on a magazine for magicians 
where he teaches how to create four by four magic squares based on a 
volunteer’s birthday (Benjamin, 2006). Other studies relate magic squares 
with: dominoes (Springfield & Goddard, 2009), vector spaces (Ward, 1980), 
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weights and centre of mass (Behforooz, 2012), and even the US election 
(Behforooz, 2009).

A magic square is a display of numbers in a square form having nice 
mathematical properties. Normally, the sum of all numbers in any row or in 
any column or in any diagonal is always the same number. One other ‘nice’ 
property that some magic squares may show is having all numbers different, 
in fact, some will even display consecutive integers starting at 1. Some magic 
squares may have other collections of numbers whose sum adds up to the 
same specific number. Or, in a variation of the problem, a volunteer may 
specify a number that the rows/columns/diagonals/special areas of the magic 
square will be equal to (in this case, we may have to repeat numbers within 
the square). 

Let us think of an n × n square and answer some key questions.

Problem 1
How many numbers will it contain?
Answer 1
Since there are n rows and n columns, there are n2 numbers in this magic 
square.
Problem 2
If we display the consecutive numbers 1, 2, … n2, what is the expected sum of 
each row/column/diagonal?
Answer 2
The total sum of all numbers is S = 1 + 2 + … + n2. Let’s use a small trick to 
determine a nice formula for it:

	 S =	 1 + 2 + … + (n – 1)2 + n2

	 =	 n2 + (n2 – 1) + … + 2 + 1

Hence: 2S = (n2 + 1) + (n2 + 1) + … + (n2 + 1) + (n2 + 1). So, 2S = (n2 + 1)n2. 

Thus
 	

S = (n2 +1)n2

2

This expression gives the sum of all numbers. 
If we expect each of the n rows to have the same sum, then the number 

must be 

	
t = S

n
= (n2 +1)n

2

Hence for a 3 × 3 magic square, the sum will be t = (32 +1)×3
2

= 15 . 
For a 4 × 4 magic square t = 34. And for a 5 × 5, t = 65.

System of equations
The first topic the class covered was solving systems of linear equations. For 
example, how we would find values for x, y and z that solve the following three 
equations simultaneously:
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x + 2y − z = −2

2x + y + 4z = 8

3x + 5y −3z = −4

⎧

⎨
⎪

⎩
⎪

	

(System 1)

The process is completed by rewriting the problem with matrices.

	

1 2 −1
2 1 4
3 5 −3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−2
8
−4

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

The first matrix A is called the matrix of coefficients. The second matrix X is 
called the variable vector (a vector is simply a matrix having only one column). 
Finally, the matrix on the right-hand side can be simply called the right-hand 
vector, and we name it vector B. So the representation of this problem is:

	 A ∙ X = B

One strategy to solve is to find the inverse matrix A–1 (if it exists) and 
perform a left-multiplication on both sides (matrix multiplication is not 
commutative, that is, order is important, the matrix product E · F may differ 
from the product F · E): A–1 ∙ A ∙ X = A–1 ∙ B. So the result is X = A–1 ∙ B.

Rank of a matrix
In order to understand the concept of rank of a matrix, we need to set some 
language:

Definition 1
A set of vectors is linearly independent if no vector in the set is:
•	 a scalar multiple of another vector in the set; or
•	 a linear combination of other vectors in the set, that is, if one vector is 

equal to the sum of scalar multiples of other vectors.

The rank of a matrix is the maximum number of linearly independent 
rows. In practice, the rank of an n × m matrix will be n if and only if all rows 
are linearly independent. That is, if there is no row that can be written as a 
linear combination of the others.

In a system of equations, each equation can be seen as a piece of information. 
Specifically, the left-handed side of each equation will provide a different row 
in the coefficient matrix, A. If a row can be written as a linear combination 
of the others, then in practice it means that a piece of information is being 
somehow repeated. 
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Take, for instance, the previous system and add a fourth equation 6x + 8y = 2:

	

x + 2y − z = −2

2x + y + 4z = 8

3x + 5y −3z = −4

6x + 8y = 2

⎧

⎨
⎪⎪

⎩
⎪
⎪

	

(System 2)

It looks like that the new equation adds a new piece of information. 
However, it does not, the fourth equation is simply the addition of all initial 
three equations:

	 Equation 4 = Equation 1 + Equation 2 + Equation 3

So technically, this fourth equation is redundant.
The following result is valid. It is mentioned in the introductory module, 

but its proof is only presented later in the course.

