
AERA Open
April-June 2016, Vol. 2, No. 2, pp. 1 –16

DOI: 10.1177/2332858416648930
© The Author(s) 2016. http://ero.sagepub.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License  
(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further 

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

How long should a unit on counting last? To what extent 
should children be required to master relevant concepts 
before learning a mathematical procedure? Understanding 
which skills to teach, how long to spend on each skill, and 
what order to sequence instruction of a set of skills are 
important goals for designers of mathematics curricula. 
Children’s mathematical development is often described as a 
hierarchical process, during which later skills build on earlier 
skills (Gagné, 1968), with some earlier skills reasoned to be 
particularly foundational for children’s later mathematics 
learning. Identifying these important early skills and structur-
ing mathematics curricula around them may be an effective 
way to boost children’s later mathematics learning. Questions 
about which specific math skills are most critical are often 
addressed through a combination of experimental studies and 
correlational research based on observational data. Although 
correlational research lacks some logistical problems associ-
ated with experimental research, its utility for making causal 
inferences about the likely effects of interventions relies on 

important, often untested assumptions, such as the hypothesis 
that individual differences in different early mathematical 
skills reflect variation in truly unique constructs. This study 
provides an illustration of the problem of construct confound-
ing and tests these assumptions through a data set of students’ 
mathematics skills and achievement scores in mathematics 
and English language arts (ELA).

Previous Methods for Understanding Effective 
Mathematics Curricula

Randomized controlled trials. Educators and researchers 
can use several approaches to understand which early math-
ematics skills are most foundational for supporting later 
mathematics learning. One method is identifying these skills 
through a theory-driven approach (Clements & Sarama, 
2004). For example, simple addition is a subroutine of many 
more advanced skills, so memorizing simple addition facts 
may lay the groundwork to support children’s ability to learn 
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more advanced mathematical skills. However, this theory-
driven approach is not simple: the educator or researcher 
must consider a complex set of variables, including the 
extent to which earlier knowledge will be repurposed into 
later skills, what types of knowledge facilitate transfer of 
learning most effectively, and the opportunity cost of spend-
ing more time teaching a particular skill. This approach can 
generate predictions about which skills are likely to have the 
largest effects on later mathematics achievement, and these 
predictions can be formally tested in experiments. The stron-
gest causal claims can come from randomized controlled tri-
als (RCTs) that allow researchers to eliminate confounds 
influencing children’s learning of early and later mathemat-
ics. In these studies, children in the experimental group 
receive a particular type of skill training (e.g., instruction on 
fraction concepts; Fuchs et al., 2013) or curriculum (Clem-
ents, Sarama, Spitler, Lange, & Wolfe, 2011; Clements, 
Sarama, Wolfe, & Spitler, 2013), and children in the control 
group receive “business as usual.” Unfortunately, these 
studies are expensive and time-consuming. Even if schools 
are willing to participate, imperfect fidelity of implementa-
tion is common and threatens researchers’ ability to make 
claims about which intervention component caused an 
observed effect. Furthermore, researchers face a tradeoff 
between the number of changes that they make to the cur-
riculum and the degree of confidence that any particular 
change is responsible for an observed treatment effect.

Correlational studies. Correlational data analyses provide 
a less costly alternative to such experiments but suffer from 
more potential threats to internal validity. Such studies use 
observational data with rigorous statistical methods to 
obtain what researchers hope are close approximations to 
unbiased causal estimates of the effect of improving a par-
ticular early mathematics skill on children’s later mathe-
matics outcomes. This commonly involves regressing later 
mathematics achievement on earlier mathematics skills 
while statistically controlling for factors that might affect 
both, such as domain-general cognitive skills, socioeco-
nomic status, and sex. The clear advantage of this approach 
is that it can address a large number of causal questions—
many of which would not warrant their own RCT—through 
a single data set, often with a large sample. Because of this 
approach’s apparent ability to isolate specific early mathe-
matics skills, this method is increasingly used to bolster 
arguments about the importance of early childhood inter-
ventions and what aspects of such interventions are most 
likely to yield the greatest effects on later mathematics 
achievement (see Aunio & Niemivirta, 2010; Aunola, 
Leskinen, Lerkkanen, & Nurmi, 2004; Bailey, Siegler, & 
Geary, 2014; Claessens & Engel, 2013; Duncan et al., 
2007; Geary, Hoard, Nugent, & Bailey, 2013; Jordan, 
Kaplan, Ramineni, & Locuniak, 2009; Watts, Duncan, 
Siegler, & Davis-Kean, 2014).

Researchers often avoid causal language in the Results 
sections of such studies. However, Discussion sections often 
contain claims relating findings of correlational research to 
educational practice and policy as if such findings indicated 
causal effects. Others have noted that this practice is com-
mon in developmental and educational psychology studies 
(Duncan & Gibson-Davis, 2006; Foster, 2010; Robinson, 
Levin, Schraw, Patall, & Hunt, 2013). It is not our goal to 
chide previous researchers, who aim to improve educational 
practice while hedging their conclusions: Indeed, we have 
included such statements in our own prior work (e.g., Bailey, 
Siegler, et al., 2014, p. 783). The point that we put forth is 
that the extent to which this is problematic and the practical 
usefulness of these correlational findings depend partially 
on how much (if at all) estimates from correlational studies 
differ from actual causal effects.

Many correlational studies distinguish among early math-
ematics skills that are hypothesized to influence later math-
ematics achievement, such as less advanced and more 
advanced early mathematics skills (Claessens & Engel, 
2013), early counting and relational skills (Aunio & 
Niemivirta, 2010), or early whole number magnitude and 
whole number arithmetic knowledge (Bailey, Siegler, et al., 
2014). These studies focus on identifying the most predic-
tive of these early mathematics skills for later achievement. 
Such identification is intended to further understanding of 
children’s mathematical development and is sometimes used 
in recommendations for educational practice: for example, 
recommendations that teachers focus on those early skills 
that show the greatest association with later achievement.

Perhaps these studies are able to fully control for the 
range of factors influencing mathematical learning through-
out development, in which case, estimates of specific skills’ 
effects on later mathematics achievement are unbiased. 
However, this assumption is difficult to test and requires 
adequate measures of general factors related to children’s 
learning (e.g., working memory) and specific mathematics 
skills. If one wishes to estimate the effect of targeting a spe-
cific mathematics skill on children’s later achievement with-
out influencing more general skills, one must demonstrate 
that measures of early mathematics skills have predictive 
and discriminant validity. For instance, specific mathematics 
skills should predict later mathematics outcomes much more 
strongly than they predict later reading outcomes, indicating 
that domain-general skills are fully controlled. In addition, 
specific mathematics skills should predict performance on 
more similar mathematical content more strongly than per-
formance on measures of less similar mathematical content, 
indicating that specific mathematics skills are measurably 
distinct.

The validity of conclusions from correlational studies 
relies on an assumption that is difficult to test: that the fac-
tors contributing to children’s learning of early and later 
mathematics are fully statistically controlled. Failing to do 
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so would lead researchers to overestimate the effects of ear-
lier mathematics skills on later mathematics achievement. 
As such, correlational studies imply that increasing chil-
dren’s early mathematics achievement should have a stable 
effect on their later mathematics achievement over time 
(Bailey, Watts, Littlefield, & Geary, 2014). Yet, findings 
from RCTs of early childhood interventions show diminish-
ing treatment effects, a pattern known as fade-out (e.g., Leak 
et al., 2010).

