
Nyinkeu, N. D., Thaddeus, K., & Henry, N. (2016). Open-source and attitude towards code-

plagiarism among technology students. International Journal of Technology

in Teaching and Learning, 12(2), 99-111.

__
Ngatchu Damen Nyinkeu is an Assistant Lecturer at Catholic University Institute of Buea in

Cameroon. Kabuin Thaddeus is a Lecturer at ICT University at Baton Rouge, Los Angeles. Ngatchu

Henry is an Assistant Lecturer at University of Buea in Cameroon. Ngatchu Damen Nyinkeu can be

reached at ngatchu@cuib-cameroon.net.

Open-Source and Attitude towards Code-
Plagiarism Among Technology Students

Ngatchu Damen Nyinkeu

Catholic University Institute of Buea, Cameroon

Kabuin Thaddeus
ICT University, Los Angeles

Ngatchu Henry
University of Buea, Cameroon

In an era when its is increasingly encouraged to share

source-codes, the training of students, particularly

information technology students, faces several challenges

in communicating aspects of academic honesty –

precisely authenticity of authorship. The genuineness of

this issue has implications primarily in the integral

formation of students with further implications in

businesses which could face lawsuits due to a wrong

attitude of one employee. This qualitative research

explores an issue which is commonly overlooked and

misconstrued even in academic circles. The findings

unveil that today's technology students are more inclined

to an open and flexible notion of code-plagiarism. The

paper highlights a critical implication to the

Technological Pedagogical Content Knowledge

(TPACK) framework and concludes with

recommendations for university ethics boards as well as

possible future research directions.

Keywords: Plagiarism, Code-plagiarism, Educational

System, Open-source, Sub Saharan Africa

INTRODUCTION

Open-Source is a term commonly used to describe computer software for which the

original instructions of the software are made freely available and may be modified and

redistributed. These instructions, written in plain text are known as the source codes of a

software. Software developers and programmers fondly refer to the process of writing these

instructions as coding and it involves converting ideas and concepts into text which

computers can interpret and execute. Most software development companies would guard

 Open-Source and Attitude towards Code-Plagiarism 100

their source-codes jealously, as intellectual property, since giving it out is tantamount to

giving out the core of the business. Proponents of Open-source software argue that source

code should be made readily available; a controversy which is rooted in the software

licensing policy.

The General Public License, also known as the GNU General Public License (GNU

GPL) and the Berkeley Source Distribution (BSD) license style are two initial open source

licensing schemes that emerged. The underpinning difference resides in what can be done

with products that are derived from open source software (oss). Both licenses grant broad

rights to create derivative works but the BSD License grants these rights free and clear,

while the GPL attaches important conditions (Gomulkiewicz, 2004). Over the years, a

range of licensing variants have emerged notable the Apache license from apache software

foundation, the Apple Public Source License (APSL) from apple incorporation, the Mozilla

Public License (MPL) and the MIT License from Massachusetts Institute of Technology.

The concept of copyleft is now perpetuated as a strategy for using copyright law to pursue

the policy goal that prevents privatization of open-source codes but fosters and encourages

the right to copy, share, modify and improve creative works of authorship (Goss, 2007).
The proliferation of open source products (Shimel, 2012) such as Android – the

operating system for most mobile devices; Joomla and Wordpress – content management

systems for building websites and Openstack – a cloud computing software used by NASA,

HP, AT&T and Deustch Telekom is a clear indication of the success of open source

projects. In the last decade, the technology giant – Google has invested millions of dollars

in a summer activity called Google Summer of Codes (GSOC). GSOC is a global program

that offers post-secondary student-developers aged 18 and above, a stipend to write codes

for various open source software projects (Google Developers, 2016). According to

statistics on the GSOC website, in 2005, a first cohort of students 400 students from 49

different countries participated in projects hosted in 40 different open source organizations.

Remarkably, in 2014, 1307 students from 72 countries were accepted into the program to

participate in 190 open source projects. The increase in participation rates of the GSOC

project from 80% in 2005 to 89.7% in 2014 stimulates a desire to look into the actions and

activities of student developers and to question what attitudes these students have towards

code plagiarism.
Despite this growth in open-source codes and related products, as well as the increase

in students' involvement in open-source projects, few studies have investigated students'

views on academic honesty with respect to submitting open-source codes for class

assignments. The primary motivation for this study therefore, is to investigate how

technology students relate to coding assignments and what ethical views they hold,

regarding code-plagiarism – an “Academic Crime”.