Theorem 1
Let A be an n × n matrix, X be a vector with n variables, and B be a vector with 
n numbers. Then the system of equations represented by A · X = B will have a 
unique solution if and only if rank(A) = n.

Inverse of a matrix
Our approach to solve a linear system of equations relies on finding the 
inverse of a matrix. Let’s start with some definitions (remember that the main 
diagonal is the one where the row position is the same as the column position).

Definition 2
A n × n matrix is called the n × n identity if and only if all entries are zero, 
except on the main diagonal, which displays only ones.

This name is consistent with its main property: an identity matrix times any 
other matrix will be equal to the given matrix, provided the multiplication 
can be done.

Not all matrices have inverse, only the ones having non-zero determinant. 
We will avoid the formal definition of the determinant (that implies notions of 
permutations) for now and we will concentrate instead on its use.

Only square matrices (the same number of rows and columns) may have 
inverse. An equivalent way of determining the ones with inverse is stating that, 
from all n × n matrices, only the ones with ‘rank’ equal to n will have inverse.

The process of finding the inverse of a matrix can be elaborated. For our 
initial goals, we may use computational tools that will find them.
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An example
Consider the system:
	 x + 2y – z = –2
	 2x + y + 4z = 8
	 x + 3y + 3z = 6

Although it looks like there are three pieces of information (each equation 
may be seen as a mathematical piece of information), a quick analysis reveals 
that the third equation is not a ‘new’ piece of information, since that equation 
can be the result of adding the first and second equations. This equation can 
be considered redundant, so it may be deleted. If we rewrite the system as 
A · X = B, we conclude that the ‘rank’ of the matrix A is, then, not three. The 
remaining two equations are independent. Hence, the ‘rank’ is two. That is, 
there are only two pieces of information.

Since, we are trying to solve for three variables, according to theorem 1 
having the rank of A equal to 2 would not be enough to get a unique solution. 
A way to overcome this issue would be giving a value for any of the variables as 
a third piece of information. That is, we would substitute an equation that is 
the result of manipulation of others by an equation that simply gives a value to 
a variable. For instance, if we say that x = 4, then instead of the third equation, 
it would be x + 0y + 0z = 4, and the third row of matrix A would be [1 0 0].

The rank of

	

1 2 −1
2 1 4
1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

is three, so this problem now has unique solution.

Theorem 2
Let A be a square matrix n × n whose rank is exactly equal to n, then the 
inverse matrix of A exists, represented by A−1. Furthermore, if X is a vector of 
n variables, and B is a vector with n numbers, then the system of equations 
represented by A · X = B has a unique solution given by X = A−1 · B.

Technology
There are several calculators, software, apps, websites, that would work with 
matrices. For instance, WolframAlpha (www.wolframalpha.com) may be useful.

Now going back to the first system of equations of this chapter, by typing 
“rank{{1, 2, −1}, {2, 1, 4}, {3, 5, −3}}” in WolframAlpha, for example, we certify 
that the rank is 3, so we may find unique solutions for the variables. We know 
the result is X = A–1 · B, where A is the matrix of coefficients (this one we just 
computed the rank), and B is the right-hand side. The solution is x = 3; y = –2; 
z = 1.
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The problem

3 × 3 magic square
From the above discussion, we want to display numbers 1, 2… 9 in such way 
that all rows, all columns and both diagonals have sum equal to 15:

a b c

d e f

g h i

The equations are:

	 a + b + c = 15  	 (first row)
	 d + e + f = 15  	 (second row)
	 g + h + i = 15  	 (third row)
	 a + d + g = 15  	 (first column)
	 b + e + h = 15  	 (second column)
	 c + f + i = 15  	 (third column)
	 a + e + i = 15  	 (main diagonal)
	 c + e + g = 15  (	 second diagonal)

There are only eight equations for nine variables. We may want to create 
a ninth equation. We can accomplish this by giving value to a variable. For 
instance, let us say that e = 5, which is a reasonable number since it is the 
middle value and the middle cell. After adding this piece of information, we 
compute the rank (through an app, calculator or available websites), and we 
get rank = 7.

That is, from the 9 rows, we can eliminate two that are results of others. 
And we add two new values to variables. Without going on details of how to 
do, we point out that adding the first three rows gets the same result as adding 
rows 4, 5, and 6. So, we can eliminate one of these rows. Eliminate sixth row 
(basically, we noticed that row 1 + row 2 + row 3 – row 4 – row 5 = row 6).

Let us replace it by giving the value 1 to a cell. Do we want this low value 
on one of the corners, or in the middle? Let us try on the middle, for instance 
b = 1 (that is the sixth equation now).

