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Article

Practice often plays a critical role in learning complex 
behaviors (Cepeda, Pashler, vul, Wixted, & Rohrer, 2006; 
Donovan & Bransford, 2005; Dunlosky, Rawson, Marsh, 
Nathan, & Willingham, 2013; Fitts & Posner, 1967). 
Research from the field of neuroscience suggests that prac-
tice can lead to changes in the structure of the brain (Fields, 
2005). Studies also indicate that practice improves targeted 
outcomes in a variety of performance-based disciplines. In 
music and sports, for example, findings strongly indicate 
that deliberate practice improves performance (Ericsson, 
Roring, & Nandagopal, 2007). The notion of deliberate 
practice in performance-based disciplines is similar to the 
idea of breaking academic tasks down into actionable steps. 
The specific steps are identified and practiced repeatedly, 
usually under the watchful eye of an expert coach. Steps 
that are more difficult for the individual, or critical in suc-
cessful execution of the overall skill, are practiced more 
(Paumgarten, 2017).

In academics, practice often promotes understanding. 
Practice, when designed well, allows all students, including 
struggling learners, the opportunity to grasp new informa-
tion, apply previously acquired knowledge and skills, and 
connect existing background knowledge with new content 
(Dunlosky et  al., 2013). In the current study, practice is 
operationalized by teacher-initiated opportunities for indi-
vidual students to independently and publicly demonstrate 
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their mathematical thinking and understanding through 
three different mediums: mathematics verbalizations, writ-
ten responses, and manipulation of visual representations of 
mathematical ideas. Because explicit mathematics instruc-
tion has one of the strongest evidentiary bases for improv-
ing the mathematics outcomes of students with mathematics 
difficulties (MD; Gersten et al., 2009), our investigation of 
individual practice opportunities focused on those that 
occurred within a sequence of “explicit instructional inter-
actions” between teachers and kindergarten students around 
critical mathematics content during core mathematics 
instruction. These interactions were deemed “explicit” 
because they entailed an initiating overt demonstration or 
explanation of a mathematical concept or skill by the 
teacher followed by opportunities for individual students to 
practice with the same mathematics content or slight varia-
tions thereof.

Notwithstanding the importance of practice, its effects 
are thought to be subject to the law of diminishing returns 
(Fitts & Posner, 1967; Ritter & Schooler, 2001). The con-
cept of a “learning curve,” for instance, describes a com-
mon dynamic whereby practice initially results in fast 
learning gains until a point is reached at which gains slow 
or level off completely. Further, in the classroom context, 
since the teacher has to distribute practice opportunities 
across many students and time is limited, the learning curve 
for some students could actually come back down again. 
This could happen for a variety of reasons such as the 
teacher presents fewer concepts to the group in order to fit 
in all the individual practice opportunities, the teacher does 
not distribute the practice opportunities across students 
optimally, or students not currently practicing get bored 
while other students practice and stop paying attention. As 
such, in the present study, we explored whether there is an 
optimal amount of student practice relative to teachers’ 
overt demonstrations or explanations of mathematics con-
tent that maximizes the mathematics achievement of kin-
dergarten students with MD (i.e., Goldilocks effect).

Studies of Explicit Mathematics Instruction in 
Tier 1 Kindergarten Classrooms

In kindergarten, Tier 1 mathematics instruction represents 
a critical tipping point in students’ mathematical learning. 
When Tier 1 kindergarten mathematics instruction is 
poorly designed, the probability that students who enter 
school with little exposure to formal mathematics will 
experience persistent difficulties in later mathematics 
remains high (Barnes et al., 2016; Morgan, Farkas, & Wu, 
2009). For many kindergarten students, Tier 1 mathematics 
instruction represents their first formal introduction to 
early mathematics. Consequently, the process of learning 
mathematics can be a novel and challenging experience for 
them. These students, who are at risk for persistent MD, 

may require more systematically designed opportunities to 
learn during Tier 1 mathematics instruction to acquire a 
deep understanding of mathematics. To promote outcomes 
among students who demonstrate academic risk, experts on 
effective instruction strongly suggest that Tier 1 instruction 
incorporate more frequent, explicit instruction (Deshler, 
2015; Simmons, 2015; Vaughn, 2015). Others have simi-
larly argued if students do not receive explicit instruction 
of adequate quality at Tier 1, Tier 2 instruction will not be 
sufficient to accelerate their learning such that the learning 
gap is narrowed (Baker, Fien, & Baker, 2010; Fuchs & 
Vaughn, 2012).

Relative to other instructional approaches, explicit math-
ematics instruction has garnered significant empirical sup-
port for promoting mathematics outcomes among students 
with or at risk for MD (Morgan, Farkas, & Maczuga, 2015). 
This is one reason that explicit instruction often features 
prominently in Multi-Tiered Systems of Support (MTSS) 
models, which are encouraged by state and federal law. And 
while the vast majority of studies involving explicit mathe-
matics instruction conducted to date have taken place in Tier 
2 settings (Gersten et al., 2009), it is encouraging that recent 
randomized controlled trials have begun to demonstrate the 
efficacy of this instructional approach in the context of Tier 1 
mathematics instruction in kindergarten classrooms. Sood 
and Jitendra (2013), for instance, compared the impact of an 
explicitly designed, Tier 1 kindergarten mathematics pro-
gram aimed at early number sense concepts relative to stan-
dard mathematics instructional practices. Significant 
differences in student mathematics achievement were 
reported in favor of the number sense intervention program, 
with effect sizes (Hedges’ g) ranging from 0.55 to 1.44.

