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In education research, evaluations are routinely conducted to 
estimate the causal impacts of education interventions, pro-
grams, and policies on student outcomes. The gold standard 

for evaluating causality is the randomized controlled trial (RCT), 
though some quasi-experimental designs—such as regression 
discontinuity,1 instrumental variables, and matching—also offer 
valid approaches to causality under certain assumptions (see 
Shadish, Cook, & Campbell, 2002; What Works Clearinghouse, 
2017). Evidence from these evaluations is often used to inform 
education policy decisions, such as whether to adopt a curricu-
lum or cancel an education program. However, if the impact of 
an intervention varies across students or schools, the results from 
the study may not “generalize” from the sample in the evaluation 
to the population of students and schools that would be affected 
by these decisions.

In recent years, this causal generalization problem (Shadish  
et al., 2002) has become increasingly addressed in the education, 
social welfare, and medical communities through the develop-
ment of a variety of statistical methods. This paper presents a 
summary of these methods, providing researchers new to this 
area with an overview of methods and approaches. We divide the 
process of implementing these methods in an evaluation into 
five steps, following the process of study design through analysis: 
(1) selecting a target population, (2) gathering data on this target 
population, (3) recruiting with this target population in mind, 

(4) assessing generalizability, and (5) addressing any mismatch 
between the sample and population.

Throughout, we focus on both introducing methods and 
practical guidelines for their implementation. To situate this 
work, we focus on cases in which schools are first recruited to a 
study and then either schools, teachers, classrooms, or students 
are randomized to treatment conditions. These methods apply 
more generally, however, including situations in which school 
districts, teachers, or students are directly recruited and in which 
instead of random assignment, some other quasi-experimental 
approach is used instead.

It is our hope that researchers planning evaluations of educa-
tional interventions—particularly RCTs—will use this paper as 
a primer, leading to important conversations about generaliza-
tion early in the study design process. By addressing generaliz-
ability in the design phase instead of at the end, researchers have 
a greater ability to make thoughtful decisions about generaliz-
ability, thus extending the scope and impact of their research 
findings.2
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Problems Generalizing From Evaluations

In an RCT, randomization to treatment ensures that the average 
treatment effect (ATE) estimated is the causal effect in the sam-
ple.3 Similarly, quasi-experimental designs also provide 
approaches for unbiased estimation of the sample ATE under 
certain assumptions. However, researchers are rarely interested 
in understanding if an intervention improves outcomes only in 
the sample—instead, they aim to predict the ATE in some popu-
lation of scientific or policy importance. For example, this popu-
lation might be vaguely defined as “all kindergarten at-risk kids” 
or more specifically defined as all elementary schools in a par-
ticular school district, state, or region, while the sample in the 
evaluation might include only schools in one or two districts.

It is important to begin this discussion by noting that gener-
alizability is straightforward under the strong—and often 
implausible—assumption that treatment impacts are constant. 
In this case, the effect of the intervention is the same for every 
unit in the population—for example, students, classrooms, and 
schools. As a result, it does not matter which sample is included 
in the evaluation since the impact estimated in any sample would 
lead to an unbiased estimate of the impact in the population. 
The assumption that treatment effects are constant is strong, 
however, and not empirically based; in fact, there is growing evi-
dence that for at least some interventions, impacts vary substan-
tially across schools (e.g., Weiss et al., 2017).

If we begin instead with the assumption that treatment 
impacts vary, it becomes clear that the generalization problem 
arises when the schools recruited into an evaluation differ in 
important ways from the population of interest. One approach 
that addresses this problem is to both randomly sample schools 
into the study and randomly assign units to treatment. 
Unfortunately, these double-random designs are exceedingly rare 
in education and social welfare, accounting for fewer than 3% of 
all RCTs (Olsen, Orr, Bell, & Stuart, 2013). Instead, the school 
districts and schools taking part in education evaluations are 
typically chosen nonrandomly based on factors such as conve-
nience, concerns with implementation fidelity, assumed respon-
siveness to the intervention, and cost. Recent reviews indicate, 
for example, that the schools taking part in RCTs funded by the 
Institute of Education Sciences are typically larger (in terms of 
student enrollments), in larger school districts, and include 
fewer rural and Title I schools than many important target pop-
ulations (Fellers, 2017; Stuart, Bell, Ebnesajjad, Olsen, & Orr, 
2017; Tipton et al., 2016).