Again, without many details at this point, we notice that adding rows 5, 7 
and 8 we end up with: {1, 1, 1, 0, 3, 0, 1, 1, 1} which is the same as adding rows 1 
and 3, and three times row 9. So: 
	 row 5 + row 7 + row 8 = row 1 + row 3 + 3 × row 9. 
Hence, we can eliminate one of these rows and replace it with a row that 
represents giving value to a new variable (since we already gave value to b and 
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e, we can give value to any other variable other than h, since b + e + h = 15). Say 
we eliminate 8th row and let a = 8. The coefficient matrix (which we call A), 
the variable vector (X) and the right-handed vector (B) become:

	

A =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 1 0 0
0 0 0 0 1 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, X =

a
b
c
d
e
f

g

h
i

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, B =

15
15
15
15
15
1

15
8
5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Now, A has rank 9 (computed with a technology resource). Hence, we 
could use linear algebra and solve it. So, our magic square is the result of A−1B 
which is:

8 1 6

3 5 7

4 9 2

How did we guarantee that the numbers did not repeat? Well, that can be 
done by trial-and-error or little experience. Also notice that any 90 degree 
rotation or any vertical/horizontal reflection or combinations of these moves 
would also result in similar magic squares.

Notice the following nice properties (Benjamin & Yasuda, 1999) of the 
above square:
•	 Rows: 8162 + 3572 + 4922 = 6182 + 7532 + 2942

•	 Columns: 8342 + 1592 + 6722 = 4382 + 9512 + 3762.

4 × 4 magic square
Let us say we want to create a 4 × 4 magic square. Each row, column, diagonal 
will have the same sum, which we call S. According to previous discussion, let’s 
say S = 34. There are 16 variables, but only 4 rows, 4 columns and 2 diagonals, 
totalling 10 equations. And some equations may even be redundant.

So, we may create some other ‘special areas’ that keep the same sum. See 
the areas below. There are eight new areas: each ‘quadrant’, an area composed 
by the corners a, d, n, q, an area with four ‘centre’ numbers f, g, k, l, plus two 
rectangles.

Students need to check the number of variables and the total number 
of equations. Also, they need to check the rank of the matrix A. And check 
whether they need to start giving values to different cells.
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a b c d a b c d a b c d

e f g h e f g h e f g h

j k l m j k l m j k l m

n o p q n o p q n o p q

Class experience

There was a three-week period reserved for this experiment. Since class meets 
twice a week for 75 minutes each time, there were a total of only six meetings. 
That is how it worked:

First day
On the very first day of classes, the 26 students are divided into six groups, each 
with 4 or 5 members. The instructor goes over the syllabus and explains that 
the first few weeks would have a different structure: the active learning method. 
He also informally assesses students’ level of familiarity with classification of 
matrices, and the basic operations (sum, difference and product). All topics 
are well-known, but some students show deficiency in matrix product. A 
homework on these operations is then assigned. Also, students are asked to 
watch TED talk by Arthur Benjamin where he shows a 4 by 4 magic square 
based on a birth date.

Two students are required to go to the tutoring centre to work on matrix 
multiplication. Both go.

Second day
It starts with groups solving systems of equations with two variables and two 
equations. Different groups solve a different system, and members choose to 
solve problems via either ‘elimination process’ or ‘substitution’.

Once all groups show a relative knowledge on both methods, instructor 
decides to present the systems as a matrix multiplication A · X = B. Each group 
also presents their own problems as matrix multiplication.

Then instructor shows WolframAlpha website, and taught students how 
to type matrices, how to solve the system by A−1 · B, and how to read the 
results. Each group sends a representative to redo their own problems at the 
instructor’s computer. All answers match.

Instructor asks each student to download a ‘matrix app’ on their cell phones 
and try to use them. A student downloads a wrong app (it just computes 
determinants), a student has no battery left, and another has no memory 
available. All others download good ones. A class discussion emerges on how 
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to enter data. They realise that different programs have different forms of 
entering rows.

Class ends with students solving systems of three equation with three 
variables.

Homework involves some systems. It also included a two-page handout for 
solvable systems with less equations then variables. On the handout, it simply 
says that the solution exists, but it would not be unique. By attributing values to 
some variables, different solutions would be found. Students are encouraged 
to watch other magic square videos, including the one on Numberphile 
channel. Students who were unable to install an app are required to do so 
until next class.