LITERATURE REVIEW

The title of the study dictates the broad areas within which scholarly literature can

make significant contributions to understanding students' attitude towards code plagiarism.

The literature review is divided into two main sections: code-plagiarism and open source

software development. This is to deepen our understanding of code-plagiarism and to look

at how software development thrives within an open-source approach to computer

programming.

CODE-PLAGIARISM

Plagiarism in general involves passing off another persons' work or ideas without

giving credit to the author or claiming credit for another persons' work or ideas. Park (2003)

gives a contextual presentation of Plagiarism. His presentation covers a definition, an

International Journal of Technology in Teaching & Learning 101

etymology of the word and some rhetoric regarding plagiarism that have been used in

literature. He remarked that although plagiarism is considered today as a vice, in the past,

when imitation was considered as the highest form of flattery, plagiarism was seen as a

virtue. Code-plagiarism or source code plagiarism as it is specifically called, has no

commonly agreed description (Cosma and Joy, 2006). Hage et al. (2010) define it as “trying

to pass off (parts of) source code written by someone else as one’s own (i.e., without

indicating which parts are copied from which author)”. However, according to Cosma and

Joy (2006), source code plagiarism is not limited to unacknowledged presentation of source

codes but includes the copying of structural and lexical organization of source codes.

Within such context, detecting source-code plagiarism becomes practically impossible for

humans, especially for teachers. An automated system to handle the process is obviously

very appealing.
Hage et al. (2010) perform a comparison of five plagiarism detection softwares and

conclude that despite the acceptable success of plagiarism detection softwares, further

work is required to cover source codes that are written in other programming languages

and for varied real life scenarios. However, as Hattingh et al. (2013) remark, such reactive

methods have not been complementary with proactive approaches of educating students on

plagiarism; defining clear policies and adopting honor codes. This imbalance fosters a

“police-bandit” relationship among teachers and students, particularly when it comes to

grading assignment and it poisons the learning environment and stifles innovation.
Some researchers (Tomazin and Gradisar, 2006; Paumier, 2009), however, belief that

software in academia, both used and developed, should be open source. Paumier (2009)

highlights that by keeping software in academia open-source, the software will benefit from

collective responsibility and efficiency; authenticity; compatibility with different systems;

peer review; continuous research and development; and cumulative work. Within such a

framework, the meaning of code-plagiarism becomes questionable and despite the variety

of perceptions on plagiarism among faculty (Sutherland-Smith, 2005), the need to rethink

the concept of plagiarism becomes eminent.

OPEN-SOURCE SOFTWARE DEVELOPMENT

In almost every industry, a comparison can be made between open source and close

source practices. Mattos (2012), talks about the aviation industry and how the openness to

information exchange has been the backbone for the success of the industry. In the software

industry, the spread of the open source philosophy is closely linked to the Internet boom.

With increasing number of users on the Internet, more and more people write and share

source codes for various computer software. Consequently, some users see this as an

opportunity to get free code and thus the establishment of the historical two camps: the

open-source software (OSS) and the free software camps. The Latter is perpetuated by the

free software foundation and Richard Stallman while Eric Raymond and various open

source initiatives are the main proponents of OSS.
According to Eric Raymond, open-source actions and activities should be profitable.

In his article, titled The Cathedral and the Bazaar, Eric Raymond (1999) draws nineteen

lessons from observing the way in which open-source and commercial software were

developed. These lessons inspire various business models that are exploited to make open-

source actions and activities economically profitable. Gomulkiewicz (2004) acknowledges

and credits Eric Raymond for taking-on a leadership role in changing the “anti-

commercial” reputation of open source projects and expounded on different business

models which open-source are exploiting. These models include those used by technology

startup companies, top software development companies and some technology giants.

Companies, such as Apple and Google, combine different models to maintain vibrancy in

the technology market.

 Open-Source and Attitude towards Code-Plagiarism 102

Despite the advantage of readily available technical support which proprietary software

has over open-source software, their high cost and low continual development (Singh,

2013) provides opportunities for OSS to thrive in the market. Looking beyond national and

international markets, Kumar and Singh (2009) explain the key points in national open

source software policies and are very particular about the strategic economic benefits

which such policies offer. They cross examined the national open source software policies

of South Africa, United Kingdom, Denmark, Brazil, Venezuela, Peru and India and

concluded that the benefits of a national open source software policy can manifest only if

the policy truly captures the spirit of open source software. Their advice to developing

countries is to adopt a national open source software policy since it will help develop a

local software industry, discourage software importation, and encourage national security.

