
Universal Journal of Educational Research 6(12): 2942-2951, 2018 http://www.hrpub.org
DOI: 10.13189/ujer.2018.061230

Software Quality Methodology to Train Engineers as
Evaluators of Information Systems Development Tools

Laura Silvia Vargas Pérez1, Agustín Francisco Gutiérrez Tornés2,*, Edgardo Manuel Felipe Riverón3,
Ana María Soto Hernández1, Norma Ivone Peña Galeana2

1Investigador del Instituto Tecnológico de Ciudad Madero, Tamaulipas, México
2Investigador de la Universidad Autónoma de Guerrero, México

3Investigador del Centro de Investigación en Computación, Instituto Politécnico Nacional, México

Copyright©2018 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the
Creative Commons Attribution License 4.0 International License

Abstract To have software tools that facilitate the
rapid development of applications and generate
information systems is a requirement in a globalized
world. Worldwide in the engineers training field it is basic
to apply measurements and evaluations to the rapid design
tools used to obtain applications faster and generate
quality information systems in order to determine the best
for this purpose. This paper revises MECRAD and
proposes its introduction in the formation programs of
engineers which is a methodology for the technical
evaluation of the visual environments tools to generate
information systems where this type of commercial
products are evaluated using as reference basic elements
of international standards. With this methodology one can
evaluate and select in an effective and easy way, those
tools and development platforms best suited to create
applications in visual environments, in order to generate
information systems with quality and sustainability. It is
useful for higher education institutions, organizations,
companies and system’s end users, among others.

Keywords Software Quality, Technical Evaluation
Qualimetric Model, Visual Environment, RAD Tools

1. Introduction
To improve any software, it is necessary to measure

attributes through a significant set of metrics that provide
indicators that lead to a technical quality assessment of the
product. By carrying out this process through a software
qualimetric model, it is more probable that one will access
the requirements to comply. The way in which the quality
characteristics have been defined in most standards models

does not allow their direct measurement, so the
establishment of metrics to correlate these features in a
software product is needed.

The first step in designing a software qualimetric model
is the determination of the relevant quality properties.
Usually they are described through a hierarchical tree
structure where the characteristics appear at the highest
level, the sub-characteristics in the intermediate and the
attributes in the lowest. Its goal is to facilitate the
qualitative and quantitative evaluation of these components.
[1] [2] [3] [4].

At an international level, tools to facilitate the creation of
new information systems for the most diverse applications
periodically emerge. It is imperative to identify and
evaluate these tools as quick as possible, to determine
whether they meet the quality requirements established
globally or by the software houses that produce those [5],
[6], [7], [8].

1.1. Objectives

When training world-class software and systems
engineers, it is necessary to carry out evaluations of various
products. Therefore it is essential to perform the
evaluations of software applications designing and
developing tools to determine, which are the best for the
programmers to choose to work on. Actually, even some
jobs proposals are focused on the software development
processes evaluation.

As an example of such particular instruments we take the
RAD (Rapid Application Development) tools, which are
commonly part of an IDE (Integrated Development
Environment) that is a very popular framework among
application programmers for creating information systems.
So the training of software or informatic engineers, with a
wide knowledge and manipulation of qualimetric models
and tools as those that perform the evaluation of RAD tools
for the generation of information systems of quality in

 Universal Journal of Educational Research 6(12): 2942-2951, 2018 2943

order to select the most suitable has become today and
updated technical necessity

That is the reason why, in this case, this article proposes
the introduction in high level engineering programs of the
training and manipulation of MECHDAV (Quality
Evaluation of Application Development Tools in Visual
Environments) and MECRAD (Rapid Applications
Development Quality Evaluation Model) which
particularly allow a comparative analysis of different tools
of this type. They are based upon the following standards:
IEEE 1061 (Software Quality Metrics aMethodology) and
ISO/IEC 9126 (Software Product Quality), 14598
(Software Evaluation Process) and 25000
(SQuaRE-Software Quality Requirements and Evaluation).
MECA (Modelo para la Evaluación de la Calidad), MACS
(Metodología para el Aseguramiento de la Calidad del
Software) and SUMI (Software Usability Measurement
Inventory) models were also taken as reference for its
stablishment [2] [3] [6] [7] [8] [9] [10].