More recently, Clarke et  al. (2015) conducted a large-
scale, randomized controlled trial to investigate the efficacy 
of the Early Learning in Mathematics (ELM) program in 
129 kindergarten classrooms. Whereas classrooms ran-
domly assigned to the treatment condition used the ELM 
program, a 120-lesson core mathematics program that cen-
ters on an explicit instructional framework, control class-
rooms continued to provide “business-as-usual” (BAU) 
mathematics instruction. Of the 2,600 kindergarten students 
who participated in the study, approximately 50% were 
considered at risk for MD at the start of the kindergarten 
year. A major finding in this efficacy work was that the 
ELM program (i.e., treatment classrooms) produced a pat-
tern of change relative to BAU such that students at the low 
end of the pretest distribution on a standardized measure of 
mathematics achievement scored substantially higher at 
posttest compared to their BAU peers. That is, initially low-
performing students in ELM classrooms benefited the most, 
suggesting a pattern referred to as “differential effective-
ness.” It is worth noting that the observed pattern implied a 
flatter (i.e., closer to zero) slope of the regression of posttest 
on pretest in ELM classrooms.
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Student Practice Opportunities Situated in 
Explicit Instructional Interactions

While a host of variables likely mediated the positive effects 
of these Tier 1 explicit mathematics programs in kindergar-
ten (Clarke et al., 2015; Sood & Jitendra, 2013), one plau-
sible specific mediator could be the increase over BAU of 
frequent, meaningful student practice opportunities. 
Mathematics research suggests that practice with founda-
tional concepts and skills is critical for supporting students’ 
development of early mathematical proficiency (Clements, 
Agodini, & Harris, 2013). In the MD research literature, a 
consistent finding is the beneficial effect of explicitly 
designed and delivered practice opportunities on the math-
ematics achievement of students with MD (Doabler et al., 
2015; Gersten et al., 2009; Morgan et al., 2015).

In many ways, the types of student practice opportunities 
investigated in the current study are not dissimilar to 
“opportunities to respond” (OTRs; Greenwood, Delquadri, 
& Hall, 1984; MacSuga-Gage & Gage, 2015; Sutherland, 
Alder, & Gunter, 2003) in that both include verbal and 
physical student responses. Moreover, like some previously 
investigated OTRs, the types of student practice opportuni-
ties examined here are embedded within a sequence of 
explicit instructional interactions, where student practice 
opportunities are proceeded by an overt teacher demonstra-
tion or explanations of a mathematical concept or skills. 
Such demonstrations are intended to scaffold students’ 
learning so that they are better prepared to independently 
engage in and work with the targeted mathematical content. 
For example, a teacher might directly model for students 
how to identify which of two groups of cubes has more than 
the other and then facilitate a series of practice opportuni-
ties for individual students to independently practice the 
same skill with groups of objects that have different quanti-
ties than the original practice opportunity.

The ELM program (Clarke et  al., 2015) emphasizes 
three types of student practice opportunities situated within 
sequences of explicit instructional interactions. These 
practice opportunities, which are operationalized in accor-
dance to the burgeoning empirical literature on explicit 
mathematics instruction (Agodini & Harris, 2010; Clarke 
et al., 2015; Gersten et al., 2009; Sood & Jitendra, 2013), 
center at the individual student level and include student 
mathematics verbalizations, opportunities to work with 
concrete manipulatives, and written response opportuni-
ties. Each type of individual practice opportunity serves as 
not only an effective mechanism for improving student 
mathematics outcomes and supporting active processing of 
mathematical content and learning (Clements et al., 2013; 
Doabler et al., 2015; Gersten et al., 2009) but also as effi-
cient ways for teachers to monitor student progress, iden-
tify potential misconceptions, foster student engagement, 
and differentiate instruction for students with MD. They 

are also meaningful constructs to teachers and curriculum 
developers.

The first type of individual practice is student mathemat-
ics verbalizations. In the early grades (i.e., kindergarten and 
first grade), before students are proficient in reading and 
writing, much of the student practice facilitated during 
mathematics instruction is mediated through language. That 
is, teachers verbally demonstrate or explain an idea, and 
students demonstrate their understanding of the idea and 
verbally practice applying it through a range of examples. 
For teachers, this verbally mediated instructional pattern 
has the added advantage of being overt and public—it is 
more time efficient to gauge how students are doing than 
when they are silently reading mathematics problems and 
then solving them through the medium of writing. For 
younger students, verbal practice allows them to convey 
their mathematical understanding and thought processes 
through mathematical discourse or “math talk.” For exam-
ple, a teacher might have a kindergarten student verbalize 
how she solved a “put together” word problem, asking the 
student to explain how she combined two groups of objects 
to form a larger group. Research highlights the important 
relationship between mathematics verbalizations and stu-
dent mathematics achievement (Clements et  al., 2013; 
Doabler et al., 2015; Gersten et al., 2009).

Another valuable type of individual practice consists of 
opportunities for students to work with concrete representa-
tions of mathematical ideas, such as place value blocks and 
3-dimensional geometric shapes. When explicitly struc-
tured, practice with concrete materials allows students to 
make connections between mathematics concepts and the 
abstract symbols depicting those concepts (Gersten et  al., 
2009). The third type of practice entails solving mathemat-
ics problems with written symbols, such as solving basic 
number combinations. When purposefully designed (i.e., 
distributed across time and interleaved with different kinds 
of problems), such practice can help students build automa-
ticity with mathematical procedures and operations (Fuchs 
et al., 2010).

A common instructional technique used during the 
explicit instructional interactions targeted for the current 
investigation is for the teacher to have one student respond 
to the same problem, or a very similar problem, to the one 
the teacher just demonstrated and then to ask other students 
to individually respond to more complex applications of the 
concept to demonstrate their understanding. In this way, the 
teacher can make sure that students with MD receive tar-
geted, individual opportunities to practice applying the 
taught concept. For example, a teacher might have a student 
with MD verbalize how to use base-ten blocks to compose 
a teen number (e.g., 15). Then, several students, including 
the one involved in the initial practice opportunity, would 
individually be asked to demonstrate their understanding of 
the concept by composing other two-digit numbers from a 
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different decade range (e.g., 20–29). These additional prac-
tice opportunities may promote a more robust and lasting 
understanding of mathematics among all students in general 
and students with MD in particular.

Research on Opportunities to Practice During 
Mathematics Instruction

How much practice students require to gain mathematical 
proficiency remains the subject of ongoing inquiry. Three 
single-case design studies showed that mathematics inter-
ventions with purposeful increases of practice opportunities 
improved multiplication performance among students with 
MD (Skinner, Belfiore, Mace, Williams-Wilson, & Johns, 
1997; Skinner, Ford, & Yunker, 1991; Sutherland et  al., 
2003). However, while of importance, these studies do not 
shed any light on the amount of practice opportunities stu-
dents with MD should receive in Tier 1 instruction.