The successes of open-source software development in local and international markets

and even when adopted as a national strategy prick the mind to re-examine its fundamentals

and ideologies. Kumar & Singh (2009) and Paumier (2009) reiterate a set of four constrains

which the free software foundation poses on software: (1) The freedom to run the program,

for any purpose; (2) The freedom to study how the program works, and adapt it to your

needs – access to the source code is a precondition for this; (3) The freedom to redistribute

copies and (4) The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits – access to the source code is a precondition

for this. Such constrains on software ensures that the source code remain open forever.

Such stands have an obvious different view on plagiarism, particularly on code-plagiarism.

RESEARCH QUESTIONS

In tandem with other researchers, this research seeks an exploratory understanding of

code-plagiarism phenomenon from students' perspective. The “learner-centered” approach

to higher education as well as the wide spread publication of source codes on the Internet

have guided the research to the following five research questions:

1. How do students carry out research for assignments that require them to write

computer codes?

2. How do students acknowledge authors of code that are helpful to their research?

3. What are the various positions of teachers with respect to code-plagiarism as

perceived by students?

4. How has the possibility of being able to find computer codes on the Internet helped

students?

5. What justifications do students advance for engaging in code-plagiarism?

METHOD

This paper uses a constructionist case study approach to qualitative research and

explores the relationship between open source philosophy and attitude towards code-

plagiarism amongst technology students. Past and current students of two faculties at a

public university in Sub Saharan Africa participated in the research. The purposeful

sampling of these students was driven by their exposure to open source philosophy and

computer software development. Primary data was collected via email responses from the

students while secondary data was collected from university manuals, faculty rules and

regulation documents and observations. The subsections below describe in details the

research participants, the research procedures and data collection.

International Journal of Technology in Teaching & Learning 103

PARTICIPANTS

The participants of this study were nine students, aspiring either for a minor degree in

computer science or a degree in software engineering. They have been referenced in this

paper based on how they responded to the initial email. The first respondent (R1) is an ex-

student, who graduated with a Bachelor of Science in Mathematics and a minor in

Computer Science and participated in both computer programming and software

engineering courses. The second respondent (R2) is a senior year student from the faculty

of engineering and Technology, who works as a lead software engineer in a local start-up

company and is a founder of a start-up company as well. The third respondent (R3) is a

senior year student from the Faculty of Engineering and Technology specializing in

software engineering. Respondent four (R4) is a sophomore student from the faculty of

Engineering and Technology, who has not yet participated in the software engineering

course. Respondent five (R5) is a senior year student from the faculty of engineering and

technology, who works as software engineer and mobile application developer in a local

software company. The sixth respondent (R6) is a Junior year student from the Faculty of

Engineering and Technology, specializing in software engineering while respondent seven

(R7) is an ex-student who now works as a web master and blogger. The eighth respondent

(R8) is an ex-student from the faculty of science, who graduated with a Bachelor in Physics

and a minor in Computer Science and now works abroad while the ninth respondent (R9)

is a freshman in the faculty of Engineering and Technology.

PROCEDURES AND DATA COLLECTION

An email was drafted, vetted with other colleagues and sent to students who had

participated in computer programming related courses in the last five years (see Appendix

A). The purpose of the mails was to solicit the students' views and opinion about how they

got along with their programming assignments during the course. The mail also required

the students to expound on their teachers' impressions about their coding capabilities and

code plagiarism. Prior to sending out the email, ethical clearance was obtained from the

Research Ethics Committee of the institution where the research was carried out.

An embedded analysis (Yin, 2003) of the response from nine out of ten students was

carried out immediately their replies were received. The rejected case was due to the fact

that the student did not answer any of the questions, but wrote a one sentence appreciation

of his teachers. Strauss and Corbin (1998) approach of line-by-line analysis was implored

to generate insight into the data that was collected.

DATA AND FINDINGS

The data has been tallied around the five research questions stated above, based on

their appropriateness to the question and also to facilitate interpretation.

RQ1 How do students carry out research for assignments that require them to write

computer codes?

Some students are very analytical and methodical in the way they carry out research

for assignments that requires them to write computer codes. R9 says, “Firstly I will write

down the objectives of my research spelling out clearly the PURPOSE of the research …

”. However, the students generally acknowledged using the Internet, certain websites,

computer books and asking from friends and others. R1 says “I use the internet, computer

books to check whether related codes to the research are there; I do also consult friends of

the same academic hierarchy or higher that can help me with some suggestions to my

research.”. Students are fond of the Google search engine and other forums. R3 says “ …

If I need to learn it to do a project immediately, I use tutorials such as tutorialspoint,

 Open-Source and Attitude towards Code-Plagiarism 104

stackoverflow, for rapid answers … Google is my best friend at these moments, to find out

exactly what I want … ”. R4 and R8 also talk about stackoverflow and tutorialspoint as

web sources from where they can find relevant computer codes.