1.2. State of the Art and Related Works

During the last three decades a varied type of software
quality models have been proposed. They are very useful,
but in turn very generic, so they should be adapted or
reconfirmed in order to use them to articulate more
particular and concrete applicable models [21] [22] [23]
[24] [25] [26] [27] [28] [29].

Regarding RAD we have no knowledge of the existence

of any other evaluation model or tool but MECHDAV and
MECRAD. These model and tool have been also used by
others researchers and academics in their work in different
areas [16] [17] [18] [19] [20].

2. Methodology
A proper methodology was generated (with models,

processes, techniques and tools), that allows making
comparisons and carrying out RAD tools technical
evaluations, which is briefly describe ahead. The operation
method is quite simple and the evaluators just must fulfill
the data asked for by the program. The rest of the process is
fully atomized. The complete evaluation process is carried
out and culminates with a technical opinion of the quality
reached by the product, together with the
recommendations and criteria to be followed. This result
can be analyzed by those interested according to the
purposes of the evaluation, for example acquiring a
product.

2.1. Evaluation Process

When evaluating software quality, first one establishes
the quality requirements model under which the evaluation
is specified, designed and executed. The evaluation
activities are then indicated in a process. In this proposal it
comprises five activities as it is shown in Figure 1.

Figure 1. MECRAD process architecture

2944 Software Quality Methodology to Train Engineers as Evaluators of Information Systems Development Tools

2. 2. Compacting MECRAD Pattern

MECRAD´s complete model is shown in Figure 2.
Since one of the purposes of this technical model is to
provide a range for comparison for any kind of user
(expert or beginner) the metrics suggested for beginner
users are defined in a subset of this complete model, and
are shown in Figure 3.

2.3. Metrics and Evaluation Scale Definition

The quantifiable attributes must be measured,
quantitatively, through metrics. The result, the value
measured, can then be mapped on a scale. This value does
not show in itself the level of satisfaction of the
requirements. For this purpose the scale is divided into

ranges corresponding to the different degrees of
satisfaction. There are several ways to do this. For example
one can simply divide the scale in two categories:
unsatisfactory and satisfactory, or create a scale with five
levels (mandatory categories) for an evaluated product:
levels A, B, C, D and E as shown in Figure 4 where level A
is the best case, the one that would be the ideal level to
achieve. Level B is considered achievable within the
reasonable use of the available resources. Level C indicates
the control point, the one should be maintained so that the
system does not further deteriorate. Level D is the user’s
acceptance limit value. Finally, the worst case is level E,
where the product does not meet requirements minimum
quality.

Figure 2. MECRAD`s complete model

 Characteristic/ Sub Characteristic/ Attribute/ metric

1.1.1.1. Functionality/ Completeness/ Total contain/ metric
1.2.1.1. Functionality/ Consistency/ Format of components and functional elements uniformity/ metric
1.2.2.1. Functionality/ Consistency/ Processing return uniformity/ metric
1.2.3.1. Functionality/ Consistency/ Vocabulary and symbols used conventions uniformity/ metric
1.3.1.1. Functionality/ Correction/ Correct operation / metric
1.3.2.1. Functionality/ Correction/ Correct utilization of language / metric
1.3.3.1. Functionality/ Correction/ Correspondence of descriptions with objects / metric
1.4.1.1. Functionality/ Interoperability/ Components and interfaces exchange/ metric
1.4.2.1. Functionality/ Interoperability/ Data exchange/ metric
1.5.1.1. Functionality/ Standardization/ Symbols standardization/ metric
1.5.2.1. Functionality/ Standardization/ Vocabulary standardization/ metric
2.1.1.1. Reliability/ Maturity/ Time between failures/ metric
2.2.1.1. Reliability/ Recoverability/ Options to recover itself / metric
2.3.1.1. Reliability/ Tolerance of errors or failures/ Degraded processes/ metric
2.3.2.1. Reliability/ Tolerance of errors or failures/ Errors processing/ metric
3.1.1.1. Usability/ Attraction/ Attractive interaction/ metric
3.1.2.1. Usability/ Attraction/ Successful recovery/ metric
3.1.3.1. Usability/ Attraction/ Time of operation/ metric
3.2.1.1. Usability/ Diffusion/ Amplitude/ metric
3.2.2.1. Usability/ Diffusion/ Frequency of operation/ metric
3.3.1.1. Usability/ Learnability/ Demo/ metric
3.3.2.1. Usability/ Learnability / Demo efficiency/ metric
3.3.3.1. Usability/ Learnability / Tutorial / metric
3.3.4.1. Usability/ Learnability / Tutorial efficiency/ metric
3.3.5.1. Usability/ Learnability/ Documentation/ metric
3.4.1.1. Usability/ Understandability/ Adequate user interface/ metric
3.4.2.1. Usability/ Understandability/ In line aid/ metric
3.4.3.1 Usability/ Understandability/ Terrminology in agreement to user / metric
3.5.1.1. Usability/ Operability/ Help utility/ metric
3.5.2.1. Usability/ Operability/ Help operability/ metric
4.1.1.1 Efficiency/ Use of time/ Efficiency in time/ metric
4.2.1.1. Efficiency/ Use of resources/ Efficiency in resources/ metric
4.3.1.1. Efficiency/ Scalability / Availability/ metric
5.1.1.1. Portability/ Instalability/ Installation module/ metric
5.1.2.1. Portability/ Instalability/ Documentation of installation module/ metric
5.1.3.1. Portability/ Instalability/ Configuration module/ metric
5.1.4.1. Portability/ Instalability/ Documentation of configuration module/ metric
5.2.1.1. Portability/ Adjustability/ Independence of the hardware environment/ metric
5.2.2.1. Portability/ Adaptability/ Independence of software environment/ metric
6.1.1.1. Quality in use/ Effectiveness/ Tasks effectiveness/ metric
6.1.2.1. Quality in use/ Effectiveness/ Tasks performance/ metric
6.2.1.1 Quality in use/ Productivity/ Productive proportion/ metric
6.2.2.1. Quality in use/ Productivity/ User relative efficiency/ metric
6.3.1.1 Quality in use/ Satisfaction/ User favorite psychological effects/ metric