Other studies provide initial evidence for the importance 
of practice in core mathematics instruction and suggest that 
amount of practice matters. Clements et  al. (2013) used 
observation data to examine the relationships between 
“teacher-directed” instructional practices and the mathe-
matics outcomes of first and second grade students. The 
observation data were collected in over 600 first and second 
grade classrooms during a large-scale, randomized con-
trolled trial focused on the efficacy of four different math-
ematics curricula. A low-inference observation measure 
was employed to document the frequency of nearly 100 
items associated with the instructional practices of the four 
curricula. Analyses offered mixed results. While not statis-
tically significant in first grade classrooms, results sug-
gested that the frequency of individual student mathematics 
verbalizations were related to increased mathematics 
achievement in second grade.

Similarly, Doabler et al. (2015) explored the associations 
between the rate (per minute) of explicit instructional prac-
tices, including student practice opportunities, and gains in 
student mathematics outcomes using data collected during a 
randomized controlled trial focused on testing the efficacy 
of the ELM mathematics program (Clarke et  al., 2015). 
Doabler et al. (2015) used a low-inference observation mea-
sure to document the frequency of individual and group 
practice opportunities. Similar to the current study, the stu-
dent practice examined was teacher-initiated and included 
opportunities for students to independently demonstrate 
their mathematical thinking and understanding through 
mathematics verbalizations, written responses, and use of 
visual representations of mathematical ideas. However, 
unlike the current study, such practice was not investigated 
within sequences of explicit instructional interactions. 
Analyses of approximately 400 observations conducted in 
129 kindergarten classrooms indicated that students in class-
rooms with more frequent individual practice opportunities 

made substantively important gains in mathematics out-
comes from the beginning to the end of kindergarten. 
Specifically, students increased overall performance on a 
standardized mathematics outcome measure focused on 
foundational, whole number concepts and problem-solving 
skills. Group practice (i.e., choral response opportunities), 
however, was not found to be a statistically significant pre-
dictor of students’ mathematics achievement (Doabler et al., 
2015).

While findings from this prior observational research 
suggest that frequent practice is important in students’ 
mathematical learning (Clements et  al., 2013; Doabler 
et  al., 2015; Skinner, Belfiore et al., 1997; Skinner et al., 
1991; Sutherland et al., 2003), these studies do not identify 
an optimal amount of student practice relative to teachers’ 
explicit demonstrations and explanations of mathematical 
content needed to maximize the mathematics achievement 
of students with MD (i.e., Goldilocks effect). Because time 
is a precious resource in schools, particularly when working 
with struggling learners (Kame’enui, 1993), identifying just 
the “right amount” of practice could help teachers use their 
mathematics instructional time more efficiently and effec-
tively. For instance, smaller quantities of practice, such as 
for every teacher demonstration there would be on average 
of one practice opportunity (i.e., a 1:1 ratio), may enable 
teachers to maintain a faster pace and more quickly teach 
new concepts. However, additional practice, such as a 1:3 
ratio of teacher demonstrations to student practice, may 
allow teachers to promote a deeper understanding of a tar-
geted concept or skill among struggling learners. Moreover, 
more frequent practice may increase student mastery of 
material taught and give students a better opportunity to 
apply their newly acquired knowledge and skills in novel 
problem-solving contexts. On the other hand, more time 
spent on individual practice reduces the time for teachers to 
introduce new concepts and may slow the pace to the point 
where some students get bored and stop paying attention.

In sum, the question of whether individual, student prac-
tice opportunities relative to an explicit teacher demonstra-
tion of mathematical content are subject to the law of 
diminishing returns and have an optimal level is of great 
practical importance (Ritter & Schooler, 2001). For 
instance, identifying specific amounts of student practice 
may help further refine how teachers can optimally deliver 
during Tier 1 instruction to accelerate the mathematical 
learning of students with MD. Additionally, information 
gained from such investigations could help curriculum 
developers design more effective mathematics programs for 
teaching mathematics to the full range of students.

Purpose of the Study

The purpose of the present study was to explore whether 
there was a Goldilocks effect for the ratio of individual 
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student practice opportunities to teacher demonstrations 
during Tier 1 mathematics instruction. Little research has 
been conducted on optimal ratios of student practice for stu-
dents with MD. As such, we extend previous research on 
the frequency of observed student practice opportunities 
during mathematics instruction (Clements et  al., 2013; 
Doabler et al., 2015; Skinner, Belfiore et al., 1997; Skinner 
et al., 1991; Sutherland et al., 2003) by addressing a critical 
question: Is there an optimal ratio of student practice rela-
tive to every overt teacher demonstration or explanation of 
mathematics content that maximizes the mathematics 
achievement of kindergarten students with MD (i.e., a 
Goldilocks effect).

Method

Data Source

This study is a secondary analysis of data collected during a 
randomized controlled trial funded by the Institute of 
Education Sciences and designed to test the efficacy of the 
ELM kindergarten mathematics program (Clarke et  al., 
2015). The ELM Efficacy Trial took place in Oregon and 
Texas during the 2008–2009 and 2009–2010 school years, 
respectively. A total of 129 kindergarten classrooms partici-
pated in the efficacy trial, of which 68 were randomly 
assigned to use the ELM core mathematics program (treat-
ment) and 61 were randomly assigned to continue imple-
menting BAU mathematics instruction (control). Data 
analyzed in the current study include student mathematics 
outcomes collected at pretest and posttest and observed 
rates (per minute) of individual student practice opportuni-
ties and teacher demonstrations and explanations captured 
in sequences of explicit instructional interactions during 
Tier 1 kindergarten mathematics instruction.

Participants

Kindergarten classrooms.  Participants were recruited from 
129 classrooms across 46 schools (32 public, 11 private, 
and 3 charter) from Oregon and Texas. All private and char-
ter schools were in three school districts in Texas. Of the 
129 classrooms (64 Oregon, 65 Texas), 112 provided full-
day kindergarten, and 17 provided half-day kindergarten. 
All half-day kindergarten classrooms were in Oregon. One 
full-day classroom in Oregon operated 4 days per week. 
The 129 classrooms included 16 bilingual education classes, 
but all mathematics instruction was conducted in English. 
Average class size was 21 students (SD = 3.8).

Teachers.  The 129 classrooms were taught by 130 teachers 
(98% female; 69% White, 20% Hispanic, and 11% another 
ethnic group). Two half-time teachers taught one classroom. 
In terms of background and experience, 129 teachers held 

certification, 39% held a graduate degree, and 51% had 
completed college-level coursework in algebra. Nearly all 
teachers had 7 or more years of total teaching experience.