Other students try solving the problem first, and only turn to other sources for solutions

if they cannot do the assignments. On this, R4 says:

[I] write the code my self. I can't, search for and read any material (not

code) related to the assignment. Try to implement knowledge gained. If I

can't, approach one or two friends. If they can't, take it to online forums”.

This position is shared by R2, R5, R6 and R7. R7 for instance says “I try

to write it myself for the purpose of learning. In the real world where there

[is] pressure on deadline if I find some fragment that does exactly what I

wanna do, I won't hesitate to use it”.

Textbooks were also reported by two of the respondents (R3 and R6) as a lucrative source

from which students find code fragments.

RQ2 How do students acknowledge authors of code that are helpful to their research?

The comment from R3 summarizes the views of most of the respondents on this issue.

R3 writes:

Generally on forums such as stackoverflow and many others, if a solution

was helpful to you, you upvote the solution as an acknowledgment to the

author, so that's how i acknowledge authors whose code i use. For sources

like textbooks, I usually don't. From other sources like zipped codes that

do specific tasks, the authors' names are usually written at the top, for

example the top document javadoc section of Java code. I respect their

work and keep their names, adding mine below theirs if I did any

modifications, or just leaving it as-is if I just used the code.

The view on “up-voting” is shared by R5. Some students would only acknowledge

authors whose entire code has been useful to them and where only part of the code was

useful, little or no acknowledgement is given.

In general, students acknowledge authorship of helpful codes during presentations of

their work (R1) and in the reference and acknowledgment sections of their write-ups (R5,

R9) and are particularly appreciative of fascinating codes (R4, R7). On this R4 writes “I

acknowledge coders who write code that get me surprised about the simplicity they make

a complex assignment look. Coders who write extremely dense code to solve a problem in

fewer lines are also acknowledged … ”.

RQ3 What are the various positions of teachers with respect to code-plagiarism as

perceived by students?

Students perceived that the majority of their teachers are against code-plagiarism since

copying codes encourages laziness (R4), weakens their programming competence (R5) and

makes them dependent. R2 distinguishes between two categories of teachers and writes:

Some of our teachers have never really been good at writing code and just

did so to fulfill righteousness, it would be normal that they sometimes

stand for the fact that we just copy and give them as is so long as the

problem was solved. The stand is different with some of our motivated

teachers. They don't want to get that we copy codes from external sources

and use without reference or effort to improve what we get. This is because

they believe that just copying and using code makes one lazy and not able

International Journal of Technology in Teaching & Learning 105

to produce quality code and always being dependent. They are not the

properties of any programmer who wishes to make a good living of his art.

According to respondent six, “The Course Instructors ... so far have not taken any clear

position on the copying of code. A number of them have said, though, that one does not

learn much when they just copy a solution without putting it in their own terms ”. Whereas,

for respondent nine, “Some of my teachers encourage [students] to copy codes fragments

reason being that it saves programming time … [but the] … Majority say copying codes

impedes reasoning and encourages laziness”. Respondents eight clearly did not understand

this question and writes “I don't understand this point”.

RQ4 How has the possibility of being able to find computer codes on the Internet helped

students?

Most of the students have warned that finding code on the Internet is generally not a

straight forward task and could even be more confusing. On this R2 writes:

 … being able to find code made it more or less faster for me to build some

modules and implement functionality faster but not necessarily better.

Sometimes the times to research code especially for optimal solutions

could be longer than if i had to develop one myself ”. R5 is critical about

code on the Internet and so does R8, who notes by saying “ It should be

worth noting that copying computer code from the internet is not that easy.

First, you must be able to understand the code and make it suitable for

your application. Secondly, you might slow that your system by running

copied codes that you do not actually need …

On a general note, students are very recognizant and appreciative of the availability of

software codes on the Internet. All the respondents say being able to fine computer codes

on the Internet has been helpful to them, particularly to save time when they are stocked.