Construct Validity of Measures of Early  
Mathematics Skills

Construct validity—the extent to which what a test mea-
sures is aligned with the claims that the researcher makes 
about that test—is of primary importance in understanding 
whether the claims drawn from studies are of actual use (see 
Borsboom, Mellenbergh, & van Heerden, 2004; Cronbach & 
Meehl, 1955). We posit that construct validity is a particu-
larly relevant concept for understanding the associations 
between early mathematics skills and later mathematics 
achievement. On one hand, there is a sense in which tests of 
children’s mathematics skills have excellent construct valid-
ity: individual differences in early mathematics skills exist, 
and it is clear how children’s mathematical knowledge 
would affect performance on tests of these skills. For exam-
ple, a child who has an accurate mental representation of the 
number 30 should be able to place that number on a number 
line with end points 0 and 100, a performance that one can 
reasonably assume is caused by the child’s mental represen-
tation of the number 30; such tasks have been singled out by 
theorists as having high construct validity (e.g., Borsboom 
et al., 2004).

On the other hand, knowledge that produces item 
responses on tests of mathematics skills is likely influenced 
by a long list of factors. For example, a child who can accu-
rately place 30 on a number line may have paid more atten-
tion in class or thought more about mathematics outside of 
class than a child who cannot accurately complete the task. 
Indeed, several facets of working memory are robust predic-
tors of children’s mathematics achievement across develop-
ment (Bull & Lee, 2014; Geary, Bailey, Littlefield, et al., 
2009; Swanson & Beebe-Frankenberger, 2004; Szücs, 
Devine, Soltesz, Nobes, & Gabriel, 2014; Welsh, Nix, Blair, 
Bierman, & Nelson, 2010). Therefore, even if a test incon-
trovertibly measures a particular mathematics skill, differ-
ences in scores may also reflect individual differences in 
more general cognitive abilities, which may contribute to 
children’s mathematics learning later in school. If these 
other more general abilities are not adequately statistically 
controlled, regression analyses may overestimate the causal 
effects of these particular mathematics skills on children’s 
later mathematics achievement and may misattribute the 
observed relationship as being associated with differences in 

scores on a particular mathematics skill instead of the more 
general ability. We refer to this possibility as construct con-
founding, following Shadish, Cook, and Campbell (2002).

There are reasons to think that construct confounding 
may lead to biased estimates of the effects of increasing 
early mathematics skills on later mathematics achievement. 
First, researchers tend to assume that a multiskill factor 
structure of mathematics exists, as many studies do not 
establish a measurement model for their mathematics skills 
(e.g., Siegler et al., 2012), but the evidence for this is unclear. 
Schneider and Stern (2010) did not find evidence that proce-
dural and conceptual knowledge of decimal fractions were 
unique constructs despite clear theoretical reasons to believe 
so (Rittle-Johnson, Siegler, & Alibali, 2001). Those who 
found evidence of a multifactor structure of mathematics 
skills found it between measures of symbolic and nonsym-
bolic representations of number (Fazio, Bailey, Thompson, 
& Siegler, 2014), between counting competence and number 
system knowledge (Geary et al., 2013), and between magni-
tude comparison and number identification (Göbel, Watson, 
Lervåg, & Hulme, 2014). However, in each of these cases, it 
remains unclear if the methods with which different facets of 
mathematics knowledge were measured (e.g., via computer 
or paper and pencil) were responsible for the appearance of 
a multifactor structure or if the multifactor structure was in 
fact due to the nature of the constructs being measured. A 
notable exception is a study by Purpura and Lonigan (2013), 
which identified evidence for a three-factor model of infor-
mal numeracy skills (numbering, relations, and arithmetic 
operations) in a sample of preschool children tested on a 
large battery of mathematical tasks. Although the three-fac-
tor model best accounted for correlations among early math-
ematics skills, correlations between factors ranged from .80 
to .88. Correlations among factors this close to unity may 
reflect differences in content knowledge but may also reflect 
small differences in the relative importance of various more 
general skills on children’s mathematics learning. Purpura 
and Lonigan did not include a measure of later mathematics 
achievement, so it is unclear whether these distinct skills dif-
ferentially predict later mathematics achievement.

A second reason why we hypothesize that construct con-
founding inflates the estimated effects is that the rank order 
of how early mathematics skills predict later mathematics 
achievement is often found to be similar to the rank order of 
mathematics skills as predictors of reading achievement and 
different types of mathematics achievement (Bailey, Siegler, 
et al., 2014; Siegler et al., 2012). If regression coefficients 
approximate the likely causal effects of increasing an early 
mathematics skill on later academic outcomes, one would 
predict that early mathematics skills should most strongly 
predict the later skills that they are most likely to causally 
affect. Theoretically, whole number arithmetic knowledge 
should predict later fraction arithmetic knowledge because 
the former is essential to the latter. If it predicts later 
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knowledge of shapes or reading achievement to a similar 
extent, construct confounding is a possible explanation: 
Relations among whole number arithmetic knowledge, frac-
tion arithmetic knowledge, knowledge of shapes, and reading 
achievement may be caused by a general factor influencing 
learning of all these types of knowledge. Indeed, previous 
studies found this pattern. For example, measures of concep-
tual understanding of whole number magnitudes taken in 
middle childhood have been found to predict similarly to dif-
ferent measures of mathematics and reading outcomes 
(Bailey, Siegler, et al., 2014; Jordan et al., 2013). In two 
large, nationally representative samples, earlier measures of 
mathematics skills predicted later mathematics outcomes 
and, in some cases, later reading outcomes (although the 
magnitudes of the coefficients from prior mathematics skills 
to later reading were smaller; Siegler et al., 2012). Likewise, 
replicated over six nationally representative samples, mea-
sures of early mathematics achievement were predictive of 
later reading achievement even when including controls for 
cognitive and socioemotional skills (Duncan et al., 2007).

Current Study

As we have described, regression-based estimates of spe-
cific early mathematics skills’ effects on children’s later 
mathematics achievement are interpretable and unbiased 
assuming that (a) scores on tests of different early mathemat-
ics skills reflect unique constructs and (b) other factors 
affecting early mathematics skills and later mathematics 
achievement are fully statistically controlled. To test these 
assumptions, we used a sample of mathematics and ELA 
scores taken from a study of third and fourth graders in a 
digital learning environment. These data provide an illustra-
tive case study to assess (a) the factor structure of earlier 
mathematics skills and (b) the discriminant validity of mea-
sures to test whether factors predicted later mathematics 
achievement subtests with the most similar content and 
whether factors predicted later ELA while accounting for 
working memory, motivation, and other controls. If con-
struct confounding does not bias estimates of effects of ear-
lier mathematics skills on later mathematics achievement, 
then factors should be no more than moderately correlated 
with one another, scores on earlier mathematics achievement 
subtests should predict later mathematics achievement sub-
tests with the most similar content, and scores should predict 
later mathematics achievement more strongly than they pre-
dict later ELA achievement. However, if construct con-
founding biases estimates of early mathematics skills on 
later mathematics achievement and regression weights have 
ambiguous interpretations, then early mathematics skill fac-
tors should be highly correlated with one another and the 
factors that most strongly predict general mathematics 
achievement should also strongly predict all mathematics 
subtests and ELA achievement.

Method

Participants and Procedure

Participants were drawn from a sample of 1,571 third 
graders and 1,618 fourth graders who took part in a longitu-
dinal study of an evaluation of a mathematics software pack-
age. The MIND Research Institute’s Spatial-Temporal Math 
(ST Math) was evaluated from 2008 to 2013; the current 
data were gathered during the 2010–2011 and 2011–2012 
school years (see Rutherford et al., 2014; Schenke, 
Rutherford, & Farkas, 2014). Students were from 81 class-
rooms in 18 low-socioeconomic schools in a suburban area 
of Southern California. At the end of the 2011 school year, 
we measured cognitive skills (specifically, working mem-
ory) and motivation for mathematics via one-on-one testing 
with netbook computers for a randomly selected subsample 
of students for whom we had obtained parent consent and 
participant assent. Testing was conducted for 2 days at each 
school. Throughout the 2011–2012 school year, students 
used the ST Math software for 90 minutes a week and took 
mathematics quizzes embedded within. At the end of the 
school year, students took state-administered standardized 
tests (the California Standards Test [CST]) in mathematics 
and ELA. To measure specific mathematics skills, we 
obtained data on students’ performance on each math strand 
of the standardized mathematics test: Number Sense I; 
Number Sense II; Algebra and Functions; Measurement and 
Geometry; Statistics, Data Analysis, and Probability.