Third day
Class starts with a system with three variables and two equations. Students are 
asked to find “a” solution. Most students try to use their apps, and conclude 
that it would be “impossible.” A student, let’s call him student A1, proposes a 
correct solution. He decides to make x equal to zero, and solves a system with 
two equations and two variables. The instructor does not confirm whether it 
would be valid. Students debate and conclude that it makes sense, but that it 
assumes information that was not given.

Another student from other group, student B1, raises the question 
of whether he could have considered that y and not x is zero. Instructor 
encourages the class to see if that would be possible. Another solution was 
found. Student C1 answers the system once z = 0.

Instructor asks why students were simply fixing on the possibility of assigning 
zero to a variable. He asks about what would happen if other values were 
assigned. Different groups have different values, and even within each group, 
different members would assign the same value, but for different variables. 
Several new solutions are created. Student A1 conjectures that there would be 
infinitely-many solutions. Everyone seems to accept without any proof.

Instructor, then, decides to write a problem with four variables and three 
equations. Groups debate to see if they can solve. Student leaders emerge in 
every group, leaving some students without much participation. After a while, 
two groups were able to almost simultaneously solve the problem. Instructor 
divides the class into two halves, and a representative of these two groups lead 
each half.

Class is almost over, when instructor assigns the homework. It is solving a 
system of five equations with seven variables. However, and students are not 
aware, there were only four independent equations, since the last one was a 
linear combination of the others.
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Fourth day
Most of the students were unable to solve the only problem on the homework. 
Instructor then asks them to type the matrix of coefficients A into their apps, 
and asks them to compute its ‘rank’. At least one person per group is able 
to do so. The rank was 4. Instructor then shows that the fifth equation is a 
linear combination of the first four. He briefly talks about excluding the fifth 
equation since it does not add new piece of information. Students take few 
minutes to come up with the solution.

Group D gives values to three variables and solve the system. However, Group 
C only gives values to two variable and struggles. Meanwhile, Group A tries to 
give value to four variables and finds an inconsistency. Instructor refrains from 
any input in the discussion. Students conjecture that the difference between 
the rank and the number of variables has anything to do with the amount of 
new data to be included. Instructor gives another problem: six equations and 
eight variables.

Finally, instructor introduces a generic 3 by 3 magic square and asks 
problems 1 and 2 (see previous sections):

a b c

d e f

g h i

Class answers the problems relatively easily. Instructor assigns as homework 
an YouTube about rank of matrices, and gives each student an option:
1.	 Give a through solution for a system of equations that would summarise 

the magic square, with discussion on rank.
2.	 Do a list with ten systems of equations.

Fifth day
About half of the class chose each option. Instructor decides to let students 
explain their own solutions to students who had not chosen their options. 
That took longer than anticipated.

Instructor explains the relationship of determinant and existence of an 
inverse. Then, with previous examples, he shows that the square matrices 
whose rank were less than number of rows all had zero determinant.

Instructor shows a generic 4 by 4 magic square, and by selecting the ‘magic 
areas’ they come up with the number of equations. Their apps help them 
identify the rank, or the number of different pieces of information.

Due to the increased number of variables and equations, it is hard to 
identify which equation is redundant. Instructor reviews linear independence 
and assigns homework problems and two linear algebra videos.
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Sixth day
Instructor shows the entire development of the problem of using the concepts 
to solve a 5 by 5 magic square. Since the problem of identifying ‘magic areas’ 
to the problem of typing too many equations with too many variables. Some 
apps limit the amount of characters per equation. Instructor had a long 
preparation, since he tested each and every app that were being used.

That class, which was the last one on the three-week period that was reserved 
for the material, also served as a review of the concepts, and examples of 
additional applications. Homework on word problems was assigned.

Other days
When other concepts were later explained, instructor did his best to relate to 
magic square. For instance:
•	 the sum of two magic squares of the same order is also a magic square;
•	 the multiple of a magic square is also a magic square, of same order;
•	 hence the space of magic squares is a vector space;
•	 the space of all magic squares of a certain order whose magic number is 

zero is a vector subspace;
•	 the transpose of a magic space is also a magic square;
•	 the eigenvalue of a magic space is the magic number;
•	 a vector with only ones is an eigenvector.
Students seemed particularly excited with all these references to magic squares.

Conclusions and future work

With the perceived success of this strategy, the next step is trying to create a 
whole semester course solely based on active learning.

Also, students seem to enjoy motivation from different areas. When it comes 
to inspiring students via magic, there are several examples that highlights good 
uses. For instance, Teixeira (2017) teaches a nice card trick while relating 
probability concepts. Also, Lesser and Glickman (2009) use magic to teach 
mathematics (probability and statistics). We conclude that we should include 
more magic tricks in this and other courses.
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