R3 writes “Finding code on the internet has helped me many a times, when I got stuck

while coding ”. Internet code has improved on their efficiency in carrying out programming

tasks. R5 comments that

Its has being of great help, since i have found better (and more efficient)

ways of doing some tasks. It has helped me to save time and effort in doing

some tasks and i have also learn a lot.”. It has also provided them with a

platform for peer-evaluation and peer review to boost their confidence in

what they are doing. R6 writes “Reading open-source code allows me to

see how different persons approach a problem. The way they break down

the problem, the algorithms they develop and the various methods they

employ to implement these algorithms. It helps me simplify my own

approach to problem-solving.

RQ5 What justifications do students advance for engaging in code-plagiarism?

Most students actually did have a way of acknowledging authors, whose codes have

been helpful to them and did not try to justify why they would not acknowledge them.

However, some students (R6) do not deem it necessary to have a reference section for class

assignments as they feel that it conveys a different message to their teachers. “As concerns

class assignments, I don't deem it helpful to add references to authors when it concerns

code. I feel the teacher may get the wrong idea that I just copied the whole piece of code”.

Sometimes, students engage in code-plagiarism because of the complications in the

acknowledgment process. R8 on this writes:

 Open-Source and Attitude towards Code-Plagiarism 106

 … Sometimes, I simply do not acknowledge any authors because of the

requirement necessary to acknowledge them. It takes a lot of time to create

and account and sometimes I find it not worth creating an account just to

acknowledge someone that I will never come back to his/her website. This

happens especially when I randomly search for answers on google.

Respondent seven for instance says, “I stand on the idea of don't reinvent the wheel”

while R1 puts it this way “ … nowadays, it is difficult to innovate in many fields since

many 'basic' aspect have been discovered … ”. Time management was the burning issue

which almost all the respondents highlighted to justify why students copy codes from the

Internet.

DISCUSSIONS AND IMPLICATIONS

Plagiarism is an ethical issue. Defining licensing agreements and laws to govern it

could be one way of addressing the issue. In universities, plagiarism is considered a high

form of academic dishonesty and attracts different sanctions ranging from penalties to

expulsion. The discussions and implications of this paper are presented in two folds.

Firstly, on students' engagement in code plagiarism, from the perspective of what the open-

source philosophy offers and, in line with the research data. Secondly, on the demands

which the actions of today's students are placing on University rules and regulations.

STUDENTS' ENGAGEMENT IN CODE PLAGIARISM

The findings presented above show that students are particularly concerned about the

amount of time alloted to them for class assignments that require them to write computer

programs. They are equally concerned about who is reviewing or correcting the assignment

and what grade they get for the assignment. In this light, the discussion and implication of

students' engagement in code-plagiarism is presented under the following four sub-themes.

Time Management

Today's student life is characterized by too many activities. For most university

students, it is the first time to live out of the hospices of their parents and to be the sole

managers of their socioeconomic activities. Furthermore, academic activities and

particularly, developing computer software generally requires long hours of work. The

student therefore finds him/herself in an arena where being able to manage allotted time

could be a cherished virtue but might not always be successful. Cutting corners becomes

the obvious option, particularly within the academic milieu, which is perceived as a lesser

life-threatening area by some students. Nonetheless, like most of the respondents

mentioned, being able to find code on the Internet is a time saver. It gives students the

opportunity to focus on the task at hand, deepening their understanding of the problem as

they explore solutions of their peers and seniors.

Students' Attitudes towards Teachers and Class

The relationship between teacher and students is very critical to student's attitude

towards code plagiarism. Some teachers demand codes in class assignments in fulfillment

of the demands of the course. The students' reaction to this is to present a working code

and get the teacher's approval rather than on how this code is developed. On the other hand,

motivated teachers will always like to see students doing the right things, the right way.

Students may or may not develop a receptive attitude towards such teachers but in either

case, this defines their attitude towards plagiarism in general and particularly towards code

plagiarism. The open source philosophy gives students the opportunity to broaden their

International Journal of Technology in Teaching & Learning 107

circle of colleagues and friends as they interact with students and teachers who are working

on similar and related projects. It rules out the possibility of attaching students' attitude to

a particular teacher or classroom setting by providing alternative settings for students to

explore.

Efficiency Gain

The desire to attain and maintain a certain academic status puts students under pressure

and where circumstances do not permit that these academic levels be honestly achieved,

some students resort to unorthodox methods. With respect to code plagiarism, some

students capitalize on the inefficiency of the classroom settings. In scenes where a single

teacher has to read through millions of lines of code, and with the absence of an automatic

code plagiarism detection system, some students shamefully get away with plagiarism.