Factor analyses of the ST Math quiz items were conducted 
with the full sample of our study students who used the ST 
Math software. Regression analyses included students who 
had valid software data, baseline working memory and moti-
vation data via the one-on-one testing from the prior year, 
and data on the state-administered tests given at the end of 
the school year. This resulted in a final sample of 357 third 
graders and 289 fourth graders.1 The final sample was 80% 
Hispanic and 77% eligible for free or reduced-price lunch (a 
proxy for socioeconomic status). Table 1 shows the descrip-
tive statistics for the variables in our models.

Measures

The study analyzed data from three sources: the mathe-
matics software (ST Math quiz data), individual working 
memory and motivational testing of students conducted at 
the end of the previous year, and ELA and mathematics CST 
scores.

ST Math quiz data. The quiz material within ST Math was 
divided into content objectives aligned to the California 
State Standards for each grade level (see Table S1 in Appen-
dix A in the online supplemental materials for the total list of 
objectives for third and fourth grade) and was used as our 
measure of mathematics skills. After each objective within 
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ST Math, students took a quiz on objective-relevant content 
(e.g., addition and subtraction to 1,000). Each quiz contained 
5 to 10 items. All participants had the opportunity to respond 
to the same quiz items, but whether they reached a particular 
item depended on how far the student progressed within the 
ST Math program. For the factor analyses, final objective 
quiz scores were obtained by calculating the percentage cor-
rect on the total items for each quiz. For the regression anal-
yses, we weighted item responses by item difficulty using a 
Rasch model, a one-parameter logistic item response theory 
model, to obtain a student’s final score. All items that corre-
sponded to a particular quiz were specified to be part of the 
same factor. The software contained a total of 23 quizzes for 
third grade and 26 quizzes for fourth grade; however, 
because ST Math is a self-paced program, not all students 
completed all content or took all quizzes. Additionally, some 
control was given to students and teachers in choosing 
optional content. To ensure that we had an adequate sample 
of students, we used quizzes only if at least 40% of the stu-
dents had completed the quiz, resulting in 22 of 23 quizzes 
in third grade and 20 of 26 quizzes in fourth grade.

Mathematics and ELA achievement. The CST was adminis-
tered to all California students from Grades 2 to 11 in the 
spring of each year.2 Scale scores range from 150 to 600, 
with a score of 350 marking the state’s determined level of 

proficiency. For the mathematics CST, students received an 
overall score as well as scores corresponding to the five 
strands within the California State Standards for mathemat-
ics: Number Sense I; Number Sense II; Algebra and Func-
tions; Measurement and Geometry; and Statistics, Data 
Analysis, and Probability. Participating school districts pro-
vided ELA and math CST scores to the authors.

Motivation. To control for baseline motivation for mathe-
matics, we measured students’ expectancies and values 
(Eccles, Wigfield, Harold, & Blumenfeld, 1993) at the end of 
the 2010–2011 school year (second grade for the third grad-
ers in the study and third grade for the fourth graders). Stu-
dents were asked to respond to 11 items on a 7-point Likert 
scale about their expectancies and values for mathematics. 
After a brief tutorial on the use of the scales, students were 
guided through the questions through narrated slides admin-
istered via netbooks with Eprime 2.0 (see Figure S1 in 
Appendix B in the online supplementary materials). Sample 
items include “How well do you think you will do in math 
this year?” (expectancy) and “In general, how useful is what 
you learn in math?” (value). Students’ responses on the 11 
items were averaged to create a composite of motivation, 
with a possible range of 1 to 7, which was subsequently stan-
dardized by grade level.3 Scale reliability was .77 for the 
analysis sample of third graders, and scores on the composite 

TABLE 1
Descriptive Statistics for Third- and Fourth-Grade Analysis Samples

Third Grade (n = 357) Fourth Grade (n = 289)

M SD Min Max M SD Min Max

Average percentage correct 
on all quizzes

0.77 0.11 0.32 1 0.70 0.13 0.23 0.95

Mental rotation −0.02 0.60 –1 1 0.15 0.59 –1 1
Hearts and flowers 0.72 0.20 0 1 0.78 0.18 0.33 1
Backward digit span 3.38 0.58 3 5 3.56 0.71 3 8
Motivation 5.72 1.00 1 7 5.76 0.81 2.18 7
Standardized math score 400.76 70.82 211 600 396.26 73.34 199 600
Standardized ELA score 339.53 55.07 199 468 363.05 54.21 206 587

 Demographic Information, %

Boys 51 49  
Free or reduced-price lunch 77 83  
Hispanic 80 84  
White 8 5  
Other ethnicity 12 11  
English language learner 56 48  

Note. Standardized math and English language arts (ELA) scores come from the California Standards Test, which students take every year starting in second 
grade. A score of 350 is considered proficient. Motivation, mental rotation, hearts and flowers, and backward digit span were collected at the end of second 
grade for the third-grade sample and at the end of third grade for the fourth-grade sample. Motivation was measured with 12 items on a 7-point Likert scale. 
Backward digit span is highest number of digits reached.
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ranged from 1 to 7. For fourth graders, scale reliability was 
.73, and scores ranged from 2.18 to 7.

Working memory. Working memory—our measure of 
domain-general cognitive skills—was measured via perfor-
mance on three tasks representing the verbal, visuospatial, 
and central executive components: backward digit span 
(Klingberg, Forssberg, & Westerberg, 2002), two-dimen-
sional mental rotation (Hahn, Jansen, & Heil, 2010; Lange, 
Heil, & Jansen, 2010), and hearts and flowers (Davidson, 
Amso, Anderson, & Diamond, 2006), respectively. All tasks 
were administered in the same testing session via netbooks. 
Screen shots and descriptions of tasks are included in the 
supplemental materials (Figures S2 and S3 in Appendix B). 
Scores on the three tasks were standardized separately for 
each grade level and summed to create a working memory 
composite. The resulting composite was standardized by 
grade.

Backward digit span. In the backward digit span task 
assessing verbal working memory and, to some extent, 
visual working memory, students were presented with a 
series of numbers that flashed one by one on the screen. Stu-
dents were then asked to re-create the pattern of numbers 
in the reverse order using numbers on a keypad. Students 
had to successfully complete practice trials before beginning 
the real task. For the real task, after every two correct trials, 
another digit was added to the sequence. The greatest length 
sequence reached was used as the student’s backward digit 
span score and ranged from sequences of three to five digits 
in the third-grade sample and from three to eight digits in 
the fourth-grade sample. The within-school-year test-retest 
correlation was .35 (p < .001) for the study.

Mental rotation. To assess visuospatial working memory, 
we used an adaptation of the procedures and stimuli from 
Lange and colleagues (2010). First, students were presented 
with a picture of an animal on its feet, then the same ani-
mal rotated a number of degrees (facing the same direction 
or flipped). Students were asked to make a judgment about 
whether the rotated animal faced in the same direction as the 
first animal presented. A variable was created by subtracting 
the number of hits from the number of misses on the valid 
attempted trials (ranged from −1 to 1). The within-school-
year test-retest correlation was .41 (p < .001) for the study.

Hearts and flowers. The hearts and flowers task assessed 
the central executive aspect of working memory and was 
adapted from Davidson and colleagues (2006). This mea-
sure involved two stimuli: a picture of a heart and picture 
of a flower. There were three experimental blocks, which 
consisted of hearts-only trials, flowers-only trials, and trials 
switching between hearts and flowers, and only responses 
from the switch trials were used. Average accuracy on the 

switch trials was used as the final score for this task. Average 
accuracy ranged from 0 to 1 in the third-grade sample and 
.33 to 1 in the fourth-grade sample. The within school year 
test-retest correlation was .31 (p < .001) for the study.