The generalizability of results from educational evaluations is 
thus problematic when this selection process inadvertently favors 
sites in which the impacts of the intervention are larger or smaller 
than that in the population (Olsen et al., 2013), resulting in an 
ATE estimate that is much larger or smaller than the ATE in the 
target population. For example, in one RCT, this bias from non-
random selection was found to be on the order of 0.10 standard 
deviations, which is of similar magnitude to bias due to treat-
ment selection in observational studies (Bell, Olsen, Orr, & 
Stuart, 2016). Overall, this suggests that researchers planning 
intervention studies would be wise to focus on developing study 
designs that minimize the total bias (Olsen et al., 2013), where

 total bias = internal bias + external bias. 

Here, by internal bias, we are referring to the usual threats to 
internal validity—for example, treatment selection, attrition—
and by external bias, we are referring to threats to external valid-
ity—for example, differences between sample and population 
unit treatment effects.

This focus on minimizing total bias differs markedly from 
standard evaluation methods in psychology, health, and social 
welfare, where research design has focused nearly entirely on 
reducing internal bias. We argue, however, that given findings 
from this new literature on the extent of external bias, the pro-
found differences between the types of schools and students tak-
ing part in evaluations compared to the population, and the 
increasing calls to use results from evaluations in decision mak-
ing in schools (e.g., ESSA), the time has come for a change.

Guidelines for Generalizing Impact Evaluation 
Results

Having established that external bias can be as much a concern 
as internal bias in evaluations of interventions, in the remainder 
of this review paper we provide a primer on methods for reduc-
ing this bias in future studies. This primer builds on a literature 
on sample selection, generalizability assessment, and treatment 
effect estimation that spans the fields of education, psychology, 
epidemiology, and medicine. Throughout, we provide guidance 
on both methods and tools as well as practical considerations.

In general, our approach assumes that the best strategy for 
improved generalizability is via improved research design. 
However, this is not a requirement per se as the methods that 
will be described for assessing generalizability and estimating 
population ATEs can be implemented post hoc. As we will show, 
however, these analysis methods work best in tandem with 
improved design.

Step 1: Select a Target Population

All methods regarding improved generalizability begin with a 
common first principle: It is impossible to discuss generalization 
without specifying to whom. The results of an intervention study 
may generalize well to schools in Colorado but not so well to 
schools in Wyoming. For this reason, the first step toward mak-
ing generalizations is to clearly define one or more target 
populations.

Ideally, the choice of a target population is determined by the 
policy decisions that the study would inform. In RCTs of federal 
education programs, the target population could be all students 
that participate in the program since they are affected by policy 
decisions regarding the program. In other cases, the study may 
be designed to inform local decisions, such as district decisions 
about whether to adopt a specific math curriculum. For this type 
of evaluation, the target population could be defined to include 
all districts that could potentially choose to implement the 
intervention.

There is also a second principle: Every study has a target pop-
ulation, though some populations might be more broadly or 
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narrowly defined than others. A broad target population— 
perhaps found in an effectiveness trial—might include all pub-
lic, Title I elementary schools serving third graders throughout 
the United States. In comparison, a narrow target population—
perhaps found in an efficacy trial—might focus on public, Title 
I elementary schools that are in need of improvement in the Des 
Moines Public School District.

Importantly, in many studies, there is a tension between the 
desire for a broad target population and the resources required to 
study such a broad population. For example, a broad target pop-
ulation may have a larger degree of variation between schools 
(resulting in a large intraclass correlation), which requires a 
larger sample size to detect if there is a non-zero average effect in 
the population (i.e., statistical power). Similarly, a broad target 
population may require greater resources for travel—for exam-
ple, in order to include both large and small school districts in 
both urban and rural areas. For these reasons, a narrow popula-
tion may be preferred for many studies, though this is only help-
ful if the population is accurately defined to include schools 
where the intervention has the largest effect. The difficulty here, 
of course, is that this is not always possible to know a priori. Our 
position is not that one is better than the other, only that 
researchers must make these assumptions and tradeoffs clear 
when proposing and reporting their work.