 Universal Journal of Educational Research 6(12): 2942-2951, 2018 2945

Figure 3. Subset of the MECRAD model suggested for the evaluation of the product by a novice user

Figure 4. Metric measurement scale ranges and ranks.

Since a metric is defined as "a quantitative measure of the degree to which a system, component or process possesses a
given attribute " [5], in order to properly measure the different tool performance one must follow these guidelines:
• Observation of the software performance in order to evaluate the difference between the current execution results and

the requirements specification (a view on test and quality validation).
• Unexpected occurrences on performance time or resources utilization during the software operation.

 1.3.1.1. Functionality/ Correction/ Correct utilization of language / metric
3.1.3.1. Functionality/ Correction/ Correspondence of descriptions with objects / metric
1.5.1.1. Functionality/ Standardization/ Vocabulary standardization/ metric
1.5.2.1. Functionality/ Standardization/ Symbols standardization/ metric
3.1.1.1. Usability/ Attraction/ Attractive interaction/ metric
3.2.1.1. Usability/ Diffusion/ Amplitude/ metric
3.2.2.1. Usability/ Diffusion/ Frequency of operation/ metric
3.3.1.1. Usability/ Learnability/ Demo/ metric
3.3.2.1. Usability/ Learnability / Demo efficiency/ metric
3.3.3.1. Usability/ Learnability / Tutorial / metric
3.3.4.1. Usability/ Learnability / Tutorial efficiency/ metric
3.3.5.1. Usability/ Learnability/ Documentation/ metric
3.4.1.1. Usability/ Understandability/ Adequate user interface/ metric
3.4.2.1. Usability/ Understandability/ In line aid/ metric
3.4.3.1 Usability/ Understandability/ Terrminology in agreement to user / metric
3.5.1.1. Usability/ Operability/ Help utility/ metric
3.5.2.1. Usability/ Operability/ Help operability/ metric
5.1.1.1. Portability/ Instalability/ Installation module/ metric
5.1.2.1. Portability/ Instalability/ Documentation of installation module/ metric
5.1.3.1. Portability/ Instalability/ Configuration module/ metric
5.1.4.1. Portability/ Instalability/ Documentation of configuration module/ metric
6.3.1.1. Quality in use/ Satisfaction/ User favorite psychological effects/ metric

VALUE %FULFILLMENT MEANING / INTERPRETATION RANK

1.0 90-100 Excellent / Always A
0.8 70-89 Satisfactory / Almost always B
0.6 50-69 Acceptable / Regularly C
0.4 30-49 Deficient / Sometimes D
0 0-29 Unacceptable / Never or rare times E