Demographic variables. District records provided informa-
tion on the following demographic variables: socioeconomic 
status determined by eligibility for free or reduced-price 
lunch (dichotomous), English language learner status 
(dichotomous), ethnicity (categorical), and sex (dichoto-
mous). Ethnicity was coded into three categories represent-
ing the two largest ethnic groups represented in our sample 
(Hispanic and White) and a third group called other ethnicity 
that combined students of all other ethnic groups.

Overview of Analytic Models and Methods

To understand the factor structure underlying the associa-
tion between earlier mathematics skills (as measured by ST 
Math quiz items) and later mathematics achievement (as 
measured by CST scores), we tested five models using stu-
dents’ responses to ST Math quiz items. Three models were 
included and compared for the purpose of describing the 
structure of the data: a single-factor confirmatory model, a 
two-factor confirmatory model derived from exploratory 
factor analysis (EFA), and a two-factor model based on the 
content of the items.

One additional model—a model based on high- and low-
loading items on the general factor—was included to test 
whether results were similar when poor-fitting items 
assigned to the general factor are dropped. Additional infor-
mation on the factor structures, the standardized factor load-
ings, and which objective quizzes compose each factor are 
provided in the online supplemental materials (Tables S1–S4 
in Appendix A).

The first structure was the one-factor structure in which 
all quizzes were specified to load onto one latent factor rep-
resenting general mathematics ability. The second structure 
was empirically derived from a two-factor EFA solution.4 
The third structure was prespecified per the coded mathe-
matics content of each quiz. Two researchers independently 
coded items on the third- and fourth-grade quiz topics to be 
related to either number or geometry/visuospatial skills. 
These two categories were chosen because of the resurgence 
of the importance of geometry and visuospatial skills in the 
mathematics literature (see Clements & Sarama, 2011; 
Tatsuoka, Corter, & Tatsuoka, 2004) and support for the 
finding that students’ number skills matter for later achieve-
ment (see Jordan, Glutting, & Ramineni, 2010). The inde-
pendent coders had an interrater reliability of .88 for both 
third and fourth grade and resolved discrepant codes through 
discussion. In total, scores from six quizzes were used to cre-
ate the geometry latent factor and 16 quizzes to create the 
number latent factor.
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The final fourth factor structure was included, not to 
accurately describe the structure of children’s mathematics 
knowledge, but to examine possible explanations for differ-
ing criterion validity produced by the constructs estimated in 
the first three models. To test whether a construct’s predic-
tion of children’s achievement outcomes depends on its 
loading on a general factor of mathematics, we included a 
fourth structure, which split the general factor into two sub-
factors based on the standardized factor loadings of the items 
on the general factor. One comprised items with the highest 
half of loadings on the general factor, and the other com-
prised items with the lowest half of loadings on the general 
factor. A summary of the various factor models and their 
respective hypotheses is provided in Table 2.

The fits of these factor structures were compared (with 
chi-square difference tests for nested models), as were the 
predictive associations between each factor (with a Rasch 
model) and mathematics and ELA achievement. As noted 
above, the key predictions of the construct confounding 
hypothesis pertain to the correlations among factors and the 
predictive relations between early mathematics skills and 
later mathematics and ELA achievement. The construct con-
founding hypothesis would be supported if correlations 
among factors were high and there was little difference in 
predictive strength of each factor across more closely and 
distantly related mathematics skills and general mathematics 
versus ELA achievement.

Results

To assess the construct validity of measures of children’s 
mathematics skills, we first present results from factor anal-
yses conducted on the mathematics quizzes. We first tested a 

one-factor solution representing the general math ability fac-
tor. We then modeled three two-factor models described 
above and in Table 2. We compared the fit between the one-
factor model and the various two-factor models to test 
whether the theoretically distinct math subskills found in the 
extant literature are being captured by the measures.

To assess which specific mathematics skills (as measured 
by the various measurement models) were most predictive of 
later mathematics achievement, we present ordinary least 
squares regression results based on Rasch scores from each 
of the factor structures to predict overall mathematics skills 
and specific mathematics skills as specified by the CSTs. 
Finally, to further test the measurement models’ discriminant 
validity, we present results predicting ELA skills as measured 
by the CST. All analyses were first conducted with the third-
grade sample and then replicated with the fourth-grade sam-
ple to increase the generalizability of our findings.

Factor Analyses for Measures of Mathematics Skills

Factor analyses were conducted in Mplus 7.2 (Muthén & 
Muthén, 1998–2014) with the full sample of third graders 
(n = 1,571) and fourth graders (n = 1,618) separately. We 
tested a total of four factor structures, and Table 3 presents 
fit statistics, ranges of the standardized factor loadings, 
alphas, and average percentage correct as a measure of dif-
ficulty. Quiz factor loadings are presented in the online sup-
plementary materials (see Appendix A: Table S3 for third 
grade and Table S4 for fourth grade).

Third-grade sample. First, we conducted a confirmatory 
factor analysis (CFA) to test the fit of a one-factor model in 
which all quizzes loaded onto a single factor representing 

TABLE 2
Factor Models and Hypothesis Testing for Construct Confounding

Measurement Models Theoretical Models/Hypotheses

1. One-factor model One–latent factor model represents general mathematics or, more general, ability. This measure will be 
highly correlated with all measures of later mathematics achievement, perhaps ELA achievement as well.

2. Two-factor model derived 
from exploratory factor 
analysis

Two different specific math skills are empirically identifiable through exploratory factor analysis on 
students’ quiz responses. These factors will predict mathematics content most similar to the derived 
factors and more to mathematics than to ELA achievement.

3. Two-factor model—a 
number skills factor and 
a geometry/visuospatial 
skills factor

The number skills factor should strongly predict similar skills measured later via the CST math subtests 
(Number Sense I; Number Sense II; Algebra and Functions; Statistics, Data Analysis, and Probability). The 
geometry/visuospatial skills factor should strongly predict similar skills measured later (Measurement and 
Geometry). Both factors should predict later mathematics more strongly than later ELA achievement.

4. Two-factor model—first 
factor with the highest-
loading items from Model 
1 and the second factor 
with the lowest-loading 
items from Model 1

The first factor with the highest-loading items from Model 1 represents the indicators of a one-factor 
model of mathematics skills. The first factor should be more strongly associated with all achievement 
outcomes than the second factor, consisting of the lowest-loading items. If results resemble those from 
the empirically and theoretically derived solutions in Models 2 and 3, results suggest that loadings on 
a single general factor—and not mathematics content per se—drive relations between mathematics 
measures and later achievement outcomes.

Note. CST = California Standards Test; ELA = English language arts.
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general mathematics ability (Table 3, column 1). Standard-
ized factor loadings on the general model ranged from .29 to 
.60 for the third-grade sample. Despite factor loadings of 
some items being slightly lower than the recommended 
value of .40 (Costello & Osborne, 2005), all items were 
retained in subsequent analyses to maximize the coverage of 
the construct.

We then tested three different models, each containing 
two latent variables, against the one-factor model, using chi-
square difference tests to examine whether the two-factor 
models were better at describing the structure of the mea-
sures than the more parsimonious one-factor structure. The 
first of these two-factor models was constructed with latent 
factors extracted by an EFA. To test the reliability of the EFA 
solution, the sample of 1,571 third-grade students was split 
into two random halves containing 785 and 786 students. 
EFA was conducted on the first random half with items 
allowed to cross-load across latent variables. On the other 
random half, we conducted a CFA using the same item spec-
ification obtained from the two-factor EFA solution but did 
not allow items to cross-load across latent variables (Table 3, 
column 2; refer to the supplemental materials for a list of 
items corresponding to all factors tested in this article). A 
chi-square difference test suggested a statistically significant 
difference in model fit, with the two-factor EFA solution 
being a better fit than the one-factor solution, χ2(df = 1, n = 
1,571) = 13.8, p < .001.