Step 2: Gather Data Required for Generalization

Generalizing to the chosen target population requires data. 
While population data on individual students is typically not 
available, in the United States, data on schools and school  
districts—the level of recruitment—are widely available and can 
be used for this purpose, including4:

•• The Common Core of Data (CCD). Available for down-
load from the National Center for Education Statistics 
(https://nces.ed.gov/ccd/index.asp), the CCD provides an 
annual census of public schools and school districts in the 
United States, which can be used as a sampling frame 
when selecting schools or districts. The CCD includes 
measures of school and district size, per pupil funding, 
dropout rates, and student composition with respect to 
poverty (i.e., eligibility for free or reduced-price lunch), 
disability, English language learner status, race, and 
ethnicity.

•• Stanford Education Data Archive (SEDA). Available for 
download from the Stanford Center for Education Policy 
Analysis (https://cepa.stanford.edu/seda/overview), SEDA 
provides estimates of average student achievement in 
mathematics and reading for school districts across the 
country.5 The data also include measures of district and 
neighborhood racial and socioeconomic composition, 
school and neighborhood racial and socioeconomic segre-
gation patterns, and other features of the schooling 
system.

•• State-specific data sources. Individual states typically 
maintain online data about its schools and districts for 
accountability reporting or research purposes. For exam-
ple, Texas makes rich performance data available for its 

schools through the Texas Academic Performance Reports 
(TAPR) (http://tea.texas.gov/perfreport/tapr/index.html), 
while California make similar data available through its 
DataQuest system (http://www.cde.ca.gov/ds/sd/cb/data-
quest.asp).

The ideal population data not only enumerate the population 
units but also include key variables. Since external validity bias 
arises when the units in a study have lower or higher treatment 
impacts than the rest of the population, the key variables of focus 
here are those that are believed to moderate the impact of the 
intervention. Unfortunately, there is little evidence on the factors 
that moderate the impact of most educational interventions.

When the factors that moderate treatment effects are unknown, 
we recommend focusing on variables that have been shown to be 
related to the outcome of interest since the impact is simply the dif-
ference between outcomes in the treated and untreated conditions, 
and variables related to the outcome may also be related to impact. 
Such variables include race, socioeconomic status, prior test scores, 
and other aggregated student demographics. We also recommend 
considering variables that prior research has found to be associated 
with the inclusion of schools or districts in evaluations. For example, 
Stuart et al. (2017) found that school districts that participate in 
randomized trials were more likely to be larger, more urban, and 
more disadvantaged than the average school district; Tipton et al. 
(2016) and Fellers (2017) found similar results for schools. 
Gathering data on these factors is an important first step to selecting 
a representative sample on these dimensions—or at least attempting 
to correct for the ways in which the sample is not representative.

Finally, a note of caution is in order. Data from these sources 
will only improve generalizations to the extent that the variation 
in impacts in the population can be explained by the variables 
that can be constructed from these data (this is referred to in the 
literature as a sampling ignorability assumption; see Stuart, Cole, 
Bradshaw, & Leaf, 2011; Tipton, 2013). This requires research-
ers’ almost certainly imperfect knowledge of those moderators—
and data that capture them—to improve generalizations from 
RCT findings. Sensitivity analyses—conducted in the analysis 
phase—provide one approach to determining if this ignorability 
condition has been met (Nguyen, Ebnesajjad, Cole, & Stuart, 
2017). Given these concerns, we focus on the methods provided 
here as avenues for potentially reducing bias in estimates of popu-
lation ATEs since eliminating it is probably infeasible in most 
studies.