2946 Software Quality Methodology to Train Engineers as Evaluators of Information Systems Development Tools

Therefore, evaluating all attributes belonging to a given
sub characteristic one obtains an average value that
evaluates that sub characteristic in particular. Then,
evaluating all the sub characteristics of a given
characteristic the user calculates another average value that
evaluates that characteristic in particular. Finally,
evaluating all the characteristics a new average value that
corresponds to the software product as a whole is
calculated. The mathematical method is the following:
Quality indicator of the product t:

𝐼𝐼𝐶𝐶𝑡𝑡 =
∑ 𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗𝑛𝑛
𝑗𝑗=

𝑛𝑛

Where:
ICCj is the quality indicator of the characteristic j
n is the number of characteristics in the model

Quality indicator of the characteristic j:

𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗 =
∑ 𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶𝑘𝑘𝑚𝑚
𝑗𝑗=

𝑚𝑚

Where:
ICSCk is the quality indicator of the subcharacteristic k
m is the number of subcharacteristics within the

characteristic k
Quality indicator of the subcharacteristic k:

𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶𝑘𝑘 =
∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥𝑘𝑘
𝑥𝑥=

𝑘𝑘

Where:
VAAx is the assigned value to the attribute x
K is the number of attributes within the subcharacteristic

k.
Thus, when applying the evaluation format you use three

types of metrics:
• Direct instructions to the user for carrying out a specific

task, taking note of certain indicators (for example: time,
number of occurrences of certain event, etc.) The result
will be a quantity within the proposed range.

• Direct questions to the user to determine the existence of
an essential attribute within the evaluated tool. The
result will be an affirmative () or a negative (0) one.

• Metrics that depend on the value of certain indicator
derived from the realization of a certain task. They
serve to calculate a set of parameters with values
within the proposed interval.

In order to support the model, forty-four metrics were
documented and developed, just as it appears in the
formats in Figure 5 and 6. Another eleven metrics were
adapted from SUMI [0], making a grand total of fifty-five
metrics involved.

Figure 5. Documentation of a model metric

 Characteristic: 1. Functionality.
Sub characteristic: 1.2 Consistency.
Attribute: 1.2.3. Uniformity in processing return.

Metric: 1.2.3.1 Proportion of adequate functions re-establishment from any depth
level.

Method: Knowledge of functional performance.
Formula : X = 1 - (A / B)

 A = Number of functions changed after introducing operations during a
specific period.

 B = Number of specific functions.
Interpretation: Stability of functional specifications objective
 0 < = X < = 1; the closer to 1 the better
Source of reference: ISO/IEC 9126, MECHDAV

 Universal Journal of Educational Research 6(12): 2942-2951, 2018 2947

Figure 6. Automation example within MECRAD

Recording the partial and total results of the software
quality evaluation is not an easy task. Simple and
understandable formats must be chosen to obtain a quick
and reliable assessment of their measurement values.
Therefore checklists, simple relationship tables and control
matrices are implemented. Checklists are questionnaires
where assertions must confirmed by selecting one of the
values given in a scale. These questions are in principle
made in such a way that they generate ideas (valuations).
They are used to control each separate phase or all the work
to be done. A control matrix is a complementary tool
related to all aspects of a process that serves to summarize
the content and the development of a whole system. It
usually includes a control variable (what is measured), the
measurement form, place and time, the base standard, who
does the analysis, who acts and how to act. The control
matrices are important for the design, implementation and
maintenance of the control system of the obtained results.

3. Results Discussion

The case studies chosen for the tests of the RAD tools
are the commercial visual platforms Visual Studio.Net, Net
Beans and Eclipse.The results obtained through the
application of the MECRAD tool are the following:

VisualStudio.Net obtained a general average evaluation
of 0.89 (89%) for beginners and a punctuation of 0.88
(88%) among experts (See Figure 7). Its weakness lies in
portability. This is comprehensible, due to its dependence
upon Microsoft´s Windows platform. Its quality
classification level is Satisfactory, without
recommendations, since it does not require modifications in
its design (only updating) and it is accepted thoroughly.

The results obtained from the other two products in
their evaluation, have only 2% of variability. The level of
quality classification obtained in these development
platforms was Excellent for Net Beans (See Figure 8) and
Eclipse (See Figure 9).

To provide a more realistic assessment the final result
is the combination of different users’ evaluation of the
same type (expert or basic). This will allow a more
realistic final technical report. It is presented in Figure 10.

