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Abstract 
This paper represents a continuation of the theoretical and computational work from an earlier publication, with the 
present calculations using exactly the same physical values for the lengths L (0.435 m – 2.130 m) for the conical 
pendulum, mass m = 0.1111 kg, and with the local value of the acceleration due to gravity g = 9.789 ms-2.  Equations 
for the following principal physical parameters were derived and calculated: period T, angular frequency w, orbital 
radius R, apex angle f, tension force FT and centripetal force FC (additional functions were calculated when required).  
Calculations were performed over a wide range of values of the apex angle (0° £ f  £ 85°), corresponding to a 
calculated tension force FT range of approximately (mg £ FT £ 12 N) or alternatively (mg £ FT £ 11 mg) for the string.  
A technique is demonstrated to determine an accurate value of an unknown pendulum mass, by using a graphical 
analysis.  Intercepts and asymptotic lines with respect to both the horizontal and vertical axes are described and fully 
explained.  The main emphasis for this paper is to present highly detailed graphical charts for the calculated theoretical 
functions and appropriate physical parameters.  Theoretical analysis is presented in comprehensive detail, showing 
full mathematical derivations and alternative equations when this approach is considered to be advantageous for both 
understanding and computational presentation.   
Keywords: Conical pendulum, theoretical analysis, tension force, centripetal force, period, angular frequency, high 
precision, computational analysis. 
 
 
INTRODUCTION 
 
All that follows is based on and makes reference to the figure below, which was first used in the 
previous publication (refer to Dean & Mathew, 2017).  The figure defines the basic conical 
pendulum parameters for the subsequent theoretical analysis and clearly illustrates the overall 
geometry of a typical undergraduate experimental system and the vector nature of the tension and 
centripetal forces.  Basic trigonometric functions are used to express the adjacent side of the 
Pythagorean triangle in terms of the orbital radius R and length L of the conical pendulum.  The 
mathematical analysis contains all relevant sequential derivation steps and clearly shows how the 
final equation (that is generally numbered in sequence) is obtained.  When it is necessary to make 
specific reference to a previously derived equation, the relevant equation is often reproduced for 
convenience. 
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Figure 1. Conical Pendulum Schematic 
 

The in-depth physics of a conical pendulum can frequently appear to be mathematically 
demanding for freshman university students (Czudková & Musilová, 2000).  Standard conical 
pendulum lengths that have been investigated experimentally (and subsequently published) usually 
range from approximately 0.20 m (Tongaonkar & Khadse, 2011) up to approximately 3.0 m 
(Mazza et al, 2007).  In the typical range of undergraduate laboratory experiments, the conical 
pendulum is frequently included along with the relevant theory.  The conical pendulum can also 
be used to explain concepts such as: energy and angular momentum conservation (Bambill, Benoto 
& Garda, 2004), mechanical potential energy (Dupré & Janssen, 1999) as well as more complex 
rotational dynamic interactions of mechanical systems (Lacunza, 2015). 

In a typical experiment, the conical motion is confined to the horizontal plane, however, it is 
possible to extend the mathematical analysis to three dimensions (Barenboim & Oteo, 2013).  In 
the usual case of horizontal planar motion, this can frequently be observed as elliptical rather than 
being truly circular.  This has been studied in detail in order to determine the physical nature of 
orbital precession (Deakin, 2012).  The string tension force has been measured as a function of the 
rotational period (or angular frequency) and has been documented (Moses & Adolphi, 1998). 

For the analysis and discussion that follows, the five specific parameters are considered to be: 
the local value of the acceleration due to gravity g = 9.789 ms-2 (Ali, M.Y.et al., 2014), the mass 
m = 0.1111 kg of the conical pendulum, the pendulum length L (measured to the centre of the 
spherical mass), the orbital period T and the tension force FT (it is important to note that the angular 
frequency w is calculated directly from the orbital period T, so it is therefore regarded as being the 
sixth fundamental parameter).  For the purposes of calculation, the theoretically ideal string is 
considered to be essentially mass-less (when compared to the conical pendulum mass) and 
physically inextensible for the present analysis. 