Step 3: Recruit With Generalization in Mind

Once the target population is defined, the goal, then, is to 
develop a strategy to recruit a sample of schools and students 
that is like the population on the set of characteristics that might 
moderate the impacts of the intervention (Olsen & Orr, 2016; 
Tipton, 2014a; Tipton et al., 2014). In practice, this process 
involves two steps, detailed in the following.

Stratifying the Population

Stratification is an important tool for recruitment. Here the 
strata are defined in relation to moderators of the treatment 
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impact (Olsen & Orr, 2016; Tipton, Yeager, Schneider, & Iachan, 
in press). Stratifying the target population is straightforward when 
there are only a few variables that are categorical. However, the 
number of potential moderators can lead to an impractically large 
number of strata. For example, if an evaluation identifies five possi-
ble moderators with two categories each, this would create 25 or 32 
different strata. In this example, it would be impossible to include 
some schools from each stratum if the target number of schools is 
less than the total number of strata (32).

To create a smaller number of strata, researchers have devel-
oped several approaches. One approach is to simply combine 
multiple strata into a single stratum based on theory or pragma-
tism. Another approach is to use some form of dimension reduc-
tion, like cluster analysis or propensity score analysis (Tipton, 
2014b; Tipton et al., 2014). These methods are straightforward 
to implement in most statistical software as well as in a free webt-
ool (www.thegeneralizer.org; Tipton & Miller, 2016).

Dividing the population into many strata may reduce the 
bias—but it also complicates site recruitment. Every additional 
stratum in the design adds an additional resource constraint, 
requiring researchers to continue recruiting schools in more dif-
ficult strata even when recruitment in other strata proves easy. 
Therefore, researchers need to strike a balance between bias 
reduction and ease of implementation. In cluster-randomized 
designs in education experiments, defining between four and six 
strata is often a good compromise.

An additional benefit of stratification is that these strata can 
provide descriptive information on the target population. Figure 
1 illustrates the division of a population into six strata. This fig-
ure indicates, for example, that the first stratum includes the 

largest proportion of schools and that these schools are smaller 
and include primarily rural, White students in communities that 
are not highly educated.

Developing Stratified Recruitment Goals

The first step in recruiting a stratified sample of schools is to 
decide how many schools to recruit from each stratum. Since the 
goal is to recruit a sample for the RCT that matches the target 
population on all potential moderators, proportional allocation is 
ideal. In this scheme, if 40% of the population is in Stratum 1, 
then in the evaluation, 40% of the sample should also be in 
Stratum 1 (Tipton, 2014b). In practice, this may  
not always be feasible, however, since recruitment in some strata 
may be easier than in others. A minimal goal, therefore, is to 
recruit enough schools in each stratum to estimate a stratum-spe-
cific ATE and adjust for differences in composition between the 
sample and population using a post-stratification estimator (see 
Step 5; O’Muircheartaigh & Hedges, 2014; Tipton, 2013). This 
minimal goal eliminates under-coverage—which occurs when 
some portion of the target population is not at all represented in 
the study (aka coverage error, see Step 4; Tipton, 2013, 2014b)—
thus avoiding a situation in which it is impossible to estimate the 
population ATE without heroic assumptions.

The second step in recruiting a stratified sample of schools is 
to decide how to recruit schools from within each stratum. 
Ideally, schools in the same stratum would have the same values 
of the treatment effect moderators—thus acting as replicates of 
one another—so it would not matter how the schools were 
selected. In practice, however, schools will vary within each 

Figure 1. Example heat map comparing strata.
Source. The Generalizer.
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stratum, either because some moderators are continuous or the 
number of total strata is restricted to improve implementation.

Within each stratum, there are three possible selection meth-
ods to ensure a good match between the sample and the popula-
tion on the distributions of moderator variables:

1.	 Systematic site selection. Researchers select schools that 
are as similar as possible to the average school in each stra-
tum based on a “distance” measure.6 Schools closer to the 
stratum-average school would be prioritized for recruit-
ment (Tipton, 2014b; Tipton et al., 2014).7

2.	 Random site selection. Researchers select schools ran-
domly from each stratum. When there are no refusals, ran-
dom selection ensures that there are no systematic 
differences between the sample selected and the popula-
tion on both observed and unobserved characteristics 
(Olsen & Orr, 2016).