For the third model, we categorized the quizzes into two 
factors in the prespecified model based on quiz items coded 
as number and number sense (number) and as geometry and 
visuospatial skills (geometry). We tested the model fit of our 

prespecified model in a CFA and did not find it to be statisti-
cally significantly different from the one-factor solution, 
χ2(df = 1, n = 1,571) = 2.3, ns (Table 3, column 3). Phi cor-
relations between the two factors in all models were very 
high, ranging from .91 to .997, and measures of goodness of 
fit were acceptable (Hu & Bentler, 1999).

In sum, correlations among the factors in the two-factor 
models were very high, but the majority of these models did 
not fit statistically significantly better than the one-factor 
solution. The one-factor solution of general math ability fit 
the data quite well. Although the two-factor solution that 
resulted from the EFA fit statistically significantly better 
than the one-factor “general math” model, the two factors 
were not discernible from each other to a theoretically rele-
vant extent.

Fourth-grade sample. Standardized factor loadings on the 
general model ranged from.21 to .64 for the fourth-grade 
sample (Table 3). We found that all two-factor solutions fit 
the data statistically significantly better than the one-factor 
solution, which was also reflected in the chi-square differ-
ence tests, which ranged from 13.8 to 113.69, χ2(df = 1, n = 
1,618), p < .001. The phi correlations between the two latent 
factors in the empirically and theoretically defined two-fac-
tor models were somewhat lower in the fourth-grade sample 
than the third-grade sample, though still quite high (phi = .89 
and phi =.88, respectively).

In general, results from the factor analyses suggested 
some statistically significant differences in model fit between 
the two-factor models and the one-factor model, with the 
two-factor models providing better fit to the observed data 

TABLE 3
Results from Factor Analyses

Third Grade (n = 1,571) Fourth Grade (n = 1,618)

One 
Factor

Two-Factor 
EFA Solution

Number and 
Geometry Factor

Highest 
and Lowest 

Factora
One 

Factor
Two-Factor 

EFA Solution
Number and 

Geometry Factor

Highest 
and Lowest 

Factora

Chi-square 423.12 409.32 420.82 423.07 368.18 254.49 354.38 343.69
df 209 208 208 208 170 169 169 169
RMSEA 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
CFI 0.94 0.95 0.94 0.94 0.951 0.96 0.96 0.96
TLI 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95
SRMR 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Standardized factor 

loadings
.29–.60 .33–.64;

.35–.62
.29–.62;
.37–.55

.47–.62;
.29–.57

.21–.64 .27–.67;
.43–.69

.32–.64;
.23–.52

.54–.64;
.21–.52

Alpha from 
standardized quizzes

0.84 .63; .81 .82; .50 .78; .65 0.87 .71; .82 .84; .58 .83; .70

Correct, % 0.78 .88; .75 .79; .75 .78; .78 0.69 .71; .67 .69; .69 .71; .66
Correlation between 

F1 and F2
.91 .96 .997 .88 .89 .91

Note. Model fit indices were compared to cutoff values indicating good model fit according to Hu and Bentler (1999), where values on comparative fit index (CFI) and Tucker-
Lewis Index (TLI) ≥.90 to .95 indicate adequate to excellent fit and where that for root mean square error of approximation (RMSEA) ≤.06 and .08 indicates adequate to excellent 
fit, respectively. EFA = exploratory factor analysis; SRMR = standardized root mean square residual.
aHighest and lowest loading on the general math factor.
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for the fourth-grade sample (Table 3). However, correlations 
between the two factors were >.90 for all three two-factor 
models tested in the third-grade sample and approximately 
.88 in the fourth-grade sample, suggesting that a single fac-
tor accounted for most of the covariance in children’s math-
ematics skills in both grades.

Regression Analyses Predicting Later Achievement

Table 4 presents correlations among the mathematics 
skills factors, achievement on the mathematics CST 
strands, overall ELA achievement, working memory, and 
motivation for mathematics. As expected, CST mathemat-
ics achievement was statistically significantly correlated 
with ELA achievement, working memory, motivation for 
mathematics, and all latent variables describing mathe-
matics skills.

To test for discriminant validity across factors, we ran a 
series of four ordinary least squares regression models (one 
model for each factor structure) predicting mathematics 
achievement (Table 5), specific mathematics skills (Table 6), 
and ELA achievement (Table 7; n = 357 for the third-grade 
sample and n = 289 in the fourth-grade sample; Models 1–4 
in the tables). Each score was calculated from the output of 
the Rasch item response theory analysis and was subse-
quently standardized within the analysis samples.5 To esti-
mate the unique effect of mathematics skills on outcomes, 
these four models controlled for students’ working memory 
and mathematics motivation at baseline (the spring of the 
second grade for the third-grade sample and the spring of the 
third grade for the fourth-grade sample), sex, ethnicity, free 
or reduced-price lunch eligibility, and English language 
learner status. All continuous variables were standardized 

within each sample such that their coefficients can be inter-
preted as standardized regression weights.

Mathematics achievement. Descriptive statistics suggest 
that average difficulty was not systematically related to the 
magnitude of the regression coefficient (Table 3). The first 
model (M1 in Table 5) shows the results of the one-factor 
solution predicting end-of-the-year standardized mathemat-
ics achievement. Across all models in the third-grade sam-
ple, the general mathematics factor’s regression coefficient 
(β = .32, p < .001) for predicting end-of-the-year mathemat-
ics achievement was within the confidence interval of fac-
tors from the other models, suggesting that the general factor 
sufficiently describes the relationship between earlier math-
ematics skills and later mathematics knowledge. Results 
from the two-factor EFA solution (M2 in Table 5) suggest 
that only the second factor (EFA Factor 2) was statistically 
significantly associated with end-of-the-year mathematics 
achievement (β = .38, p < .001). The factor comprising the 
highest-loading items on the general factor was statistically 
significantly associated with mathematics achievement (M3 
in Table 5; β = .35, p = .001), whereas the factor comprising 
the lowest-loading items was not. The predefined factor 
associated with number skills (M4 in Table 4) was statisti-
cally significantly associated with mathematics achievement 
(β = .40, p = .04), whereas the geometry factor was not. As 
such, the differences between the number sense and geome-
try factors, the two EFA factors, and the high- and low-load-
ing factors look very similar to each other, suggesting that 
differences in reliance on a single factor may account for 
differences in correlations between subtests with different 
content and mathematics achievement. This general pattern 
of results was replicated with the fourth-grade sample.

TABLE 4
Correlations for Mathematics, ELA, Cognitive Composite, Motivation, and Math Factors for Third- and Fourth-Grade Students

1 2 3 4 5 6 7 8 9 10 11

 1. Standardized math score — .60*** .38*** .12* .67*** .61*** .67*** .61*** .69*** .67*** .59***

 2. Standardized ELA score .69*** — .40*** −.03 .60*** .55*** .60*** .57*** .61*** .61*** .55***

 3. Working memory .39*** .41*** — .04 .45*** .44*** .44*** .44*** .44*** .45*** .43***

 4. Motivation .17** .01 .01 — .06 .03 .07 .03 .07 .06 .04
 5. One-factor model .42*** .34*** .20*** .08 — .94*** .99*** .97*** .98*** 1.00*** .94***