Regarding the mathematical representation, when theoretical derivations are presented, all of 
the analytical steps are provided, in a manner that is considered to be self-explanatory.  The arrow 
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symbol that is shown here within quotation marks “Þ” is used frequently in mathematical 
derivations and is understood to mean “giving”, or “will give”, or “leads to”.  The alternative arrow 
symbol in equations “®” is used to mean “approaches”, or “tends to”.  When a derivation can be 
clearly written on a single line using a short-form mathematical layout, this method is used.  A 
preliminary section dealing with the essential physical parameters is intended as a theoretical 
introduction, and the mathematical complexity has been deliberately minimized, to be readily 
accessible for readers.  If convenient alternative mathematical representations of equations are 
readily available, these are frequently included in the principal analysis when this is considered to 
be helpful. 
 
THEORETICAL RESULTS AND ANALYSIS 
 
For the theoretical derivation of the conical pendulum period T see (Dean & Mathew, 2017); the 
resulting equation itself is presented below and will be developed further, in order to derive suitable 
equations for calculating the orbital radius R and the conical pendulum apex angle f.  Additional 
uncomplicated analysis will follow, providing two exceedingly simple and elegant equations for the 
tension force FT and centripetal force FC. 
 

2

2
2

4

2
222

4

2

22

2

22 122cos2

÷
ø
ö

ç
è
æ-=-=Þ-=

Þ
-

=Þ=
-

==

www

ww
ppfp

gLgLRRLg

g
RL

g
RL

g
LT

 

 
The final Equation (1) above shows that the orbital radius R can be calculated directly since 

the required parameters are known (namely g, L and w).  The apex angle f is consequently directly 
obtained from the following Equation (2): 
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The apex angle f can be calculated from an alternative derivation using the conical pendulum 

orbital radius R as the starting point.  This alternative approach provides an equation that is only 
dependent on three of the fundamental conical pendulum physical parameters.  In terms of its 
mathematical usefulness and applicability, the equation that is derived immediately below, is 
considered to be the most suitable equation for the calculation of the apex angle f .  It can be noted 
that f is readily calculated for any particular pendulum length L and angular frequency w 
(calculated from the period T).  It is also suggested below how an appropriate graphical analysis 
could be suitably performed, for the accurate determination of the local value of the acceleration 
due to gravity. 

(1) 

(2) 



  European J of Physics Education   Volume 8 Issue 1   1309-7202                               Dean 
 

 14 

÷÷
ø

ö
çç
è

æ
=Þ=

-=Þ-=Þ-=

-
2

12

222
4

2
22

4

2
2

coscos
w

ffw

w
ww

L
gLg

RLggLRgLR

 

 
If an experiment is suitably designed so the apex angle f can be determined accurately, then 

the above analysis readily provides a straightforward graphical method for the determination of 
the local acceleration due to gravity g, from the slope of the graph with the following axes: 
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Multiple pendulum lengths covering a suitably wide range (for example the lengths reported 

in the present paper) could readily enable an accurate value of g to be determined experimentally 
(see also Tongaonkar & Khadse, 2011).  By referring to Figure 1, and with a straightforward 
understanding of the basic physics principals involved in the circular motion of a conical 
pendulum, the tension force can be shown to have a proportionality with respect to the reciprocal 
of the orbital period squared and consequently the square of the angular frequency: 
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It can be readily seen that Equation (5) is obtained by making a straightforward substitution, 

using the second equation for the tension force.  A direct re-arrangement of Equation (5) enables 
it to be written in a mathematically more elegant way in terms of the angular frequency squared.  
In this form, a graph of FT plotted on the y-axis against either (L w 2 ) or just w 2 on the x-axis, 
would enable the pendulum mass m to be calculated from the slopes of each of the resulting straight 
lines.  By using experimental data acquired from multiple pendulum lengths L, it is suggested that 

(3) 

(4) 

(5) 