3.	 Compromise selection. Given resource constraints, research-
ers often begin studies with at least a handful of schools already 
agreeing to take part in the study. In this approach, these 
schools are first located in the strata. Then either Strategy 1 or 
2 is used to recruit the remainder of the sample.

With any of these approaches, researchers are encouraged to 
track data on which schools were recruited, if they agreed or 
refused to take part in the study, and reasons for refusing. This 
information can then be used to better understand sources of 
sample selection bias (e.g., Tipton et al., 2016).

Step 4: Assess Generalizability and Iterate

Quantifying Generalizability

Once the final sample has been recruited—before or after the study 
is complete—researchers can assess the likely generalizability of the 
study findings to one or more target populations. These methods all 

focus on quantifying the degree of similarity between the sample in 
the evaluation and a target population on the set of potential 
moderators.

A difficulty in assessing similarity between the sample and a 
target population is that there are many potential moderators to 
consider. Of course, the sample and target population can be 
compared for each of these moderators, one variable at a time, 
using t tests or chi-square tests. For a single comparison that 
combines these moderators, researchers can use propensity score 
methods. Foundational research on propensity score methods 
has shown that if two groups are well matched on the propensity 
score, they will also be well matched on the variables—in this 
case, treatment effect moderators—that were included in the 
propensity score model (Rosenbaum & Rubin, 1983).

The sampling propensity is the probability that a school from 
the target population would be in a sample in the evaluation 
given a set of covariates. These can be estimated using the 
observed covariates that potentially moderate the treatment 
impact and a wide variety of methods, from logistic regression to 
regression trees and neural networks (for a review, see Stuart, 
2010). Once estimated, the similarity between the distribution 
of these sampling propensities in the sample and target popula-
tion can be compared; see Figure 2 for an example.

As Figure 2 shows, the distributions in the two groups differ. 
To date, the following measures have been proposed as methods 
for summarizing these differences:

1.	 Coverage. This measure provides the proportion of the 
population that is represented by the evaluation. When 
certain types of schools are not represented in the evalua-
tion, it will be difficult—maybe impossible—to generalize 
from the sample to the population using post hoc adjust-
ments. Importantly, under-coverage is common even 
when samples are randomly selected (see Tipton, Hallberg, 
Hedges, & Chan, 2017). In the example in Figure 2, 
about 83% of the population is represented by the RCT 
(with under-coverage occurring in the long-tail of the 
population distribution).

2.	 Standardized mean difference (SMD). This can be cal-
culated on the propensity score scale or their logits (see 
Stuart et al., 2011), providing the degree of difference on 
average between the distributions. This metric is standard 
in the propensity score literature. When this absolute 
SMD is larger than 0.25, it indicates that regression 
adjustments may not be warranted. In the example in 
Figure 2, the SMD is –0.386, indicating that inferences 
from the sample to population adjusted using regression 
would involve extrapolations.

3.	 Generalizability index. This index summarizes the over-
all degree of distributional similarity (Tipton, 2014a). The 
index takes values between 0 and 1, with 1 indicating that 
the sample is perfectly matched to the target population 
on the observed treatment effect moderators. The index is 
a function of both coverage and the SMD as well as the 
proportion of the sample represented by the population. 
In studies with around 40 schools, values greater than 
about 0.90 indicate that the sample is about as similar to 

Figure 2. Distributions of propensity scores in population and 
randomized controlled trial.
Note. In the figure, vertical dashed lines indicate the average 
value in each group.
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the target population on the moderators as a random sam-
ple of the same size. Additionally, values smaller than 0.5 
indicate that reweighting of the type described in the next 
section will be largely unsuccessful. This approach is 
implemented in the free webtool mentioned earlier (www.
thegeneralizer.org; Tipton & Miller, 2016). In the exam-
ple in Figure 2, if the study included a sample of 40 
schools, the index value is approximately 0.85, indicating 
that while different from a random sample, differences 
between the sample and population could be adjusted for 
using the methods in the next section.