Observations reveal that such are the impractical scenarios in which some software

developers are trained. The teachers' incapability to verify whether the codes work or not

offers a seductive temptation and even the most brilliant and hardworking students are

likely to fall. On the other hand, encouraging students to participate in Open source projects

would be ore efficient. The organization and cataloging of code in libraries and projects,

which is characteristic of the open source philosophy makes for incremental development

and enhancement. In such a setting, the student's contribution is easily visible, genuine and

can be verified. This is because, participating in an open source project often requires

working for a solution to a reported problem or contributing to a missing piece of the

project.

Genuine Lack of Understanding

Sadly, some students unconsciously engage in plagiarism and particularly code

plagiarism, out of ignorance. It is the institution's responsibility to state and enforce its

policies on plagiarism and to educate the students and teachers on policy issues as well as

to define mechanisms that facilitate acknowledgment of authors of codes. An open source

approach actually makes this process effortless. The results of this study shows that

students readily give credit to authors of codes which they find on the Internet, especially

if the code repository has a flexible structure to enhance the process. Within the social

network context of open-source projects, code ratings are analogous to article citations.

Park (2003) combines the views of Payne and Nantz (1994), Lim & See (2001) and

Evans & Youmans (2000) to show that plagiarism is socially constructed, legitimated and

perceived differently by students with different backgrounds. Establishing and supporting

this background is largely the role of the educational system as it defines the philosophical

and methodological underpinnings that guide and govern what students do in school. The

open source philosophy constructs a social context that is governed by praxis. It demands

that people (students) should have access to the works of others' and make and share

genuine contributions to that work. In academia, this translates into students' authentic

contributions as assessed and evaluated by teachers and peers. Within such contexts, code-

plagiarism becomes irrelevant since the focus is on scrutinizing, fine-tuning and perfecting

codes.

UNIVERSITY RULES AND REGULATIONS

The academic actions and activities of both students and teachers in universities are

managed by the rules and regulations; policies and procedures of the given university. In a

document defining university standards in Cameroon (MINESUP, 2015), the ministry of

higher education (2015) states clearly that it is the university's responsibility to manage

researcher and research ethics, through its governance structure. An examination of

university policies on plagiarism from the university of Johannesburg (University of

 Open-Source and Attitude towards Code-Plagiarism 108

Johannesburg, 2008), the university of South Africa (University of South Africa, 2005) and

Harvard university (Harvard University, n.d) reveals that Universities have taken a

disciplinarian approach to addressing plagiarism. These documents list out the

responsibilities of faculties, academic staff and students and then describe procedures and

sanctions relating to alleged plagiarism cases. The implications of such an approach is the

establishment of a policed society within academia, where suspicion and skepticism

prevails and knowledge sharing is dwarfed.

Benkler and Nissenbaum (2006) define commons-based peer production as a socio-

economic system of production that has emerged in the digitally networked environment.

The central thesis of their paper is that “socio-technical systems of commons-based peer

production offer not only a remarkable medium of production for various kinds of

information goods but serve as a context for positive character formation”. Their work

implicitly links open-source philosophy and character formation in a way that sounds

appealing to universities. It is the university's responsibility to build and maintain

pedagogic structures that foster virtuous character formation and enhance authenticity of

student's academic work. The discussions here point to the fact that adhering to the open-

source philosophy promises a possible solution to the moral decadence that drive students

into plagiarism and particularly code plagiarism.

THEORETICAL IMPLICATIONS

This qualitative study falls within the realms of using technology in the teaching-

learning process. A renown theory in this area is the Technological Pedagogical Content

Knowledge (TPACK) framework, extensively reviewed in Chai et al (2013). Three main

constituents of the framework are Technological Knowledge (TK), Content Knowledge

(CK) and Pedagogical Knowledge (PK). In their systematical review, Chai et al (2013)

examined seventy-five (75) published article and found that fifty-five (55) of them

collected and analyzed data. They present a summary of these empirical studies (Chai et

al, 2013: p36) and classify their themes into ten (10) categories. Strangely, none of these

themes addresses ethical concerns of using technology in the teaching-learning process.

The findings from this study show that there is an implicit need to examine ethical

issues and concerns of using technology in the teaching-learning process. More so, it shows

the need to extend popular theoretical frameworks, particularly TPACK and its derivatives,

to incorporate an ethical component. One possibility could be to investigate the relationship

between ethics and the other components of TPACK.

RECOMMENDATIONS AND CONCLUSION

The findings of this research and the discussions presented call to mind the

consequences of a stereotype mind frame. The maintenance of conventional formulaic

university structures conspire only to build a prison for the university community itself.