(6) 
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an accurate value of m can be readily calculated.  From the tension force FT and the gravitational 
force (mg), as well as the triangular geometry; the two equations below are readily derived, where 
Equation (8) is observed to be independent of the pendulum mass m. 
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As a natural physical extension of the preceding analysis concerning the tension force FT, the 

centripetal force FC can also be considered in terms of the rotational properties of the pendulum.  
The short (one line) self-explanatory derivation below (using v = R w) addresses this issue: 
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Equation (9) shows that the centripetal force is directly proportional to the angular frequency 

squared (see also Tongaonkar & Khadse, 2011).  Substitution of Equation (1) for the orbital radius 
R enables the centripetal force equation to be written in the following way (by again making use 
of the short-form single-line mathematical layout): 
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The resulting Equation (10) above makes it clear that the centripetal force FC can therefore be 

calculated directly without having to calculate a value for the orbital radius R first.  It is observed 
from the above FC equation that the conical pendulum mass m is specifically required (Mazza et 
al, 2007).  Making reference to Figure 1, and using a Pythagorean triangle analysis, the following 
elegantly simple mathematical relation between the tension force FT and centripetal force FC can 
be immediately obtained (again using the short-form mathematical layout): 
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This particular equation is considered to be especially useful due to its simplicity; however a 

prior calculation of the orbital radius R is required before the apex angle f can be calculated.  A 
substitution for R gives rise to a mathematically more complex equation, which is now seen to be 

(7) 

(9) 

(10) 

(11) 

(8) 
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dependent on four of the primary parameters.  It is important to recall that (as stated earlier) the 
angular frequency w is regarded as being a known parameter, since it is calculated directly from 
the conical pendulum period T. 
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Despite the increased mathematical complexity, the final Equation (12) for the centripetal force 

FC is directly calculated from the available parameters and does not require either the apex angle 
f or the orbital radius R to be calculated in advance.  The calculation of FC is now mathematically 
independent of the conical pendulum mass m, which consequently extends the applicability of the 
above centripetal force equation. 
 

The two equations for the tension force FT and the centripetal force FC, that are expressed in 
trigonometric terms of the apex angle f can be re-expressed in the following algebraic way: 
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The FT and FC equations can be used to investigate their dependence on the pendulum orbital 

radius R, as shown in the chart below, which clearly demonstrates the complex manner in which 
FT and FC depend on R, for a wide range of conical pendulum lengths L.  It is of considerable 
interest to make direct reference to the functional dependence of the conical pendulum period T 
on the orbital radius, through the equation below, which is referred to as Equation (1) in the paper 
by (Dean & Mathew, 2017) and reproduced below for convenient reference: 
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The two forces FT and FC depend on R in a very different way (although mathematical similarities 
exist in the form of the equations), which will be considered below. 

(12) 

(13) 

(14) 
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Chart 1. FT and FC dependence on Orbital Radius for nine different L values 
 

In order to gain a detailed understanding of the physical information displayed in the chart, it 
is advisable to make reference to the Appendix, which contains the colour-coded chart legend and 
provides an identification of the lines (solid and dashed) as well as the solid data markers.  The 
shapes of the FT and FC lines in Chart 1 can be readily explained by considering the algebraic 
(rather than the trigonometric) form of the appropriate equations, because the orbital radius R is 
specifically included.  Since 0 £ R £ L, it is of significant interest to examine the end-points of the 
two graphical plots.  The two extreme values of R will be considered below, starting with the 
situation where R = 0: 
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The nine calculated curves that are shown on the chart above, clearly demonstrate that in the 

asymptotic limit that arises when the conical pendulum orbital radius decreases progressively to 
zero, then the tension force becomes equal to mg.  The physical interpretation of this specific limit 
is that the conical pendulum string would be hanging, such that when projected in one of the two 
vertical planes (x-y or x-z) the mass would appear to be vertically downwards.  A zero orbital radius 
also requires that the centripetal force becomes asymptotically zero, since Equation (9) clearly 
shows this to be the case. 