These measures of assessment can be particularly useful when 
there are multiple target populations. For example, in Figure 3, 
we provide a map illustrating the degree of similarity between 
the sample taking part in an RCT and the populations of schools 
in each of the 50 states, offering information on where general-
izations are most warranted (e.g., the Southeast) and where they 
are not (e.g., the West). (A color version of Figure 3 is available 
in the online article.)

Finally, in some situations, outcome data are also available for 
the target population—for example, if the outcome in the RCT is a 
student’s score on a state-mandated achievement test and data on 
these scores are available for all schools in the state. In this case, 
researchers can also test how accurately they can predict the average 
outcome in the target population from the average outcome in the 
control condition in the RCT using the propensity score methods 
described previously (see Stuart et al., 2011).

A Note on Difficult Generalizations

If recruitment was difficult or finished before concerns with gen-
eralizability were raised, it is likely that the resulting sample will 
differ from the target population, sometimes in large ways. For 
example, a reanalysis of data from two large-scale randomized 
trials in education calculated a generalizability index of 0.61 for 
one study and 0.57 for the other study (Tipton et al., 2016). 
Indices this far below 1 indicate that study findings do not 
directly generalize to the population without any statistical 
adjustments but that statistical adjustments will substantially 

increase the standard errors of the impact estimates. Early results 
from an ongoing study suggest that this problem is common 
among RCTs in education (Fellers, 2017).

In these situations, it can be useful to define the population to 
which generalizations are possible, thus increasing similarity between 
the sample and some target population. Determining the best sub-
population, however, is not straightforward and is typically iterative. 
To do so, the first step is to determine which covariate values differ 
largely between the sample and population. For categorical covari-
ates, this is straightforward. For example, if the sample does not 
include any rural schools but the population does, redefining the 
population to exclude rural schools could help. For continuous 
covariates, this is less straightforward: Generally, the most problem-
atic covariates are those that not only differ on average but are also 
less variable and have a shorter range in the sample compared to the 
population. In this case, redefining the population to include only 
schools with fewer than the maximum observed in the sample (e.g., 
500 students) might help.

Tipton et al. (2016) provides a case study that illustrates this 
process in action. In their example study with a generalizability 
index of 0.57, using two inclusion criteria, they could define a 
new target population with a generalizability index of 0.80. This 
new population accounted for about 33% of the original target 
population of interest. While perhaps not ideal given the study’s 
initial goals, given the difficulties of recruitment, this approach 
led to a realistic accounting of where the study results are most 
and least credible for making curricular decisions.

Finally, it is important for researchers to be as transparent as 
possible about any changes to the target population that occur in 
their studies. Just as researchers commonly report details on 
attrition after random assignment, it is important for researchers 
to report details on both the originally defined target population 
as well as the subpopulation where generalizations are stronger 
based on actual recruitment.

Step 5: Address Mismatch Between the Sample 
and Population

In most practical cases, the sample in the evaluation and the 
target population will not be perfectly aligned, indicating that 

Figure 3. Map indicating similarity between a randomized controlled trial sample and populations of each of the 50 states.
Source. The Generalizer.
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the standard estimator of the ATE will be biased for the target 
population ATE. This section describes three different 
approaches to reducing the bias when estimating the ATE for the 
population: (1) propensity score methods, (2) model-based 
approaches, and (3) bounding.

Propensity Score Methods

Propensity score methods can be used either to identify and 
reweight entire subclasses of schools in the sample or to reweight 
individual schools in the sample to reduce the differences 
between the sample and population on potential moderator 
variables.