Students.  A total of 2,708 kindergarten students (47.3% 
female) participated in the study. Approximately 50% began 
kindergarten below the 25th percentile on the Test of Math-
ematics Ability–3rd Edition (TEMA-3) and thus were con-
sidered at risk for MD. The treatment condition included 
1,475 students; the control condition included 1,233 stu-
dents. Student demographic data were only available for 
those students who attended one of the 32 participating pub-
lic schools. In those public schools, students were 56.7% 
White, 16.3% African American, 15.3% American Indian, 
8.3% Asian, and <1% Pacific Islander. An average of 76% 
of the student population was eligible for free or reduced-
price lunch programs. Approximately 29% qualified for 
Limited English Proficiency (LEP) services and 5% 
received special education.

ELM

ELM is a core (Tier 1) kindergarten mathematics program 
that promotes the development of mathematical proficiency 
in five domains of kindergarten mathematics: (a) counting 
and cardinality, (b) operations and algebraic thinking, (c) 
number and operations in base 10, (d) measurement and 
data, and (e) geometry. Precise mathematics vocabulary is 
also a cornerstone of the ELM program and thus is priori-
tized throughout its lessons. Classroom teachers deliver the 
program’s 120 lessons in whole class settings. Each lesson 
lasts for approximately 45 minutes and provides pedagogi-
cal support for teachers to provide explicit models and 
explanations of new mathematical content and facilitate fre-
quent guided and independent practice opportunities for 
individual students and the group at large. For example, an 
ELM teacher might have an individual student verbalize the 
steps involved for sorting geometric shapes by their differ-
ent attributes. Across the school year, teachers in the treat-
ment condition received four 6-hour professional 
development sessions on (a) evidence-based principles of 
mathematics instruction, (b) the instructional design prin-
ciples of ELM, and (c) ELM’s mathematical content.

Standard District Mathematics Instruction

Mathematics instruction provided in the 61 control class-
rooms consisted of BAU mathematics instruction, as repre-
sented by various published curricula and teacher-developed 
materials (e.g., Texas Mathematics curriculum, Everyday 
Mathematics). Observations revealed that instruction in the 
61 control classrooms primarily focused on whole number 
concepts, followed by concepts of geometry and measure-
ment. This instruction was delivered through a variety of 
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instructional formats, including small groups and whole-
class activities.

Measures

All participating students were administered two mathemat-
ics outcome measures at the start (fall) and end (spring) of 
their kindergarten school year.

TEMA-3.  Mathematics achievement was measured with the 
TEMA-3 (Ginsburg & Baroody, 2003), a 72-item norm-
referenced measure of early number sense. For student-
level reliability, the publisher-reported estimates of internal 
consistency exceed .92, and alternate-form and test-retest 
reliabilities exceeded .80. Concurrent validity coefficients 
with four commonly used tests of mathematics ranged from 
.55 to .91. For classroom-level reliability, the intraclass cor-
relation coefficient (ICC) for classrooms for the pretest 
TEMA-3 was .26, and the average classroom reliability of 
pretest TEMA-3 across all 129 classrooms was .85. Given 
the high level of reliability at the classroom level, we used 
the observed classroom average of the pretest TEMA-3 to 
represent classroom-level effects of the pretest TEMA-3 on 
outcomes in all the multilevel SEMs.

Early numeracy curriculum-based measurement (EN-CBM).  EN-
CBM (Clarke & Shinn, 2004) is a set of four fluency-based 
measures of early number sense: oral counting, number iden-
tification, quantity discrimination, and strategic counting 
with strings of numbers. Prior research reported a predictive 
validity coefficient of r = .81 between an EN-CBM total 
score and the TEMA-3 (Clarke et al., 2015). In this study, the 
total score on the EN-CBM in the fall of kindergarten, as 
computed as the sum across the four measures, served as a 
predictor of TEMA-3 to reduce potential bias from missing 
TEMA-3 data at both pre- and posttest.

Classroom Observations of Student-Teacher Interactions–Math-
ematics (COSTI-M).  Trained research staff used the COSTI-
M (Doabler et  al., 2015; Smolkowski & Gunn, 2012) to 
document the frequency of explicit mathematics instruc-
tional practices. The COSTI-M is a low-inference observa-
tion measure that has been empirically validated across four 
federally funded efficacy trials (Clarke et al., 2015; Clarke 
et al., 2016; Fien et al., 2015; Smolkowski & Gunn, 2012). 
Doabler et  al. (2015) reported predictive validity of the 
COSTI-M with the TEMA-3 (p = .004, Pseudo-R2 = .08) 
and the EN-CBM (p = .017, Pseudo-R2 = .05). The COSTI-
M measures the number and rate of teacher demonstrations, 
individual student practice opportunities, group practice 
opportunities, and teacher-provided academic feedback. 
The latter two were not included in the current study because 
they have not been found to be statistically significant pre-
dictors of students’ mathematics achievement (Doabler 

et al., 2015). Instead, the current study focused on (a) indi-
vidual practice opportunities, given their predictive utility 
of student mathematics outcomes reported in prior research 
(Clements et al., 2013; Doabler et al., 2015; Gersten et al., 
2009), and (b) teacher demonstrations, given that some 
nontrivial amount of teacher-led instruction, such as a 
teacher demonstrating how to decompose a teen number 
into a 10 and some 1s, is clearly necessary for initiating and 
scaffolding individual response opportunities among stu-
dents with MD, especially those in kindergarten.

As operationalized in the COSTI-M, teacher demonstra-
tions represent explicit explanations and demonstrations of 
mathematics content. For example, observers coded a 
teacher demonstration when a teacher used a think-aloud 
technique to overtly describe the attributes of three-dimen-
sional shapes. Individual student practice opportunities 
consist of a single student verbalizing or physically demon-
strating his or her mathematical understanding with and 
without support from the teacher. For example, observers 
would code two separate individual response opportunities 
if a teacher had the same student identify a 2-dimensional 
shape and then verbally state the attributes of the shape. In 
this study, we examined individual practice opportunities 
and teacher demonstrations that occurred within sequences 
of explicit instructional interactions. As previously noted, 
these sequences consisted of an initial teacher’s demonstra-
tion or explanation of mathematical content followed by 
one opportunity for an individual student to practice or a 
series of separate individual practice opportunities.