(15) 

(16) 
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When the apex angle f is large and approaching (but physically never reaching) 90° it is 
appropriate to consider the mathematical upper orbital radius limit R = L giving the following: 
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Assuming the conical pendulum mass m remains constant,  it can be seen that when the orbital 

radius R = 0, the vertical axis intercepts of Chart 1 will all have exactly the same tension force FT, 
namely, (mg) the gravitational force (Chart 3 demonstrates the situation for different masses).  The 
simple analysis above also shows that the centripetal force FC will always start at the coordinate 
origin and initially appear to be independent of the pendulum mass. 
 

As the orbital radius R increases from zero, then the apex angle f correspondingly increases, 
according to 0 £ f £ 90° and consequently the trigonometric functions become: 
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Chart 1 unquestionably shows that the centripetal force FC becomes progressively closer to FT 

as the orbital radius increases, corresponding to the progressive increase in the apex angle f.  Both 
forces are asymptotic (mathematically) to infinity on the vertical force axis; this would correspond 
to the conical pendulum being at f = 90°, therefore horizontal and consequently physically 
unattainable.  However, a straightforward projection of the respective asymptotic forces 
downwards onto the horizontal radius axis, occurs at R = L for all of the conical pendulum lengths 
L that have been investigated computationally.  Theoretically from Equations (13 & 14), the 
downwards projection limit R = L must apply for all possible conical pendulum lengths when both 
FT ® ¥ and FC ® ¥.  An inspection of Chart 1 clearly supports this interpretation of the theoretical 
chart plots. 

When the tension force FT and centripetal force FC are, both plotted against the apex angle f, 
the calculated chart lines for all selected pendulum lengths L, falls on only two FT and FC lines as 
shown on Chart 2 below.  It is important to note that this chart contains all of the theoretical lines 
for the nine values of L that were used computationally.  The theoretical lines are superimposed 
where they overlap when plotted, hence the appearance of only two theoretical lines: 

(19) 

(17) 

(18) 
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Chart 2. FT and FC dependence on Apex angle f  for a constant mass 
 

This is explained by making reference to Figure 1, where the apex angle f can be seen to be 
given by Equation (20) below.  When the apex angle f is held constant at any specific value, there 
are an infinite set of paired values for the orbital radius R and pendulum length L that will satisfy 
the arcsine equation for f .  Consequently, provided the pendulum mass remains constant, all 
values of FT and FC for any pendulum length L must be positioned on only two lines (one each for 
the tension force FT and the centripetal force FC) as shown on Chart 2 above. 
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It is noted that from the earlier analysis (Equation 11), FC is proportional to FT as: 

 
ff sintan TC FgmF ==  

 
As the apex angle f progressively increases towards 90° then the sine term correspondingly 

increases towards the mathematically limiting value of +1.  Consequently the centripetal force 
progressively approaches (but physically can never actually equal) the tension force, which is 
observed as the asymptotic behavior on the above chart. 

The fact that the tension force FT and the centripetal force FC are specifically mass-dependent 
is demonstrated by the theoretically calculated chart shown below.  It is essential to note that this 
particular chart is unique in one respect; the self-explanatory colour-coded lines refer to different 
masses as indicated in the included chart legend, for the FT and FC lines that are plotted.  All the 

(20) 
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remaining charts that are presented in this paper possess the same colour code, which refers only 
to the individual pendulum lengths L (refer to the Appendix for details). 
 

 
 

Chart 3. FT and FC dependence on Apex angle f  with four different mass values 
 

Attention is directed to the vertical axis intercepts for the tension force FT solid lines that clearly 
indicate the initial values of this force are equal to the gravitational force (mg), which is expected.  
The initial angular situation is taken to be f = 0, corresponding to the pendulum string being 
vertical.  The dashed lines on Chart 3, which apply to the centripetal force FC all start from the 
coordinate origin, as expected from the derived Equations (11) presented earlier.  Therefore, this 
particular chart helps to confirm the validity of the theoretical analysis, with respect to the 
functional dependence of the two forces FT and FC on the apex angle f. 