The voices of a representative constituency of technology students echo the need for

revision of university structures, especially relating to code plagiarism policies. Although

the finding can not be generalized, they shed some light on the issue and suggest the

following recommendations and directions for further research.

1. The Delivery of courses that require students to write software codes and generally

technology related courses should be approached from a practical perspective. A

course should be seen as a set of activities that a student should perform rather than as

a body of knowledge that a student should acquire. In this light, it is worth investigating

the impact of such an approach on plagiarism and especially on code plagiarism.

International Journal of Technology in Teaching & Learning 109

2. Under the open source philosophy, the teacher assumes a mentor role, rather than an

instructor role and should therefore be an active participant in appropriate open-source

projects. Research about the role of teachers in the teaching-learning process is rich,

but linking this role to plagiarism and particularly to code plagiarism within different

education settings would be worthwhile.

3. Majority of the reasons why students engage in plagiarism is related to the prevailing

moral decadence of today's society. It would be worthwhile to examine a Christian

approach to managing plagiarism – an approach based on understanding the plight of

students.

4. The extension of theoretical frameworks used in studies that investigate of how

technology, pedagogy and content integrate in today's classroom. A possible aim

would be to incorporate an ethics component.

In conclusion, technology students often use the Internet when faced with exercises

that require them to write codes and are therefore inclined to the temptations of code-

plagiarism. They use mechanisms found on websites to acknowledge authors of codes and

generally have an appreciative attitude towards code on the Internet, especially those that

have been helpful to them. However, such mechanisms are seldom understood, appreciated

and encouraged by today's educational system. Rethinking the educational philosophy

therefore offers a possibility for mitigating students' attitude towards plagiarism and

particularly towards code-plagiarism. The open source philosophy, which views

knowledge as sacred rather than as secrete; as something to be shared rather than to be

secured, offers a commendable starting point.

REFERENCES

Benkler, Y. and Nissenbaum, H. (2006) ‘Commons-based peer production and virtue’.

Journal of Political Philosophy, 14(4), pp. 394–419. doi: 10.1111/j.1467-

9760.2006.00235.x.

Chai, C.-S., Koh, J. H.-L., & Tsai, C.-C. (2013). A review of technological pedagogical

content knowledge. Educational Technology & Society, 16 (2), 31–51.

Cosma G. and Joy M. (2006) Source-code plagiarism: A UK academic perspective.

Research Report No. 422. Department of Computer Science, The University of

Warwick

Davis, S.F., Grover, C.A., Becker, A.H. and McGregor, L.N. (1992) Academic dishonesty:

Prevalence, determinants, techniques, and punishments, Teaching of Psychology,

19(1), pp. 16–20. doi: 10.1207/s15328023top1901_3.

Evans F. B. & Youmans M. (2000) ESL writers discuss plagiarism: the social construction

of ideologies. Journal of Education, 182 (3), pp. 49–66.

Gomulkiewicz R. W. (2002) De-bugging Open Source Software Licensing. 64 U. PITT .

L. R EV . 75, 83 (2002).

Gomulkiewicz, R. W. (2004). Entreprenurial Open Source Software Hackers:

MySQL and Its Dual Licensing. Computer L. Rev. & Tech. J., 9, 203.
Google Developers (2016). Google summer of codes. Retrieved from

https://developers.google.com/open-source/gsoc/

Goss A. K. (2007). Codifying a commons: Copyright, copyleft, and the creative commons

project, 82Chi.-Kent. L. Rev.963 (2007). Available at:

http://scholarship.kentlaw.iit.edu/cklawreview/vol82/iss2/24

Hage, J., Rademaker, P., & van Vugt, N. (2010). A comparison of plagiarism

detection tools. Utrecht University. Utrecht, The Netherlands, 28.

 Open-Source and Attitude towards Code-Plagiarism 110

Harvard University. (n.d) Harvard guide to using sources: Harvard plagiarism policy.

Retrieved from http://usingsources.fas.harvard.edu/icb/icb.do?keyword

=k70847&pageid=icb.page355322

Hattingh, F., Buitendag, A. A., & Van Der Walt, J. S. (2013). Presenting an

alternative source code plagiarism detection framework for improving the

teaching and learning of programming. Journal of Information Technology

Education, 12, 45-58.
Joy, M., Cosma, G., Yau, J.Y.-K. and Sinclair, J. (2011) Source code plagiarism—A

student perspective. IEEE Transactions on Education, 54(1), pp. 125–132. doi:

10.1109/te.2010.2046664.