 6. EFA Factor 1 .46*** .40*** .28*** .11* .82*** — .88*** .95*** .90*** .93*** .94***

 7. EFA Factor 2 .54*** .47*** .33*** .10 .78*** .89*** — .94*** .98*** .99*** .91***

 8. Low factor .52*** .44*** .31*** .10 .82*** .93*** .99*** — .91*** .95*** .96***

 9. High factor .54*** .47*** .34*** .10 .80*** .92*** .99*** .97*** — .99*** .89***

10. Number .53*** .46*** .32*** .10 .81*** .94*** .99*** .98*** .99*** — .91***

11. Geometry .51*** .44*** .30*** .11* .76*** .87*** .97*** .97*** .95*** .94*** —

Note. Correlations for third-grade sample (n = 357) are below the diagonal, and correlations for the fourth-grade sample (n = 289) are above the diagonal. 
Math and English language arts (ELA) scores were taken at the end of third grade for the third-grade sample and at the end of fourth grade for the fourth-
grade sample. Cognitive composite and motivation were measured at the end of second grade for the third-grade sample and at the end of third grade for the 
fourth-grade sample. EFA = exploratory factor analysis.
*p < .05. **p < .01. ***p < .001.
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In summary, several two-factor structures yielded factors 
that appeared differentially predictive of children’s later gen-
eral mathematics achievement. These findings can yield two 
plausible interpretations. From a developmental perspective, it 
is possible that the most predictive factors are composed of the 
mathematical content most foundational for learning mathe-
matics—for example, in our data, it appears that number sense 
is more foundational than geometry. Yet, perhaps the most pre-
dictive factors capture children’s ability to learn more gener-
ally, both in mathematics and in other domains. Although we 
statistically controlled for measures of working memory and 
general motivation for mathematics, it is likely that there 
remain elements within our mathematics skill factors that are 
nevertheless more general than they are specific. To examine 
the extent to which general learning mechanisms might still 

bias estimates of effects of early mathematics skills on achieve-
ment, we examined how well they predicted theoretically 
nearer constructs (e.g., number to a Number Sense CST strand) 
and how well they predicted the theoretically more distant 
ELA achievement.

Specific strands of mathematics. To better understand the asso-
ciation between specific mathematics skills and later mathemat-
ics achievement, we present the same models as in Table 5 but 
predict the five strands of the mathematics CST in Table 6 
(Number Sense I; Number Sense II; Algebra and Functions; 
Measurement and Geometry; and Statistics, Data Analysis, and 
Probability). We specifically direct the reader to the factor struc-
ture representing the coded items for number and geometry in 
our models. If individual differences in number and geometry 

TABLE 5
Associations Between Math Factors and End-of-Year Standardized Math Achievement for Third- and Fourth-Grade Students

Third Grade (n = 357) Fourth Grade (n = 289)

(1) (2) (3) (4) (1) (2) (3) (4)

Working memory .27*** .20*** .20*** .20*** .09 .09 .09 .09
 (.04) (.04) (.05) (.04) (.05) (.05) (.05) (.05)
Motivation .14** .13** .13** .13** .07 .07 .06 .07
 (.04) (.04) (.04) (.04) (.04) (.04) (.04) (.04)
Boy .13 .16 .16 .16 .20* .21* .19* .20*

 (.09) (.08) (.08) (.08) (.09) (.09) (.09) (.09)
White .10 .18 .19 .18 .09 .06 .11 .10
 (.18) (.18) (.18) (.18) (.21) (.22) (.21) (.21)
Other ethnicity .37* .39** .40** .40** .02 .02 .02 .01
 (.15) (.14) (.14) (.14) (.15) (.15) (.15) (.15)
Free or reduced-price lunch −.25* −.21 −.21 −.22 .22 .22 .21 .23
 (.12) (.12) (.12) (.12) (.13) (.13) (.12) (.13)
English language learner −.32** −.22* −.22* −.23* −.13 −.13 −.09 −.12
 (.10) (.10) (.10) (.10) (.10) (.10) (.10) (.10)
One factor .32*** .61***  
 (.04) (.05)  
EFA Factor 1 .03 .06  
 (.09) (.10)  
EFA Factor 2 .38*** .55***  
 (.10) (.10)  
High factor .40* .71***  
 (.19) (.11)  
Low factor .02 −.09  
 (.19) (.10)  
Number .40** .70***

 (.12) (.10)
Geometry .02 −.09
 (.12) (.10)
Constant .26 .14 .14 .15 −.22 −.22 −.23 −.23
 (.13) (.13) (.13) (.13) (.13) (.14) (.13) (.13)
R2 .37 .42 .42 .42 .48 .48 .50 .49

Note. Standard errors in parentheses. All continuous variables are standardized. Working memory was created by averaging standardizing students’ scores on the mental rotation, 
backwards digit span, and hearts and flowers task. The reference group is Hispanic non–English language learner, non–free or reduced-price lunch girls. EFA = exploratory factor 
analysis.
*p < .05. **p < .01. ***p < .001.
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are empirically distinct constructs, we would expect the number 
factor to predict CST strands that are more closely associated 
with number, such as Number Sense I and Number Sense II. 
Similarly, if the geometry factor represented specific knowledge 
of geometry, we would expect it to better predict the Measure-
ment and Geometry CST strand. For the third-grade sample, we 
found that the number factor was better than geometry at pre-
dicting three of the mathematics strands (Number Sense I, Num-
ber Sense II, and Algebra and Functions). In addition, neither 
factor (geometry or number) was able to statistically signifi-
cantly predict the Measurement and Geometry strand. However, 
for the fourth-grade sample, the number factor was better at pre-
dicting each mathematics strand—even to the Measurement and 
Geometry outcome (β = .56, p < .001; β = –.01, ns, for number 
and geometry factors predicting the Measurement and Geome-
try CST strand, respectively). The factor consisting of the high-
est-loading items on the factor of general mathematics similarly 
predicted all mathematics strand scores more strongly than the 
factor consisting of the lowest-loading items.

ELA achievement. Finally, we used the same models in Table 5 
to predict ELA achievement as the outcome (Table 7). Extend-
ing our models to ELA allows us to understand the extent that 
mathematics quiz factors represent mathematics-specific skills 
or whether the quiz factors are indicators of a more general cog-
nitive skill. If mathematics factors derived from quiz scores 
measure something specific to mathematics achievement, we 
would expect the regression coefficients to be close to zero 
when predicting ELA achievement, after statistically adjusting 
for commonly used control measures (e.g., mathematics 

motivation and working memory). However, if correlations 
between mathematics factors and later academic outcomes are 
primarily influenced by more general skills, we would expect 
that the coefficients for the ELA models would mirror those for 
the mathematics CST models, although coefficients may vary 
due to differences in specific test content. Results were consis-
tent with the latter hypothesis—that the mathematics factors 
largely represented measures of general knowledge or aca-
demic capability even after controlling for working memory 
and English language learner status. Results mirrored those for 
general mathematics achievement and mathematics strands 
analyses presented above: the second empirically derived factor 
(β = .23, p = .02; β = .44, p < .001, Model 2 in the third- and 
fourth-grade samples, respectively), the theoretically defined 
number factor (β = .29, p = .02; β = .49, p < .001, for the third- 
and fourth-grade samples, respectively), and the factor com-
posed of the highest-loading items from the general mathematics 
factor (β = .51, p = .008; β = .41, p < .001, Model 4 in the third- 
and fourth-grade samples, respectively) all best predicted chil-
dren’s ELA achievement when compared with the second 
factor in their respective models. Overall, patterns across ELA 
achievement were similar to those obtained for mathematics 
achievement with slightly weaker regression coefficients.