From an earlier analysis, it was explained that the tension force FT and centripetal force FC are 
related through the above Equation (11), where it is clear that FC depends on FT as: 

 
fsinTC FF =  

 
It is a mathematical point of interest to draw attention to the fact that as the orbital radius R 

progressively increases, then the apex angle f correspondingly increases towards the maximum 
possible value of 90° (although it is not physically possible for f = 90°).  Therefore, from the above 
equation it is readily observed that: 

FC ® FT 
 
Chart 4 below shows this relationship theoretically up to approximately 12 N (which 

corresponds to an apex angle f » 85° for a conical pendulum mass m = 0.1111 kg).  This is regarded 
as the maximum feasible tension force that is attainable under reasonable conditions and has 
therefore been selected for computational purposes. 
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Chart 4. FC as a function of FT up to 12.0 N 
 

The appearance of the above chart line requires some explanation; from the basic physics 
equations for the angular dependence of the tension force FT, the minimum possible value for FT 
has previously been shown as being equal to the gravitational force (mg), which accounts for the 
starting position of the line along the horizontal axis.  At the point where FT = (mg) then FC = 0, 
(and the conical pendulum string is hanging vertically down so f = 0).  It is appropriate at this 
juncture to once again refer to Equations (11), which are reproduced below for convenience: 
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From these FT and FC equations, it is apparent that as the apex angle f increases from zero, the 

centripetal force progressively becomes closer to the tension force (i.e. more linear), although 
always remaining lower in value.  The table presented below (which is calculated from the above 
equations) clearly indicates the very rapid transition of both forces towards linearity, over the scale 
of their respective Chart 4 axes.  Since the lowest possible value of FT is mg » 1.1 N, the region 
from the coordinate origin to (mg) is mathematically undefined and therefore physically 
unattainable experimentally.  Attention is drawn to the fact that although this paper is essentially 
theoretical in nature; any obvious physical limitations are taken into consideration. 

The below table indicates that the initial value of the tension force FT » 1.1 N (which is mg) 
and the centripetal force FC = 0; when the tension has increased to FT = 1.5 N, then FC = 1.0 N 
which corresponds to the apex angle having a value of f = 43.5°.  This relatively large and rapid 
angular change (starting from f = 0) occurs within the small curved section of the line shown on 
Chart 4.  The initially curved (vertically projecting) line progressively becomes more linear as the 
two forces continue to increase and become asymptotically equal in magnitude.  In a mathematical 
sense, this can be interpreted as the positive first derivative asymptotically approaching the value 
of (+1).  
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Table 1. Forces FT and FC with reciprocals and corresponding Apex angle f 
 

 
 

It is of interest to analytically explore the variation (and physical dependence) of two primary 
physical parameters that form the basis of this paper.  Namely, the conical pendulum tension force 
FT and orbital period T.  The principal equation that will be used for this parametric analysis, 
namely Equation (5) is reproduced below for convenient reference: 
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Inspection of the basic mathematical format of the above equation clearly reveals the familiar 

symbolic format of an inverse-square law.  For this particular case, the parametric dependence of 
the tension force is the inverse square of the conical pendulum period.  This is an extremely 
familiar graphical line-shape that is taught in all standard physics courses and appears in many 
analyses of different types of force laws. 

The basic theoretical analysis can be visualized by closely examining the chart below, where 
the x-axis and y-axis are essentially taken to be the two relevant computationally determined values 
of FT (y-axis) and T (x-axis) and follow the mathematical dependence implied above (as an inverse 
square law). 
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Chart 5. FT as a function of Period T 
 