2948 Software Quality Methodology to Train Engineers as Evaluators of Information Systems Development Tools

Figure 7. Final technical evaluation report of the Visual Studio.NET environment version 20environment version 4.4

Figure 8. Final technical evaluation report of the Net Beans visual environment version 8.0

 Universal Journal of Educational Research 6(12): 2942-2951, 2018 2949

Figure 9. Final technical evaluation report of the Eclipse visual environment 7.0

Figure 10. Average report

2950 Software Quality Methodology to Train Engineers as Evaluators of Information Systems Development Tools

4. Conclusions and Recommendations
Any of the three visual environment system mentioned

above are considered technically advisable for application
developments. For that reason, if one requires a decision
about the acquisition of some of these environments, one
must consider other important parameters, such as cost,
platform, systems interacting within the environment, etc.

The model does not contemplate these parameters, since
it is limited to the technical quality evaluation of the visual
tools themselves. MECHDAV AND MECRAD are
already commercially in operation, therefore the
information concerning its development and its source
code is not available

As a future work, it would be advisable to make periodic
revisions of the model for its improvement, attempting for
example to introduce the evaluation of tools in the visual
WEB sites environment.

As a conclusion we once more state that the inclusion of
the training and manipulations of this kind of quality tools
will enrich the professional stock of future system and
software engineers.

Acknowledgments
Finally, the authors wish to thank the Center of

Computer Research (CIC) and the National Polytechnic
Institute (IPN), the Autonomous University of Guerrero
(UAGro) and the Technological Institute of Ciudad
Madero (ITCM), all of them located in Mexico, for their
support in carrying out this research.

REFERENCES
[1] R. Pressman, Ingeniería de Software. Un enfoque práctico,

McGraw Hill/Interamericana de España, S.A.U. Séptima
Edición, 2005.

[2] A. Gutiérrez, Modelo de evaluación para el aseguramiento
de la calidad del Software, Modelo MECA. Instituto
Politécnico Nacional, 2003.

[3] A. Gutiérrez, Metodología para el aseguramiento de la
calidad del Software MACS”. Instituto Politécnico Nacional,
1999.

[4] ISO924, Ergonomics of human-system interaction; Part 5
Guidance on World Wide Web user interfaces; and Industry
Standards for User Centered Design, October 2000,
www.usability.serco.com/trump, 2008.

[5] IEEE60, Software Engineering Standards Collection,
Standard Glossary of Software Engineering Terminology.
IEEE, Std. 60.2-90, 1994.

[6] IEEE06:992, Software Quality Metrics Methodology, IEEE
06 Standard for a Software Quality Metrics Methodology,
1992.

[7] ISO/IEC926, Software Product Evaluation; Parte : Quality,
Characteristics and Guidelines for their Use; Parte 2:
Métricas externas para una validación de la calidad de
software; Parte 3: Métricas externas para una validación de
la calidad de software, 1997.

[8] ISO/IEC4598, Information Technology, Software Product
Evaluation. (Parts, 2, 3, 4, 5), 1998.

[9] ISO/IEC 25000 “SQuaRE System and Software Quality
Requirements and Evaluation”, JTC C/SC7/ WG6 N2246.
Plan y configuración de los requerimientos de calidad de
software y evaluación. SQUARE2000, 2005.

[10] SUMI 2000, Human Factors Research Group, 2000. SUMI:
Software Usability Measurement Inventory, European
Directive on Minimum Health and Safety Requirements for
Work with Display Screen Equipment (90/270/EEC).
Ireland, 2000.

[11] M. Moreno, Aplicación de las Métricas de Calidad del
Software en la Evaluación Objetiva de Gramáticas
Independientes de Contexto Inferidas. I Simposio Avances
en Gestión de Proyectos y Calidad del Software. Salamanca,
España, pp. 209-220, 2004.

[12] L. Olsina, Medición y Evaluación de Calidad en Uso: Un
Caso de Estudio para una Aplicación E-Learning. 9º Taller
Iberoamericano de Ingeniería de Requisitos y Ambientes de
Software, La Plata, Argentina, pp. 37-330, ISBN-0:950-34-
0360, 2006.