Discussion

Using data from the ST Math software game as an illustra-
tive case study, we tested the construct confounding hypothesis 
to examine the extent to which regression-based estimates of 
specific early mathematics skills’ effects on children’s later 

TABLE 6
Association Between Math Factors and End-of-Year Specific Mathematics Skills

Third Grade (n = 357) Fourth Grade (n = 289)

Number 
Sense I

Number 
Sense II

Algebra and 
Functions

Measurement 
and Geometry

Stats, Data 
Analysis, and 
Probability

Number 
Sense I

Number 
Sense II

Algebra and 
Functions

Measurement 
and Geometry

Stats, Data 
Analysis, and 
Probability

One factor 0.28*** 0.32*** 0.35*** 0.28*** 0.14* 0.56*** 0.58*** 0.53*** 0.54*** 0.39***

 (0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07)
EFA Factor 1 0.07 0.21* 0.08 0.07 −0.10 0.09 −0.02 −0.09 0.05 0.08
 (0.10) (0.10) (0.10) (0.11) (0.12) (0.10) (0.10) (0.10) (0.11) (0.12)
EFA Factor 2 0.28** 0.14 0.31** 0.27* 0.30* 0.48*** 0.60*** 0.62*** 0.49*** 0.32**

 (0.10) (0.11) (0.10) (0.11) (0.12) (0.10) (0.11) (0.10) (0.11) (0.12)
High factor 0.37 0.57** 0.48* 0.37 0.42 0.54*** 0.54*** 0.59*** 0.53*** 0.50***

 (0.20) (0.21) (0.20) (0.21) (0.24) (0.11) (0.12) (0.11) (0.12) (0.14)
Low factor −0.02 −0.22 −0.09 −0.03 −0.21 0.02 0.04 −0.05 0.02 −0.10
 (0.20) (0.20) (0.20) (0.21) (0.23) (0.11) (0.12) (0.11) (0.12) (0.13)
Number 0.43*** 0.56*** 0.34** 0.17 0.25 0.49*** 0.54*** 0.69*** 0.56*** 0.44**

 (0.13) (0.13) (0.13) (0.14) (0.15) (0.11) (0.12) (0.11) (0.12) (0.13)
Geometry −0.09 −0.23 0.04 0.17 −0.05 0.07 0.05 −0.17 −0.01 −0.04
 (0.13) (0.13) (0.13) (0.14) (0.15) (0.11) (0.11) (0.10) (0.12) (0.13)

Note. Standard errors in parentheses. Working memory, motivation, gender, ethnicity, English language learner status, and free or reduced-price lunch status were controlled for in 
the models but not presented in the tables. All continuous variables were standardized. EFA = exploratory factor analysis.
*p < .05. **p < .01. ***p < .001.
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mathematics achievement are not biased. Specifically, we 
tested whether scores on different early mathematics skills tests 
reflect unique constructs and whether factors affecting early 
mathematics skills and later mathematics achievement, such as 
working memory and motivational beliefs, are fully statistically 
controlled. To do this, we first estimated a series of factor struc-
tures that could reasonably be used to characterize mathematics 
skills. We found that although chi-square difference tests indi-
cated that some two-factor models were better able to describe 
the data than a one-factor model, correlations between factors 
were very large—near or >.90—suggesting that a single factor 
explained most of the covariance in students’ mathematics 
skills and that separate constructs of mathematics skills based 
on predefined subsets of items had questionable discriminant 
validity. These findings replicate those of Purpura and Lonigan 

(2013), who also found very high correlations between factors 
of mathematics knowledge in a different sample of students 
using different measures of mathematics knowledge.

Furthermore, we tested the extent to which construct con-
founding could bias estimates of earlier mathematics skills on 
later achievement by estimating the effects of four factor 
structures of earlier mathematics skills on three later out-
comes: general mathematics achievement, specific mathemat-
ics achievement, and ELA achievement. If construct 
confounding was not present, our measures of earlier mathe-
matics achievement would not predict later ELA achieve-
ment, and specific measures of mathematics skills would best 
predict the most similar later specific mathematics skills. In 
contrast, this study found that regression coefficients were siz-
able when predicting ELA achievement and that the number 

TABLE 7
Associations Between Math Factors and End-of-Year Standardized ELA Achievement for Third- and Fourth-Grade Students

Third Grade (n = 357) Fourth Grade (n = 289)

(1) (2) (3) (4) (1) (2) (3) (4)

Working memory 0.29*** 0.24*** 0.23*** 0.24*** 0.15** 0.15** 0.15** 0.15**

 (0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Motivation −0.02 −0.03 −0.03 −0.03 −0.05 −0.06 −0.06 −0.05
 (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
Boy −0.12 −0.10 −0.09 −0.10 −0.03 −0.03 −0.03 −0.03
 (0.09) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09)
White 0.44* 0.50** 0.53** 0.50** −0.06 −0.09 −0.05 −0.05
 (0.18) (0.18) (0.18) (0.18) (0.22) (0.22) (0.22) (0.22)
Other ethnicity 0.17 0.20 0.20 0.19 0.04 0.05 0.04 0.04
 (0.15) (0.15) (0.14) (0.14) (0.16) (0.16) (0.16) (0.16)
Free or reduced-price lunch −0.20 −0.17 −0.16 −0.17 0.03 0.04 0.03 0.04
 (0.12) (0.12) (0.12) (0.12) (0.13) (0.13) (0.13) (0.13)
ELL −0.54*** −0.47*** −0.44*** −0.47*** −0.48*** −0.48*** −0.46*** −0.47***

 (0.10) (0.10) (0.10) (0.10) (0.11) (0.11) (0.11) (0.11)
One factor 0.21*** 0.43***  
 (0.04) (0.06)  
EFA Factor 1 0.07 −0.00  
 (0.10) (0.10)  
EFA Factor 2 0.23* 0.44***  
 (0.10) (0.10)  
High factor 0.51** 0.41***  
 (0.19) (0.11)  
Low factor −0.21 0.04  
 (0.19) (0.11)  
Number 0.29* 0.49***

 (0.12) (0.11)
Geometry 0.01 −0.06
 (0.12) (0.11)
Constant 0.46*** 0.38** 0.35** 0.38** 0.24 0.24 0.24 0.23
 (0.13) (0.13) (0.13) (0.13) (0.14) (0.14) (0.14) (0.14)
R2 0.37 0.40 0.41 0.40 0.43 0.44 0.44 0.44

Note. Standard errors in parentheses. All continuous variables are standardized. Working memory was created by averaging standardizing students’ scores on the mental rotation, 
backwards digit span, and hearts and flowers task. The reference group is Hispanic non–English language learner, non–free or reduced-price lunch girls. EFA = exploratory factor 
analysis; ELA = English language arts; ELL = English language learner.
*p < .05. **p < .01. ***p < .001.
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factor predicted most highly to all mathematical content 
(including measurement and geometry), suggesting that our 
measures of early mathematics skills likely substantially 
reflect factors that facilitate learning across domains.

Implications

Findings from our study provide some evidence for the 
construct confounding hypothesis and may influence the 
interpretation of results reported in previous studies. Results 
suggest that our measures of early mathematics skills reflect a 
combination of factors that are associated with general math-
ematics learning as well as a combination of factors more gen-
eral than mathematics. This is especially salient in the results 
that we presented using the factors to predict ELA achieve-
ment, which replicates what others have found (e.g., Duncan 
et al., 2007). To interpret potential effects of early mathemat-
ics skills on later mathematics achievement, we suggest that 
future studies first test for and understand the factor structure 
of early skills and the discriminant validity of measures of 
these skills, especially as they relate to ELA achievement. If 
measures of mathematics measure only mathematics skills 
likely to be influenced by mathematics-specific instruction, 
we would expect a close-to-zero association with ELA.

RCTs can provide the strongest evidence of causal links 
between earlier and later skills. RCTs may still be affected 
by construct confounding if experimenters train more than 
the targeted child characteristic during an intervention (e.g., 
a number sense intervention might also influence children’s 
motivation or comfort with test taking, thus confounding 
these constructs with each other in treatment-control com-
parisons of children’s academic outcomes). However, the 
random assignment of children to groups greatly limits bias 
due to other possible confounds unlikely to be influenced by 
a targeted early mathematics intervention (e.g., child’s work-
ing memory capacity or family’s socioeconomic status), 
which potentially influence performance across early math 
skills and later mathematics achievement.

Practically, the cost and time investment of such studies, 
along with the very large number of theoretically interesting 
treatment combinations, make them difficult to implement. 
Correlational studies can contribute valuable information, but 
we assert that greater care should be taken to eliminate con-
struct confounding. Researchers should employ CFA in addi-
tion to domain-general controls to further understand their 
results. This approach has two major advantages over stan-
dard multiple regression analysis: (a) it enables researchers to 
test the important assumption that individual differences in 
early mathematics skills of interest are empirically distinct, 
and (b) it accounts for measurement error, thereby yielding 
less biased estimates. Furthermore, we recommend that 
researchers establish the discriminant validity of their mea-
sures of early mathematics skills by including a second out-
come measure that is not likely to be caused by these skills.

