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Abstract 
In this paper, we indicate the difference between energy equation and the center of mass equation by an 
especially example. According to our opinion, in teaching mechanics, we should more clearly an integral of 
Newton's second law and the energy equation. Maybe this leads to greater clarity in the notions of system, work 
and energy. 
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Introduction 
One of the forgotten concepts in basic classical mechanics is the difference between the 
energy equation and the center of mass equation. This subject leads to informal concept called 
to "Pseudowork" (Sherwood, 1984; Sherwood, 1977). This story is absent in mechanics’ 
textbooks. The differences between the center of mass equation and the work-energy equation 
can be appreciated by writing both equations for a variety of situations, usually such 
differences can arise for deformable systems and also for rotating rigid systems. 

Some people in their reports, have pointed out that we frequently do not properly 
distinguish between the work-energy equation of mechanics and a particular integral of 
Newton`s second law (Erlichson, 1963; Peachina, 1978). In fact, in teaching mechanics, we 
should more clearly distinguish between them and this leads to greater clarity in the notions of 
system, work, and energy (Mungan, 2017). 

Take the second law for a system of particles,  
 

𝐹"	$%&$'()* = 𝑀𝑎./  

 
And integrate through a displacement of the center of mass point (interchanging 

summation and integration): 
 

( 𝐹"	$%&$'()*). 𝑑𝑟./ = 𝑚 6789
6&

. 𝑑𝑟./     
 

𝐹"	$%&$'()* . 𝑑𝑟./ = 𝛥 ;
<
𝑚𝑣./<                              (1) 

 
The term on the left-hand side is the total "pseudowork" (Peachina, 1978). It is not 

equal to the total real work done on the system, because the forces have been multiplied by 
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the center of mass displacement rather than by their individual displacements. The right-hand 
side of the equation is not in general equal to the kinetic energy change of the system, since it 
involves only the center of mass speed. The displacement dri of the point of application of the 
ith force is not necessarily equal to the displacement drcm of the center of mass point, so that 
for the ith force, 
 

𝐹"	$%&$'()*. 𝑑𝑟./ ≠ 𝐹"	$%&$'()*. 𝑑𝑟"                                  (2) 
 

In section IV, we investigate the distinction between dynamical equilibrium point and 
maximum height point against a conservative force. 
 
Illustrative Example 
Suppose a rod with mass m and length L that locating in perpendicular situation according to 
following figure. The rod released from this state and our goal is calculation of speed of center 
of mass of rod while collide to earth. 

 
Figure 1.  A rod with mass m and length L that released from rest. 

 
According to energy conservation can be writing 
 

𝛥𝑈	 = 	 -𝛥𝐾                                                        (3) 
 

Where, 𝛥𝑈 is the change of potential energy and ΔK is the change of kinetic energy of 
the system and so 
 

/B*
<
= 	 ;

<
	𝐼D	𝜔<                                                  (4) 

 
Where, I0 is the rotational inertia around a point of O. Here 𝐼D =

;
F
𝑚𝑙< and 𝜔 is the 

angular speed of the rod. Then speed of the center of mass is equal to 
 

𝑣./ = 	 *
<
𝜔 = 	 ;

<
	 3𝑔𝑙                                        (5) 

 
If we concentrate on the concept of the system them we can consider whole of the 

system as a system so that it has pure rotational motion around point of O. Now we write the 
equation of the center of mass based on the equation (1), 

/B*
<
= ;

<
	𝐼J/𝜔< + ;

<
𝑚𝑣J/<                                    (6) 
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Here, rotational inertia is equal to,𝐼./ = 	 ;
;<
	𝑚𝑙< so 𝑣./ = 	 ;

<
	 3𝑔𝑙 which consistent 

to equation (5). For interpretation of equation (6), one can say that the point of center of mass 
is system, clearly this point has rotation and transmission too, which the right-hand side of 
equation (6) verify it. 

To more clarity, we obtain speed of another point on the rod. By the same conditions, 
our aim is yielding speed of point A. 

 
Figure 2. A rod with mass m and length l which released at rest and we are going to obtain speed of A 

while the rod reach on the surface of earth. 
 

We use relation (3) again and yielding 
 

𝑣L = 𝑙	𝑤 = 	 3𝑔𝑙                                                              (7) 
 

For the point of A as a system, equation (1) can be  
 

∫ 𝐹"	$%&$'()* .		𝑑𝑟L = ∆	(;
<
	𝑚	𝑣L<) +	∆	(

;
<
	𝐼D	𝜔<)         (8) 

 
Not that in equation (8). Rotational inertial is around point of o rather than A. The left-

hand side of above equation equals to 
 

∫ 𝐹"	$%&$'()* .		𝑑𝑟L = 𝑚𝑔𝑙 + 𝑚𝑔𝑙                                  (9) 
  

In right-hand side of equation (9), the first part is related to rotation motion and second 
is transmission motion.          

Therefore, final equation is equal to  
 

𝑚𝑔(2𝑙) = ;
<
	𝐼D	𝜔< +	;

<
	𝑚	𝑣L<                                               (10) 

So, 
 

𝑣L = 	 3𝑔𝑙 
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