Propensity score subclassification. The propensity score methods 
described earlier can be used to post-stratify or subclassify the 
sample. The target population can be divided into k strata based 
on the estimated sampling propensity. Within each of these j = 
1, . . . , k strata, the sample from the evaluation is located, and 
from these units (e.g., schools), an estimate dj of the stratum 
ATE is calculated, as well as a standard error, SE(dj). The popula-
tion ATE and standard error can then be estimated using,

PATE w djj
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j

 =
=∑ 1

SE PATE w djj
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j( ) ( ) =

=∑ 2
1
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where wj are the population proportions—which usually equal 
1/k since the sample is usually divided into equal-sized groups.8 
When there is large under-coverage, post-stratification can 
reduce bias but typically does not eliminate it (e.g., Tipton, 
2013; Tipton et al., 2017). In general, using regression adjust-
ment within strata can help reduce this bias (see Stuart, 2010), 
though this can result in extrapolations. Overall, when there are 
large differences in the distributions of sampling propensity 
scores—as evidenced by a low generalizability index value— 
subclassification (with or without regression adjustment) can 
result in a much larger standard error for the population ATE.

Inverse-probability weighting. Inverse-probability weighting 
(IPW) uses the estimated sampling propensities to reweight the 
schools in the sample to be more compositionally like the target 
population (Stuart et al., 2011). This approach is like Horvitz-
Thompson estimators in survey sampling (Horvitz & Thomp-
son, 1952; Lohr, 1999) and, in the case of a cluster randomized 
trial, can be written,

PATE
W Z Y
p q

W Z Y
p q

i i i

i i
i

N i i i

i i
i

N
 = −

−( )
−( )= =∑ ∑1 1

1
1

SE PATE Y
p q

p q
Y

p q
pii

n i i

i i
ii

n i i

i

T C
( ) = −







 −

− −( )
= =∑ ∑2
1

2
1

1 1 1
1−−( )









qi
.

Here, Wi indicates if school i (for i = 1, . . . , N in the population) 
is in the sample, Zi indicates if the school has been assigned to 
the treatment condition, and for the ith school, pi is the esti-
mated sampling probability, qi is the probability of being 

assigned to treatment, and Yi is the outcome. In theory, this IPW 
approach is a version of the post-stratification estimator with 
many, very small strata. In some instances, very small sampling 
propensities (pi) can result in extreme weights, which inflates the 
standard error of the overall estimator. This problem can be 
addressed by trimming the most extreme weights (Lee, Lessler, 
& Stuart, 2011).

In practice, the best estimator is the one that results in the 
greatest similarity (i.e., balance) between the sample and target 
population on the set of moderators under study. In head-to-
head comparisons, the evidence suggests that one method does 
not always outperform the other, and as such, both estimators 
are recommended in practice (Tipton et al., 2017).

Model-Based Approaches

An alternative approach to addressing differences between the sam-
ple and the population involves regression modeling. This approach 
builds on the regression models that researchers use to estimate the 
ATE. When those models are enhanced to include interactions 
between the treatment and potential impact moderators, they can 
be used to predict the impact of the intervention for any combina-
tion of the moderator variables. Therefore, if the average values of 
those moderators in the population are known, researchers can 
insert these values in the estimated regression model to predict the 
average impact in the population.

Standard regression models may yield poor predictions if the 
linearity and additivity assumptions are not satisfied or the 
model omits important treatment-by-moderator interactions. 
To address this problem, researchers can use algorithms like 
Bayesian additive regression trees (BART; Chipman, George, & 
McCulloch, 2007, 2010). BART relaxes key assumptions of 
standard regression models, automates the process of selecting 
interaction terms, and can be used to create Monte Carlo esti-
mates of the posterior distribution of the PATE (for more details, 
see e.g., Kern, Stuart, Hill, & Green, 2016).

Bounding Approaches

Finally, another set of methods is that of Chan (2017), which pro-
vides a bounding approach to population treatment effect estima-
tion from RCTs. Instead of providing a point-estimate for the ATE, 
this approach provides an interval estimate. These interval estimates 
are a function of the proportion of a target population in an RCT, 
the treatment effect in the RCT, and assumptions regarding the 
minimum and maximum possible treatment impact. The most gen-
eral of these estimators requires no assumptions but can result in a 
very wide range. Other estimators in this class add assumptions 
regarding the treatment effect outside of the RCT. These approaches 
may be particularly useful when propensity score methods are not 
possible, such as when there is under-coverage or covariate informa-
tion is unavailable or sparse in a population.