Trained observers administered the COSTI-M in all 129 
participating kindergarten classrooms. Observations were 
scheduled in advance and occurred in the fall, winter, and 
spring, with approximately 6 weeks separating each observa-
tion round. One observation was planned per classroom for 
each observation round. Observers remained in each class-
room for the duration of mathematics instruction, with an 
average observation lasting 46 minutes (SD = 19 minutes).

Observers received approximately 14 hours of training 
across three sessions. Training focused on direct observa-
tion procedures, kindergarten mathematics instruction, and 
procedures associated with the use of the COSTI-M. 
Interobserver agreement, which was represented by ICCs, 
indicated that observers reliably used the COSTI-M. The 
ICCs ranged from .61 to .99, which based on guidelines 
proposed by Landis and Koch (1977) represented substan-
tial to nearly perfect interobserver reliability. In the analy-
ses reported here, stability ICCs were .40 and .26 for 
individual practice opportunities and teacher demonstra-
tions, respectively, which given two to three occasions of 
observation implies quite modest reliabilities (.62 and .45, 
respectively) for a construct score based on the observed 
rates. As such, we used a latent variable approach to elimi-
nate bias due to low reliability and obtain a more accurate 
estimate of the effects of the rates of teacher demonstrations 
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and individual student practice opportunities on student 
outcomes.

Missing data covariates.  To minimize potential bias from 
missing outcome data, two demographic variables were 
included as missing data covariates (i.e., auxiliary vari-
ables): student LEP status and school State-Type status (two 
dummy indicators, Texas-public and Texas-private or -char-
ter vs. Oregon-public as the omitted reference category). 
Details about the role of the missing data covariates in the 
model are given below.

Statistical Analysis

These analyses extend the previously reported differential 
effectiveness of ELM (Clarke et  al., 2015) by testing the 
extent to which specific ratios of individual student practice 
opportunities to teacher demonstrations predicted class-
room-level differences in the slope of the posttest on pretest 
TEMA-3 regression, regardless of condition (i.e., treatment 
or control) in the larger ELM Efficacy Trial (Clarke et al., 
2015). Specifically, we model quadratic and linear latent 
representations of specific ratios of individual student prac-
tice opportunities to explore whether there is an optimal 
level of individual practice opportunities relative to a teach-
er’s explicit demonstration or explanation of mathematical 
content and the mathematics achievement of students with 
MD. These analytic models do not include the ELM (treat-
ment) vs. standard practice (control) distinction because our 
goal was not to test for mediation but to test whether spe-
cific practice-to-demonstration ratios predict a flatter slope, 
and thus greater differential effectiveness, regardless of the 
condition to which a teacher happened to be assigned as 
part of the original study. Our modeling process consisted 
of two complimentary steps. First, we constructed and 
tested a latent measurement model to characterize differ-
ences among teachers in ratios of individual student prac-
tice opportunities to teacher demonstrations. Second, we 
evaluated the extent to which the latent ratio predicted the 
post on pre slope of classroom-level TEMA-3.

Latent variable models of teacher demonstrations and individual 
practice opportunities.  As is typical for rate variables, the dis-
tributions were positively skewed. Thus, we log-transformed 
the rates (adding a small positive constant as a continuity 
correction) to better approximate the multinormality 
assumptions of latent variable models. Log transformation 
also offers a second important advantage: It transforms a 
ratio of rates (i.e., the number of individual practice opportu-
nities per teacher demonstration) into a difference score of 
log rates, which are easy to create and work with in standard 
SEM software. Because specification of the measurement 
models for teacher demonstrations and individual practice 
opportunities were identical (see Doabler et  al., 2018 for 

details), the logged rates from the repeated classroom obser-
vations were specified as indicators of a single latent vari-
able for each instructional component. All factor loadings 
were constrained to 1 and the indicator intercepts were con-
strained to 0, making the measurement model a random 
intercept model in which the latent factor captures the differ-
ences between teachers in teacher demonstrations and stu-
dent practice opportunities that were stable across the school 
year.

The separate measurement models for teacher demon-
strations and individual practice opportunities were then 
combined into a single model, creating (a) a latent differ-
ence score representing latent logged individual practice 
opportunities minus latent logged teacher demonstrations 
(Raykov, 1992) and (b) a latent intercept score representing 
latent logged teacher demonstrations. For simplicity of 
exposition, we shall refer to the difference score as the ratio.

Ratios of individual practice opportunities.  The last step in the 
modeling process was to combine the two-level student 
achievement model with the latent classroom-level model. In 
this combined model, latent variables representing rates of 
teacher demonstrations and the latent ratio for student prac-
tice to teacher demonstrations, along with classroom-level 
pretest TEMA-3, were used to predict classroom-level post-
test TEMA-3 random slope. To test for the possibility of an 
optimal level of the ratio, we used Mplus 7.31 (Muthén & 
Muthén, 2015) to create latent quadratic versions of the latent 
ratio (Klein & Stoolmiller, 2003). The linear and quadratic 
effects were both used as predictors of the random slope. For 
higher ratios of student practice to teacher demonstrations to 
be predictive of student differential effectiveness, the latent 
ratio would need to have a negative effect on the random 
slope (i.e., make it flatter). If there was also an optimal level 
of the ratio, the quadratic trend of the latent ratio would be 
positive and, in combination with the linear effect, the overall 
fitted relation would resemble a U, J, or backwards J, with the 
very bottom of the U, J, or backwards J representing the opti-
mal ratio of student practice opportunities.

Missing data.  Because rates of missing student pretest data 
on the TEMA-3 were higher for initially low-skilled stu-
dents (as measured by pretest EN-CBM), we attempted to 
account for the missing pretest data to make the missing-at-
random assumption more plausible (Graham, 2009), mini-
mize potential bias, and maximize power. We included two 
auxiliary classroom-level variables with no missingness as 
predictors of outcomes because they were related to rates of 
missingness, outcomes, or both: study site (Oregon vs. 
Texas) and type of school (traditional public vs. private or 
charter public). We also included two auxiliary student-
level variables, LEP status and pretest EN-CBM, as predic-
tors of outcomes, both of which had lower rates of 
missingness than the TEMA-3 and were correlated with 
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missingness, the TEMA-3, or both. We also included all 
student-level pretest data (i.e., TEMA-3 and EN-CBM) in 
the missingness portion of the model, which necessitated 
using a more complicated approach to estimation (i.e., 
Monte Carlo numerical integration; MCNI) but allowed us 
to retain 98% of the student sample.