Kumar, S. A., & SINGH, P. (2009). Open Source Policy. In Proceedings of the

International Conference of Academia Libraries (ICAL) 2009-Technology,

Policy and Innovation.

LaFontaine, A. (2005). Adventures in Software Licensing: SCO v. IBM and the

Future of the Open Source Model. J. on Telecomm. & High Tech. L., 4, 449.
Lim, V.K.G. and See, S.K.B. (2001). Attitudes toward, and intentions to report, academic

cheating among students in Singapore. Ethics & Behavior, 11(3), pp. 261–274. doi:

10.1207/s15327019eb1103_5.

Mattos, B.S. de (2012) ‘Open source philosophy and the dawn of aviation’, Journal of

Aerospace Technology and Management, 4(3), pp. 355–380. doi:

10.5028/jatm.2012.04030812.

MINESUP. (January 2015). University standards: Applicable to all higher education

institutions in Cameroon. Retrieved from http://www.minesup.gov.cm/

UNIVERSITY%20STANDARD.pdf

Park, C. (2003) In other (people’s) words: Plagiarism by university students--literature and

lessons. Assessment & Evaluation in Higher Education, 28(5), pp. 471–488. doi:

10.1080/02602930301677.

Paumier, S. (2009). Why academic software should be Open Source. INFOtheca:

Journal of Information and Library Science, 10(1-2), 51-54.
Payne, S.L. and Nantz, K.S. (1994) ‘Social accounts and metaphors about cheating’,

College Teaching, 42(3), pp. 90–96. doi: 10.1080/87567555.1994.9926831.

Raymond, E. (1999). The cathedral and the bazaar. Philosophy & Technology,

12(3), 23.
Shimel, A. (2012). 10 most successful open source projects of 2012. Retrieved from

http://www.itworld.com/article/2827587/enterprise-software/10-most-successful-

open-source-projects-of-2012.html

Singh, V. (2013) ‘Challenges of open source ILS adoption’, Proceedings of the American

Society for Information Science and Technology, 50(1), pp. 1–4. doi:

10.1002/meet.14505001115.

Stevens, G.E. and Stevens, F.W. (1987) ‘Ethical inclinations of tomorrow’s managers

revisited: How and why students cheat’, Journal of Education for Business, 63(1), pp.

24–29. doi: 10.1080/08832323.1987.10117269.

Strauss, A., &Corbin, J. (1998). Basics of qualitative research: Techniques and procedures

for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.
Sutherland-Smith, W. (2005) ‘Pandora’s box: Academic perceptions of student plagiarism

in writing’, Journal of English for Academic Purposes, 4(1), pp. 83–95. doi:

10.1016/j.jeap.2004.07.007.

Tomazin M. and Gradisar M. (2007) Open source software in slovenian primary and

secondary schools. Informatics in Education, 2007, 6(2), 443–454.

International Journal of Technology in Teaching & Learning 111

University of Johannesburg. (17 July 2008). Policy: Plagiarism. Retrieved from

http://www.uj.ac.za/EN/Faculties/science/departments/zoology/research/Documents/

Plagiarism%20Policy.pdf

University of South Africa. (2005). Policy for copyright infringement and plagiarism.

Retrieved from http://www.unisa.ac.za/contents/colleges/col_grad_studies/docs/

Policy_copyright_infringement_plagiarism_16November2005.pdf

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks,

CA: Sage

APPENDIX

THE EMAIL FOR PRIMARY DATA COLLECTION

Dear Students and exStudents,

Accept July greetings and Happy Long Holidays!!

I write following a research I am conducting to solicit your participation in the research. In

this light, I will require you to provide answers to the questions below. There is no correct

answer and I beg you to write as much as possible for each question (at least 5 sentences).

Originality of your responds is most cherished.

1. How do you carry out research for assignments that require you to write computer

codes?

2. How do you acknowledge authors of code that are helpful to your research? and if

you do not acknowledge them, why?

3. In your opinion, what are the various positions of your teachers about copying

computer codes and why do you think they take these positions?

4. How has the possibility of being able to find computer codes on the Internet helped

you?

Thank you in advance for taking time off to respond to these questions and Enjoy your

holidays

Best wishes.

PS

Please send your reply to me directly and feel free to provide any additional information

such as: Level, Institution, Batch, department, other relevant interest, etc ... so that it

will make it easier for me to group and classify the responses.