Discussion

As we have highlighted throughout this paper, the knowledge, 
tools, and methods for conducting evaluations of interventions 
in education have increased dramatically over the past 30 years. 
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As policymakers at all levels begin to use results from these stud-
ies to make policy decisions, it becomes especially important to 
know where, when, and for whom results from an evaluation 
apply. Our goal in this paper has been to provide education 
researchers with a broad overview of the methods and tools avail-
able for addressing concerns with generalizability in evaluations 
of educational interventions and programs. Our hope is that 
moving forward, researchers will take seriously these concerns 
with generalizability and take advantage of this growing base of 
tools available for design, assessment, and estimation.

It is important to understand what can reasonably be accom-
plished using the tools described in this paper. The impacts of 
educational interventions may vary for a host of reasons that 
challenge our ability to generalize, including variation in imple-
mentation of the intervention, take-up rate when participation is 
voluntary, dose of the intervention received by participating stu-
dents, fidelity of implementation to the program model, services 
that students would otherwise receive without the intervention, 
characteristics of participating students, and characteristics of 
the context or setting (see Weiss, Bloom, & Brock, 2014). The 
tools described in this paper are designed to address variation in 
factors for which data are typically available (e.g., the character-
istics of students and schools); they cannot help us address varia-
tion in factors for which data are typically unavailable outside 
the evaluation sample (e.g., fidelity of implementation).

Furthermore, the success of these methods for generalizing 
depends heavily on our knowledge of the factors that influence 
the impact of the intervention and data that capture these fac-
tors. When the factors that moderate the impact are unknown or 
unmeasured and the sample is selected nonrandomly—either by 
design or due to self-selection into the study—no statistical 
methods can help us generalize evaluation findings from one set 
of students and schools to another. In practice, with helpful but 
imperfect theory and data, the methods described in this paper 
should facilitate generalizations that are imperfect but still better 
than we could make without them.

Notes

Tipton would like to acknowledge funding from the Institute 
of Education Sciences, Award Number R305D170024 and from the 
Spencer Foundation, Award Number 201500057. Tipton completed 
this paper while faculty at Teachers College, Columbia University. 
She is now faculty at Northwestern University. Olsen would like to 
acknowledge funding from the Institute of Education Sciences, Award 
Number R305D150003.

1Importantly, not all of these methods estimate the same parameter. 
For example, in regression discontinuity (RD), the effect estimated is the 
“local” average treatment effect near the cutoff. Generalization to a target 
population from an RD design thus also requires generalizing over cut-
points on the assignment variable, which is beyond the scope of this paper.

2For those interested in making generalizations from a study that 
is already completed, Step 3 can be omitted.

3This is the intent-to-treat effect when there is noncompliance.
4Outside of K–12, population data are not always so readily avail-

able, though often population frames can be created by combining data 
across various sources (for a Pre-K study, see Stuart & Rhodes, 2017; for 
a community college study, see Tipton & Matlen, 2018).

5Stanford Education Data Archive’s (SEDA) project director, Dr. 
Sean Reardon, reported at a pre-conference workshop of the 2017 spring 

conference for the Society for Research on Educational Effectiveness 
(SREE) that SEDA is planning to release achievement data for individual 
schools to complement the data already available on individual districts.

6Calculating the distance requires an approach to weighting the 
different variables used for stratification. Researchers could choose 
equal weighting, larger weights for factors believed to be more impor-
tant impact moderators, or larger weights for factors that are measured 
more precisely.

7Tipton (2014b) shows that even when a large share of selected 
sites refuses to participate in the study, systematic site selection—with 
systematic replacement of sites that refuse—can yield a sample that 
much more closely resembles the population that standard approaches 
to site selection.

8Equal-population strata (i.e., each contain 1/kth of the popula-
tion) lead to the greatest bias reductions, though other methods for 
creating strata (e.g., full matching) hold promise (Tipton, 2013).
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