All SEMs were modeled in Mplus, using robust full-infor-
mation maximum likelihood estimation. As in prior work, we 
first centered pretest TEMA-3 standard scores at the 98th per-
centile value of the pretest TEMA-3 distribution (i.e., 127) 
and rescaled both pretest and posttest TEMA-3 standard 
scores to prevent convergence issues by dividing the pub-
lisher-derived scaled scores (M = 100, SD = 15) by 20 
(Doabler et al., 2018). All p values are two-tailed. Model fit 
was evaluated using a combination of the comparative fit 
index (CFI), the root mean square error of approximation 
(RMSEA), and the chi-square p value. Prior to developing our 
statistical models, we carefully examined univariate distribu-
tions of the instructional rate (i.e., teacher demonstrations and 
individual practice) and student outcome variables, checking 
for outliers and nonnormal distributions. We also inspected 
bivariate scatter plots at both the teacher and student levels to 
check for substantial departures from linearity and outliers.

Results

Missing Data and Descriptive Statistics

Our overall student sample size was 2,708 students nested 
within 129 classrooms. For the two-level models with both 
student and teacher data, we excluded 30 students who were 
missing fall LEP status and 28 students who were missing all 
pretest (i.e., TEMA-3 and EN-CBM) data, resulting in a 
total analytic sample of 2,650 students (98% of students) 
nested in 129 classrooms. For the one-level models with 
only teacher data, we dropped one additional classroom that 
was missing data on both teacher demonstrations and indi-
vidual student practice opportunities, resulting in an analytic 
sample of 128 classrooms (99%). Descriptive statistics for 
student- and teacher-level variables are reported in Table 1. 
For example, across the year, participating classrooms aver-
aged between .51 and .60 individual practice opportunities 
per minute and between .55 and .67 teacher demonstrations 
per minute, with average ratios of individual practice to 
teacher demonstration between 1.12 and 1.24. Note that 
COSTI-M data were not collected in Texas schools during 
Observation 1, resulting in a smaller sample at that point.

Latent Variable Models of Teacher 
Demonstrations and Individual Practice 
Opportunities

Results of analyses evaluating the latent rate models of 
explicit mathematics instruction in isolation are presented 

in detail in Doabler et al. (2018). The latent rate model that 
included a ratio of teacher demonstrations to individual stu-
dent practice opportunities fit the data well (chi-square = 
32.98, df = 32, p = .4190, RMSEA = 0.003, CFI = 0.987, 
TLI = 0.986). Because the model had a fairly large number 
of parameters given the moderate teacher sample size, we 
checked the robustness of the results by estimating a 
Bayesian version of the same model using noninformative 
priors. Posterior medians and 95% credibility intervals were 
very similar to their multiple linear regression counterparts. 
The latent ratio was correlated –0.42 with latent logged 
teacher demonstrations, indicating that classrooms with 
lower ratios tended to have more teacher demonstrations. 
Both types of schools in Texas had significantly fewer 
teacher demonstrations than Oregon public schools. Texas 
charter and private schools had lower latent ratios than 
Oregon public schools, but Oregon and Texas public schools 
were not significantly different. Classroom average pretest 
TEMA-3 was not predictive of either the latent ratio or 
latent logged teacher demonstrations. In sum, the hypothe-
sized teacher-level model fit the data well, so we proceeded 
to modeling the quadratic and linear effects of the latent 
ratio.

Ratios of Individual Practice Opportunities

For our hypothesized model with a fixed intercept and ran-
dom slope, the quadratic trend for the latent ratio was very 
small, close to 0, and not significant (results not presented). 
That is, within the observed data, we were unable to iden-
tify a point at which a higher ratio no longer increased or 
even decreased mathematics outcomes (i.e., the hypothe-
sized optimal ratio). Consequently, we dropped the qua-
dratic effects and focused on the linear effects of the latent 
ratio. The linear effect was positive and significant, indicat-
ing that higher latent ratios of practice to demonstrations 
flattened the random slope, providing evidence of differen-
tial achievement benefitting students with MD. As a sensi-
tivity analysis, we checked for an interaction between the 
treatment condition and the latent ratio to ensure that the 
effect was the same in both ELM and control conditions. 
The interaction term was not significant, indicating that the 
effect of the latent ratio was not dependent on the ELM pro-
gram. Full results of this model are shown in Table 2.

To contextualize these findings, we used the model param-
eters provided in Table 2 to compute raw and standardized 
effect sizes. We considered students with MD with a range of 
very low to low pretest standard scores of 57, 64, 68, and 75 
on the TEMA-3, which correspond to the 2nd, 6th, 10th, and 
20th percentile values in our data. To facilitate interpretabil-
ity, we considered, as a reference, typical teachers in Oregon 
who had an observed rate of teacher demonstrations per min-
ute of .45 (i.e., about 1 demonstration every 2 minutes). 
Given that there are practical limits on the number of student 
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practice opportunities that can be completed in a minute, we 
computed the difference in student gains on the TEMA-3 for 
a classroom that facilitated three individual practice opportu-
nities for every teacher demonstration (i.e., 3:1 ratio) com-
pared to a classroom that provided one practice opportunity 
for every teacher demonstration (i.e., 1:1 ratio). The differ-
ences in gains for pretest scores of 57, 64, 68, and 75 are, 
respectively, 9.4, 8.4, 7.9, and 7.0 raw points on the TEMA-3. 
Given the normative SD of 15, these result in Hedges’ g effect 
sizes of .63, .56, .53, and .47, respectively, which represent 
medium to medium-large effects by most standards. In other 
words, if teachers were to facilitate three individual student 
practice opportunities for every teacher demonstration, the 
end-of-year mathematics achievement for the initially lowest 
scoring students would benefit substantially. Based on our 
data, facilitating three individual student practice opportuni-
ties for every teacher demonstration represents a feasible 
amount of practice that provides substantial benefits with 
respect to gains in mathematics achievement for students 
with MD.