It is observed that the apparent horizontal asymptotes abruptly terminate at well-defined values 
of the period T; this corresponds to the period that is appropriate for a simple pendulum of the 
same length L (this is the longest possible period and occurs for when R = 0).  A straightforward 
analysis will be helpful with understanding the physical reason for the behavior shown above.  In 
what immediately follows, the subscripts SP and CP refer to the simple pendulum and conical 
pendulum respectively: 
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The above concise analysis therefore confirms the behavior observed in Chart 5, for when the 

tension force FT has the minimum possible value (FT = mg).  A consideration of the above chart 
with respect to Equation (5) directly suggests an alternative functional scaling for the horizontal 
axis and is shown in the chart below. 
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Chart 6. FT as a function of (1/Period T) 2 

 
In this linear form, the slopes of the straight lines (4 p 2 m L) can provide a straightforward 

graphical technique to determine an unknown conical pendulum mass m experimentally.  As 
shown above, the straight lines cannot physically pass through the coordinate origin because the 
longest period must be equal to the period of a simple pendulum of the same length (this defines 
the smallest attainable value for the reciprocal of the conical pendulum period squared).  The 
second reason for the above observation is due to the fact that the tension force must have a 
minimum non-zero value on the vertical axis (FT = mg).  When the two axes are interchanged in 
Chart 5 the following alternative presentation is obtained: 
 

 
 

Chart 7. Period T as a function of FT 
 



  European J of Physics Education   Volume 8 Issue 1   1309-7202                               Dean 
 

 25 

This selection of the chart axes implies that the period T can be considered to be dependent on 
the tension force FT, while the earlier chart presentation implied the reverse.  The selection of 
parametric axis generally follows the convention where the “independent” variable is plotted along 
the horizontal axis (x-axis) and the “dependent” variable is plotted vertically (y-axis).  A classic 
example of when this format is usually not adhered to is the well-known equation V = I R often 
referred to as Ohm’s Law (V = I R Þ y = m x with the straight line of slope R º m passing exactly 
through the coordinate origin).  It is clearly apparent from the laws of Physics that the potential V 
does not depend on the current I flowing through the resistance R, however, the inverse is true (the 
current I depends on the potential V across the resistance).  When to follow the axes convention 
can frequently be determined from the equation that relates the “dependent” and “independent” 
parameters.  In the present case, it is assumed that the rotational period T is in fact dependent on 
the string tension force FT even though the usual representative convention has not been applied 
inflexibly. 

By referring to Equation (5), it can be readily observed that the two principal theoretical 
parameters can be re-arranged to yield Equation (22) below: 
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Using this equation form, the chart appears as shown below: 

 

 
 

Chart 8. Period T 2 as a function of (1/FT) 
 

With respect to this particular chart axes representation, the straight lines can mathematically 
pass through the coordinate origin, although the situation cannot be physically achieved.  Once 
again, just as for Chart 6, the slopes of the straight lines (4 p 2 m L) can be used to determine an 
unknown conical pendulum mass m.  It is of interest to note that the right-side of every line stops 

(22) 
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abruptly along the horizontal axis at a calculated value of (1/FT) = 0.9195, corresponding to the 
minimum possible value of the tension force (FT = mg), with the mass hanging vertically down. 

As an extension of the above chart and analysis, it is appropriate to consider the variation of 
the period squared with respect to the centripetal force FC that is directly responsible for the 
horizontal circular motion of the conical pendulum.  Equations (9 & 22) provide the following: 
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The chart below shows the above equation for each of the nine values of the length L, where it 

is noted from Equation (23) that due to the non-constancy of the orbital radius R, the plotted lines 
will not be linear: 
 

 
 

Chart 9. Period T 2 as a function of (1/FC) 
 

This chart can be explained by noting that the initially curved lines progressively become liner 
as the reciprocal of the centripetal force (1/ FC) increases to the right (the centripetal force FC itself 
increases towards the left), which corresponds to a progressive decrease in FC itself.  The square 
of the rotational periods (on the y-axis) initially increase as expected, however, they subsequently 
become asymptotically horizontal with values of the period squared corresponding to the period 
squared appropriate for a simple pendulum of the same length L.  The rapidity with which the lines 
become horizontal is due to the non-linear reciprocal scale of the horizontal axis, as shown in the 
appropriate column of Table 1 above. 