[13] M. Piattini, Métricas para la Evaluación de Modelos de
Proceso de Negocio. 9º Taller Iberoamericano de Ingeniería
de Requisitos y Ambientes de Software, La Plata, Argentina,
pp. 49-432, ISBN-0:950-34-0360; pp. 49-43,
ISBN-0:950-34- 0360, 2006.

[14] O. Pastor, Evaluación de la Usabilidad en un Entorno de
Arquitectura Orientadas a Modelos. 9º Taller
Iberoamericano de Ingeniería de Requisitos y Ambientes de
Software, La Plata, Argentina, pp. 33-344,
ISBN-0:950-34-0360, 2006.

[15] L.S. Vargas-Pérez, A.F. Gutiérrez- Tornés, E.M.
FelipeRiverón. MECRAD: Model and Tool for the
Technical Quality Evaluation of Software Products in Visual
Environment. ICCGI5.2, 4th International Conference on
Wireless and Mobile Communications (ICWMC 2008) and
3rd International MultiConference on Computing in the
Global Information Technology (ICCGI 2008). Product
Number E3275. BMS Part Number CFP0840B-CDR. ISBN
978-0-7695-3275-2. Library of Congress Number
200892637 pp. 07-2. IEEE Computer Society. IARIA.
Athens, 2008.

[16] Villalba, M. T., Fernandez-Sanz, L., & Martínez, J. J. ;
Empirical support for the generation of domain-oriented
quality models. IET software, 4(1), 1-14, England, 2010.

[17] Villalba, M. Teresa, et al.; Software quality evaluation for
security COTS products. International Journal of Software
Engineering and Knowledge Engineering, vol. 20, no 01, p.
27-48, Singapur, 2010.

[18] J. I. CocunuboSuárez, J. A. ParraValencia, y J. E.
OtáloraLuna, Propuesta para la evaluación de Entornos
Virtuales de Enseñanza Aprendizaje con base en estándares
de Usabilidad, Tecno Lógicas, vol. 21, no. 41, pp. 135-147,
Colombia, 2018.

 Universal Journal of Educational Research 6(12): 2942-2951, 2018 2951

[19] Cruel, Mejía; Yomira Nathali; Caracterización de
metodologías de métricas de software para la optimización
del desarrollo web. Tesis Doctoral.
Ecuador-PUCESE-Escuela de Sistemas y Computación,
Ecuador. 2018.

[20] Villalba de Benito, M. T. Metodología de desarrollo de
modelos de calidad orientados a dominio y su aplicación al
dominio de los productos finales de seguridad de tecnologías
de la información , Tesis Doctoral, Universidad de Alcalá,
Departamento de Ciencias de la Computación, España.
2009.

[21] Karner, G. Resource estimation for objectory projects.
Objective Systems SF AB, 17. 1993.

[22] Kitchenham, B., Pfleeger, S. L., & Fenton, N. Towards a
framework for software measurement validation. IEEE
Transactions on software Engineering 21(12),
929-944.1995.

[23] Lorenz, M., & Kidd, J. Object-oriented software metrics.
(Vol. 131). Englewood Cliffs: Prentice Hall. 1994.

[24] Marchesi, M. OOA metrics for the Unified Modeling
Language. Software Maintenance and Reengineering.
Proceedings of the Second Euromicro Conference on (pp.
67-73), IEEE. 1998.

[25] McGarry, J., Card, D., Jones, C., Layman, B., Clark, E.,
Dean, J., & Hall, F., Objective information for decision
makers Practical Software Measurement. 2002

[26] Ragland, B. Measure, metric or indicator: What's the
difference? Crosstalk, 8(3), 29-30. 1995.

[27] Vázquez, P. J., Moreno, M. N., & Garcıa, F. J. Métricas
orientadas a objetos. Informe técnico DPTOIA-IT-2001-02.
Universidad de Salamanca, España. 2001.

[28] Baneres, David, Montse Serra, and M. Elena Rodriguez.
Herramienta de soporte a la evaluación de la calidad docente
de los estudios universitarios. Actas de las XXI Jornadas de
la Enseñanza Universitaria de la Informática. Universitat
Oberta La Salle. 2015.

[29] Pinto, Noelia, et al. QUCO2: una herramienta para medir la
calidad de las aplicaciones web. XV Workshop de
Investigadores en Ciencias de la Computación. 2013.

	1. Introduction
	2. Methodology
	3. Results Discussion
	4. Conclusions and Recommendations
	Acknowledgments
	REFERENCES