Discussion

The purpose of the present study was to explore whether 
there was a Goldilocks effect for the ratio of individual stu-
dent practice opportunities to teacher demonstrations during 
Tier 1 mathematics instruction. We did not find evidence for 
a Goldilocks effect: The quadratic effect of the latent ratio 
was small and not significant. In the absence of a Goldilocks 
effect, we explored whether there was a simpler linear rela-
tionship (i.e., more is better) in which a particular number of 
individual practice opportunities for every teacher demon-
stration predicted mathematics achievement for students 
with MD. In this analysis, the latent ratio had a strong effect 
on the random slope, suggesting more frequent individual 
practice opportunities per teacher demonstration increases 
end-of-year mathematics achievement for students with 
MD. Specifically, for students who are initially low scoring 
at the start of the kindergarten school year, providing three 
individual student practice opportunities for every explicit 
teacher demonstration or explanation provides substantial 
benefits on gains in mathematics achievement. For example, 

Table 1.  Descriptive Statistics for Student- and Teacher-Level Variables in the Two-Level Models.

Variable Occasion N M SD Min Max Skew Kurt

Student-level variables
  LEP status 2,650 0.29 0.45 0 1 0.93 −1.13
  EN-CBM pretest 2,337 75.58 51.79 0 261 0.62 −0.28
  TEMA-3 pretest 2,212 90.29 17.06 55 145 0.17 −0.28
  TEMA-3 posttest 2,383 101.41 14.73 55 145 −0.11 0.16
Teacher-level variables
  Private 129 0.25 0.43 0 1 1.18 −0.62
  Texas 129 0.26 0.44 0 1 1.13 −0.73
  Individual practice opportunities (per minute) Observation 1 59 0.58 0.46 0.00 1.85 1.08 0.69

Observation 2 127 0.60 0.45 0.03 3.06 1.86 7.08
Observation 3 128 0.51 0.40 0.00 2.00 1.42 2.42

  Teacher demonstrations (per minute) Observation 1 59 0.67 0.41 0.09 2.08 1.10 1.47
Observation 2 127 0.57 0.44 0.00 2.38 1.84 4.19
Observation 3 128 0.55 0.40 0.00 2.17 1.35 2.04

  Individual practice–teacher demonstration ratio Observation 1 59 1.12 0.91 0.26 4.64 1.69 2.93
Observation 2 127 1.24 0.75 0.12 4.32 1.55 3.36
Observation 3 128 1.12 0.62 0.16 3.63 0.93 1.28

  Individual practice–teacher demonstration log-
transformed difference

Observation 1 59 −0.16 0.71 −1.33 1.53 0.50 −0.73
Observation 2 127 0.04 0.60 −2.12 1.46 −0.39 0.89
Observation 3 128 −0.06 0.61 −1.82 1.29 −0.47 −0.27

  Log-transformed rate of teacher demonstrations Observation 1 59 −0.18 0.44 −1.09 0.85 −0.07 −0.24
Observation 2 127 −0.32 0.48 −1.39 0.97 0.33 0.13
Observation 3 128 −0.34 0.47 −1.39 0.88 0.20 −0.38

  Log-transformed rate of individual practice 
opportunities

Observation 1 59 −0.33 0.54 −1.39 0.74 0.02 −0.66
Observation 2 127 −0.28 0.49 −1.28 1.20 0.00 −0.36
Observation 3 128 −0.39 0.50 −1.39 0.81 0.07 −0.24

Note. EN-CBM = early numeracy curriculum-based measure; LEP = dichotomous Limited English Proficiency indicator variable; N = sample size at 
the relevant level of the model; Private = dichotomous charter and private school indicator variable; TEMA-3 = Test of Early Mathematics Ability–3rd 
Edition; Texas = dichotomous state indicator variable. COSTI-M data were not collected in Texas schools during Observation 1, resulting in a lower 
sample size.
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our model implies that students at the 2nd and 20th percen-
tiles on fall mathematics skill in classrooms that provide a 
3:1 student practice to teacher demonstration ratio had 
Hedges’ g effect sizes on the TEMA-3 of .63 and .47, respec-
tively, compared to similarly performing students in class-
rooms with fewer practice opportunities per demonstration.

While preliminary, our findings suggest there may be 
practical value in teachers trying to facilitate about three 
individual response opportunities for each demonstration or 
explanation they provide, particularly when their instruc-
tion includes students with MD. However, it is important to 
note that our results do not address the impact that even 

more frequent individual practice has on student mathemat-
ics achievement, such as four or five practice opportunities 
for each teacher demonstration. It is possible that, if teach-
ers had provided more practice opportunities, we would 
have found even higher levels of our targeted student math-
ematics outcomes. Nevertheless, the present results are 
important because they suggest that providing up to three 
practice opportunities can be an effective use of classroom 
time, especially for students with MD. Though this finding 
may be subject to qualification along a number of critical 
dimensions, such as the quality of student practice, it pro-
vides a logical starting point for future research and some 

Table 2.  Two-Level Models of TEMA-3 Outcome Model.

Effect Variable 1 Variable 2 Est. SE p

Student level
  Regressions TEMA-3 posttest ON LEP status −0.074 0.033 0.024
  EN-CBM pretest ON LEP status −0.192 0.033 0.000
  TEMA-3 pretest 0.954 0.016 0.000
  Covariance EN-CBM pretest WITH TEMA-3 posttest 0.037 0.005 0.000
  Means TEMA-3 pretest −1.919 0.043 0.000
  Intercepts EN-CBM pretest 1.859 0.033 0.000
  Variances TEMA-3 pretest 0.751 0.028 0.000
  Residual variances TEMA-3 posttest 0.162 0.007 0.000
  EN-CBM pretest 0.245 0.011 0.000
Classroom level  
  Regressions Random slope ON Demonstration rate −0.037 0.098 0.703
  Latent difference −0.162 0.044 0.000
  Texas 0.016 0.044 0.709
  Private −0.017 0.039 0.672
  TEMA-3 pretest class average 0.004 0.002 0.072
  Demonstration rate ON Texas −0.282 0.071 0.000
  Demonstration rate ON Private −0.199 0.085 0.020
  Demonstration rate ON TEMA-3 pretest class average 0.006 0.004 0.139
  Latent difference ON Texas 0.147 0.103 0.154
  Private 0.323 0.12 0.007
  TEMA-3 pretest class average −0.004 0.006 0.539
  TEMA-3 posttest ON Texas 0.191 0.071 0.007
  Private 0.035 0.049 0.472
  TEMA-3 pretest class average 0.012 0.004 0.003
  Covariance Difference WITH Demonstration rate −0.022 0.017 0.200
  Intercepts TEMA-3 posttest 6.186 0.036 0.000
  Individual practice rate −0.334 0.053 0.000
  Demonstrate rate −0.201 0.04 0.000
  Random slope 0.628 0.02 0.000
  Residual variances Individual Practice 1–3 0.151 0.018 0.000
  Demonstrations 1–3 0.165 0.019 0.000
  Difference 0.101 0.028 0.000
  Demonstration rate 0.038 0.018 0.035
  Random slope 0.005 0.001 0.000