Theoretical analysis presented in earlier sections of this paper detailed the derivation of two 
concise equations for the tension force FT and centripetal force FC namely Equations (6 & 9) as 
reproduced below for convenient reference. 

 
 22 and w=w= RmFLmF CT  

(23) 
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It is of interest to consider the simultaneous variation of these two forces as a function of the 
square of the angular frequency, as shown in the chart below: 
 

 
 

Chart 10.  FT and FC as a function of w 2 

 
With reference to this figure and the Appendix, it is of importance to note that the solid lines 

and dashed lines represent FT and FC respectively.  As expected from earlier discussion, the FT 
lines all start from the minimum tension force value of FT = (mg) on the vertical (y-axis) and with 
a horizontal displacement corresponding to the minimum value of the square of the angular 
frequency.  This corresponds to the largest possible value of the orbital period squared, which 
occurs for a simple pendulum (subscript SP) of the same length L in Equation (24) below: 
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The centripetal force FC (dashed lines) must also start from the same minimum value of the 

angular frequency along the horizontal axis, but from FC = 0 on the vertical (y-axis), meaning the 
conical pendulum string would consequently be hanging vertically downwards.  It can be observed 
from Chart 10 that the plotted tension force FT lines are all straight and would all pass directly 
through the coordinate origin if this was physically possible, with slopes of value (m L) for each 
length L. 
 

Reference to Equation (3) provides the following: 
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(24) 
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There are clearly two extreme mathematical limits to be considered as shown below: 
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The second limit (for which the Apex angle f = 0) must correspond to the minimum possible 

value for the square of the angular frequency, which therefore immediately provides the equation 
shown below.  From Equations (24 & 25) it is clear that there must be a minimum threshold (or 
critical) angular velocity before the centripetal force becomes present and the conical pendulum 
can start to perform uniform planar circular motion (see also Klostergaard, 1976). 
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DISCUSSION OF RESULTS AND CONCLUSIONS 
 
It can be readily seen from the charts presented in this paper, that the theoretical analysis is wide-
ranging and continuous, over the complete range of conical pendulum period, tension force, 
centripetal force, orbital radius and apex angle values that were computationally studied.  With 
reference to the charts and the accompanying theoretical equations, the overall shapes of plotted 
lines, their initial points, end-points and any unmistakably observable axial asymptotes (x-axis and 
y-axis) were clearly explained.  It is proved theoretically that when the tension force and centripetal 
force are both plotted on the vertical y-axis against the apex angle along the horizontal x-axis, there 
will be only two lines (despite the two forces being determined for nine different pendulum 
lengths).  The asymptotic nature of these two forces becoming progressively more equal as the 
apex angle increases is also explained; as is the effect of using different masses for the conical 
pendulum.  When the tension force is plotted against the period, the abrupt termination of the 
horizontal asymptotes at well defined values of the period is explained in terms of the period of a 
simple pendulum having the same string length as the conical pendulum. When the square of the 
conical pendulum period is plotted as a function of the reciprocal of the tension force, the abrupt 
termination of the calculated chart lines along the horizontal axis is explained as being 
unequivocally due to the minimum value of the tension force.  The effect that using different mass 
values has on the computational results were also demonstrated. 
 
APPENDIX - CHART LEGEND FOR THEORY LINES 
 
The chart legend used to identify the theoretical lines is presented below (adapted from Dean & 
Mathew, 2017), from the largest pendulum length (L = 2.130 m) to the shortest (L = 0.435 m). 

(25) 
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Solid lines are used for the tension force and dashed lines represent the centripetal force, when 
these are required to illustrate the theoretical calculations. 
 

 
 

Figure 2.  Chart Legend 
 
Note: if there is either a single solid dark-blue line, or a solid dark-blue line and a dashed line of 
the same colour, plotted on any particular chart, the accompanying section of text will make it 
clear that the lines are from a theoretical calculation.  It will be clear from the theoretical analysis 
that lines on the chart are independent of the pendulum length L, by being superimposed. 
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