A reexamination of conclusions drawn from previous anal-
yses of children’s mathematics achievement might be impor-
tant, but we do not imply that findings from these studies are 
not useful. First, these studies have an important practical use: 
They can identify efficient classifiers for children at risk for 
persistently low mathematics achievement or mathematics dis-
ability (e.g., Geary, Bailey, & Hoard, 2009; Gersten, Jordan, & 
Flojo, 2005; Mazzocco & Thompson, 2005). Students with 
learning disabilities may display different patterns of mathe-
matics knowledge than do normal-developing students. 
Second, these findings are theoretically important, as they 
describe which types of knowledge load most strongly onto an 
underlying mathematics factor. Furthermore, although esti-
mates of early mathematics skills’ effects on later mathematics 
achievement are likely biased, it is a testable claim (though far 
from a certain one) that the most predictive skills are those that 
have the strongest effects on later achievement. Regardless, 
this is an empirical question that should be addressed through 
a combination of the approaches that we recommend above. 
Indeed, we found that our number factor more strongly pre-
dicted later mathematics achievement than did geometry—a 
finding that is consistent with previous literature suggesting 
the primacy of early number skills (e.g., Aunio & Niemivirta, 
2010; Geary et al., 2013; Jordan et al., 2009).

Limitations

We note several limitations of this work. The first concerns 
our measures. Measures of participants’ mathematics knowl-
edge were taken at multiple points during the school year 
shortly after the students completed games on topics corre-
sponding to those measures and represented a post hoc catego-
rization of mathematics skills. It should be noted that participants 
were not at ceiling on measures of those mathematics skills, 
suggesting that not all students learned the material (see Table 
2). Because all measures of mathematics skills were presented 
via the same method to students (in-game quizzes on the com-
puter), they avoid the common problem of confounding testing 
format with tested material, an advantage of the current study. 
To the extent that using trained tasks would change the factor 
structure of the tests, prior evidence suggests that it would 
decrease the loadings of tests on a general factor. Indeed, the 
loadings of a subtest on a factor of general intelligence have 
been shown to decrease following cognitive training studies (te 
Nijenhuis, van Vianen, & van der Flier, 2007). Additionally, our 
measures of mathematics skills were contextualized as part of 
the ongoing mathematics curriculum and allowed for all stu-
dents to have the opportunity to learn the material, which may 
provide additional ecological validity not afforded by previous 
studies. The specific strands of the later mathematics measures 
that we used were taken from the categorization put forth by the 
California State Board of Education and may not be the most 
theoretically justifiable way to categorize mathematics knowl-
edge. For example, we note that the Measurement and Geometry 
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strand contains items that ask students to use numeracy and cal-
culation skills. Despite our use of different measures than previ-
ous studies and a sample with different age and demographic 
characteristics, we observed a similar factor structure (espe-
cially the very high correlations between factors) to that in a 
study that used a large set of standardized measures (Purpura & 
Lonigan, 2013). In addition, the correlations between the quiz-
zes and the later mathematics measure were similar to those 
reported by Siegler and colleagues (2012), who reported corre-
lations between tests ranging from .22 to .46. Finally, the rela-
tions between our measures and mathematics and reading 
achievement were similar to those estimated in other data sets 
using standardized achievement and control measures (e.g., 
Duncan et al., 2007). Taken together, our measures of mathe-
matics skills show similar relations with other relevant mea-
sures as compared with those used in the literature.

Our measures of mathematics skills may not have been 
complete: We did not administer measures of the approximate 
number system, which others have found to be separate from 
other mathematics skills in factor analyses (e.g., Fazio et al., 
2014; Göbel et al., 2014). However, more research is needed 
to understand if these differences in factor structure emerge 
because of the constructs that are being measured or if they 
reflect measurement variance unique to the different types of 
tasks used to assess these different systems. We recommend 
multitrait-multimethod approaches to further investigate the 
potentially unique role of the approximate number system.

Furthermore, our domain-general controls were not as 
comprehensive as they could have been. We did not include 
a measure of reasoning or general intelligence and instead 
focused on working memory, a construct that has been 
shown to be associated with mathematics (Friso-van den 
Bos, van der Ven, Kroesbergen, & van Luit, 2013). It is note-
worthy that the correlations among our measures of working 
memory and academic achievement, which ranged from .33 
to .40, are very close to the correlations in other studies that 
use measures of general knowledge or intelligence. For 
example, the data sets in Duncan and colleagues (2007) used 
measures of overall intelligence, such as the Wechsler 
Preschool and Primary Scale of Intelligence (Wechsler, 
1967) and the Stanford-Binet Intelligence Scale Form L-M, 
third edition (Terman & Merrill, 1973), and found correla-
tions ranging from .29 to .40 with achievement. The exact 
estimates and statistical significance of predictors will be 
influenced by the strength of the controls in the model. For 
example, some studies found that reading predicted mathe-
matics achievement (e.g., Duncan et al., 2007), yet others 
did not (e.g., Hansen et al., 2015); however, finding some 
nonstatistically significant paths does not mean that remain-
ing statistically significant paths are unbiased. Furthermore, 
limitations associated with the quality of control variables 
do not affect the interpretation of our factor analysis results.

A final limitation concerns the age and ability level of the 
students in the study. It may be that for more advanced 

mathematics content areas, such as fraction knowledge, 
individual differences in these skills are more differentiated. 
Other studies found evidence of age and ability differentia-
tion of domain-general cognitive skills such that skills are 
less correlated in individuals as they get older (Detterman & 
Daniel, 1989; Tucker-Drob, 2009; Very, 1967). Particularly 
high-achieving children may also show more differentiated 
mathematical content knowledge. For example, Detterman 
and Daniel (1989) found evidence of differentiation on IQ 
subtests and that the relations among these skills may be dif-
ferent at different ability levels such that skills in high-abil-
ity individuals are less correlated than in lower-ability 
individuals.

Conclusion

This study aimed to illustrate the extent to which estimates 
of the effect of earlier mathematics skills on later achievement 
obtained from observational studies may be biased by con-
struct confounding. By testing various factor structures of 
mathematics skills and using them in regressions to estimate 
their impacts on later mathematics achievement, specific 
mathematics content, and ELA achievement, we found that a 
general factor accounted for most of the covariance in these 
skills in our sample and likely most of the relations between 
these skills and later mathematics and ELA achievement. 
These findings suggest that simply statistically controlling for 
general cognitive factors and a selection of other specific 
mathematics skills is likely insufficient for obtaining unbiased 
estimates of how specific early mathematics skills influence 
later mathematics achievement. These results highlight a need 
for developing a better understanding of the latent structure of 
early mathematics skills and how these relate to knowledge in 
other content domains and to domain-general cognitive skills.
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Notes

1. The school district did not provide valid mathematics 
California State Test strand data for two third graders and seven 
fourth graders. The sample sizes in Table 5 reflect this.

2. Administration of the California State Test in California was 
discontinued after 2013 with the adoption of the Smarter Balanced 
Assessment.

3. Expectancies and values were combined into one construct 
because the purpose of the study was to control for motivational beliefs 
for math generally, not to interpret effects of motivation on achievement.

4. We tested three-factor exploratory factor analysis solutions 
as well; however, we found that the third factor accounted for only 
one additional item in the third- and fourth-grade samples. Thus, 
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we decided to retain a two-factor solution instead of opting for a 
three-factor solution.

5. Previous studies commonly rely on using unweighted raw 
scores as measures of mathematics knowledge (e.g., Bailey, 
Siegler, & Geary, 2014; Jordan et al., 2013).
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