Note. Demonstration rate = rate of teacher demonstrations; EN-CBM = early numeracy curriculum-based measure; latent difference = latent 
difference between logged individual student practice opportunities and logged teacher demonstrations; LEP = Limited English Proficiency indicator 
variable; private = charter and private school indicator variable; TEMA-3 = Test of Early Mathematics Ability–3rd Edition; Texas = school district 
indicator variable.
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much-needed insight into the types of practical questions 
teachers have about intensifying mathematics instruction 
for students with MD.

Limitations

Several limitations should be considered when interpreting 
our results. First, there was a limited number of observa-
tions conducted per classroom. Although three observations 
per classroom exceeds the number of observations typically 
conducted in observational research (Pianta & Hamre, 
2009) and large-scale efficacy trials (Clements et al., 2013), 
additional data may have provided a more robust estimate 
of student practice. In the larger ELM efficacy trial, the 
number of observations conducted in each classroom was 
based on available resources. Second, a total of 16 class-
rooms reported providing bilingual instruction during the 
school day. While the mathematics instruction in these par-
ticular classrooms was delivered in English, we found no 
statistically significant differences between bilingual and 
monolingual classrooms with respect to rates of individual 
practice opportunities (p = .082). In addition, LEP was 
included in the model as a predictor of outcomes, primarily 
as a missing data covariate, but this also suggests that lan-
guage differences did not interfere with the modeling.

Third, our analysis did not include teachers’ provision of 
academic feedback. While academic feedback is an effec-
tive method for providing students with information on 
their performances with mathematical tasks, it was not con-
sidered in the current study because prior research with the 
COSTI-M suggests that it is highly correlated with individ-
ual practice opportunities (Doabler et al., 2018). This cor-
relation is likely a function of how academic feedback is 
operationalized by the COSTI-M, in which academic feed-
back is coded after a teacher-prompted student practice 
opportunity. Fourth, our observation system captures the 
frequency of student practice but does not document its 
quality. Although investigation of instructional quality data 
is highly important (Pianta & Hamre, 2009), the principal 
investigators of ELM Efficacy Trial prioritized the 
COSTI-M over a high-inference observation system 
because it directly maps onto the ELM program’s theory of 
change, which specifies that frequent, appropriately 
designed practice mediates ELM’s impact on student math-
ematics achievement. Nonetheless, future research should 
include instructional quality data as the potential utility of 
student practice may depend on both its quantity and 
quality.

Finally, the present study did not differentiate practice 
opportunities by mathematical content or practice type 
(e.g., verbalizations vs. use of concrete mathematics materi-
als). Instead, we examined instructional content overall 
(i.e., across both complex and foundational mathematics 
concepts and skills) and practice as a single category. This 

decision was based primarily on how the observation data 
were collected. However, it is plausible that more complex 
content, such as solving word problems, requires more fre-
quent practice opportunities.

Implications for Research and Practice

While preliminary, our findings have implications on sev-
eral interrelated fronts. First, the finding that three individ-
ual student practice opportunities for every teacher 
demonstration led to higher levels of end-of-year mathe-
matics achievement for initially low-skilled students aligns 
with previous research (Clements et  al., 2013; Morgan 
et al., 2015). While practice is important for all students, it 
is essential for students who receive little exposure to math-
ematics prior to school entry (Barnes et  al., 2016; Clarke 
et  al., 2015). As such, a recommendation is that teachers 
engage students who enter kindergarten at risk for MD in 
frequent opportunities to practice with foundational mathe-
matics content. If judiciously integrated with overt teacher 
demonstrations, practice can help these at-risk students 
learn new mathematical content and transfer acquired 
knowledge and skills to solve novel mathematics problems. 
However, we recognize that there are practical limits on the 
extent to which a teacher can adjust core mathematics 
instruction to provide a larger number of individual practice 
opportunities for every explanation or demonstration. For 
instance, some amount of teacher explanation is likely 
needed to initiate individual practice, and there are likely 
temporal constraints on how long a teacher can spend on a 
given activity (e.g., due to the school’s schedule and fluc-
tuations in student interest and willingness to practice).

Our results also have implications for designing profes-
sional development for teachers who work with students 
with MD. Providing three individual practice opportunities 
for every demonstration seems like a feasible goal for teach-
ers to strive for in their core mathematics instruction. As 
such, it seems reasonable that teachers could learn how to 
increase the amount of individual practice that students 
with MD receive in general education classrooms. Finally, 
we encourage researchers to further investigate student 
practice opportunities. Observation data analyzed in the 
current study were collected in Tier 1 kindergarten mathe-
matics settings. Future research should consider expanding 
this line of research into other instructional formats (e.g., 
small group settings) and grade levels. Exploring for a 
Goldilocks effect for student practice in other areas may 
help teachers better support students with MD in becoming 
mathematically proficient.

Conclusion

The current study represents one of the first efforts to examine 
for a Goldilocks effect for the ratio of individual student 
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practice opportunities to teacher demonstrations during Tier 1 
mathematics instruction. While evidence for such an effect did 
not surface, our results, while preliminary, did indicate a “more 
is better” finding, suggesting that students with MD benefit 
most when core mathematics instruction offers higher ratios of 
student practice to teacher demonstrations relative to lower 
ratios. More frequent, explicitly designed practice may allow 
students with MD to gain a deeper and more lasting under-
standing of foundational mathematics concepts and skills.
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