
Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 155

e-Journal of Business Education & Scholarship of Teaching

Vol. 12, No. 2, September 2018, pp: 155-165.
”http://www.ejbest.org”

Graph Processing Using SAP HANA: A Teaching Case

Mark Hwang

Central Michigan University, USA

Email: Mark.hwang@cmich.edu

Abstract

The purpose of this teaching case is to develop a hands-on exercise on graph processing

using a hybrid system. The paper provides a background on graph databases and how

graph processing is supported in a hybrid system, SAP HANA. It also details step-by-

step instructions on how to create, modify, and process a graph database using SAP

HANA. The teaching case provides instructors with materials that can be readily

implemented in classrooms. Because there is no software to purchase or install, there

are no costs to the instructor or the school. The assignment can be completed by any

student with knowledge of SQL. All the software tools are accessible to any instructor

whose school is a member of the SAP University Alliances program, which is free to join.

Key words: Graph processing; graph databases; NoSQL, SAP HANA; technology.

JEL Classification: I21
PsycINFO Classification: 3530
FoR Code: 1302; 1503
ERA Journal ID#: 35696

mailto:Mark.hwang@cmich.edu

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 156

Introduction

Relational databases have been at the core of enterprise systems for the last forty

years, supporting applications ranging from sales order processing to supply chain

management. In a relational database, structured data are organized neatly into tables

made of columns and rows. In the age of big data, however, organizations are

inundated with increasingly larger amount and varied data including audios and videos,

emails, tweets, and sensor data. The NoSQL market was developed in response to the

need to handle unstructured data in various ways; chief among them, key-value pairs,

document stores, wide-column stores and graph databases (Yegulalp, 2017). Among

the non-relational contenders, graph databases are especially suited for applications

where connections among data points are the focus such as finding friends in a social

network. In a graph database, data are organized into a network of interconnected

nodes. Unlike the relational model where a rigid schema is defined, a graph can be

created and modified without a fixed schema (Robinson et al., 2015; Hurlburt et al.,

2017). Another advantage of a graph database is traversing the graph or network is

extremely fast because all the connections are pre-defined, making it an ideal data store

for other applications besides social networking including mapping, route planning and

network diagnosis (Mortleman, 2016). Another common application of graph databases

is pattern matching that can be readily explored in the connections. The result can be a

recommendation to purchase a product or service or an indication of a cyberattack

(Elhadi et al., 2014) or fraud as exemplified in the Panama Papers case (McKenna,

2016).

Many fledgling database vendors currently compete in the emerging graph database

market. According to one recent estimate, over 50 offerings are available (Longbottom,

2016). Major suppliers of relational database systems, including Oracle, IBM and

Microsoft, have also extended their products by either developing a separate graph

server or adding graph processing capabilities to a relational data store. The latter

approach is appealing as it allows an organization to leverage its existing databases to

new use cases that involve graph processing. A hybrid system that combines graph

processing with a relational or non-graph database is beneficial as the system scales up

and the need for integration of data from different systems arises (Hurlburt et al.,

2017). An example hybrid system is SAP HANA. SAP is a leading enterprise software

vendor best known for its Enterprise Resource Planning (ERP) products. In recent years

SAP developed its proprietary in-memory database known as SAP HANA, which

underpins a technology platform that supports real-time enterprise transactional and

analytical processing. The underlying data model of SAP HANA is relational, but it also

includes a graph engine that supports graph processing (Rudolf et al., 2013). This

assignment allows students to practice graph processing using a relational database as

detailed in the following sections.

Learning Outcomes/Assessment

The objective of the exercise is to provide students with a hands-on experience in graph

processing. Students are expected to:

a) Create a graph database using SQL.

b) Modify the graph database using SQL.

c) Process the graph database using built-in algorithms of SAP HANA.

d) Apply the skills to other domains.

The first three learning outcomes can be assessed by the screenshots taken by students

after completing each of the required steps as illustrated throughout the assignment.

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 157

The fourth learning outcome can be assessed by several open-ended questions asking

students to reflect and think critically, as noted at the end of the assignment.

The Assignment

SAP HANA Graph Processing1

SAP HANA has a graph engine that supports graph processing of data stored in

columnar tables. A graph is basically a network of vertices or nodes interconnected by

edges. Vertices represent entities of interest in a specific domain and edges represent

their relationships. A simple graph consisting of two vertices and one edge is shown

below. In SAP HANA an edge is always “directed”. For example, to record the fact that

Mary lives in New York, V2 will represent “Mary” and V1 will represent “New York”. The

edge E1 will be “lives in” and will be directed from “Mary” to “New York”. Two vertices

can have a reciprocal relationship and thus two directed arrows pointing to each other.

For instance, if V2 is “Mary” and V1 is her Instagram pal “Pete,” and they follow each

other on the social network, there can be an edge E1 “follows” pointing from V2 to V1

and an edge E2 “follows” pointing from V1 to V2. Both vertices and edges can have

properties, facts that are of importance in a specific domain. For example, for people

such as Mary and Pete, we may need to know their ages and income levels. Similarly,

for places such as New York we may need to track properties such as its population,

latitude and longitude, etc. We can also record properties of the edge “lives in” or

“follows” such as the starting date of the relationship.

Figure 1:

A Graph as a Directed Network

An SAP HANA graph workspace is created to describe a graph, which can then be used

to support graph processing of data in response to user query. Common graph

processing operations include the shortest path, neighbourhood search, and the

strongest connected components (Robinson et al., 2015). Pattern matching is another

useful application that allows identification of vertices with similar properties. SAP HANA

1 This exercise is adopted from SAP HANA Graph Reference.

https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 158

has built-in algorithms for all common graph processing operations. Users can use all

built-in algorithms without writing any code.

This exercise illustrates how easy it is to create a graph in SAP HANA from a vertices

table and an edges table. The only prerequisite for completing the assignment is

familiarity with SQL, the common language for all relational databases. After the tables

are created a graph workspace is created to facilitate graph processing. Just like any

tables in a relational database, the graph tables can be modified easily to suit changing

user requirements. The students will practice the creation, processing and modification

of a graph. Sample data is adopted from the Greek Mythology graph data described in

the SAP HANA Graph Data Model, which is replicated on the last page of this document.

Each vertex in the graph represents a mythological figure and his or her properties

including the name, the type of the figure (e.g., god or titan) and his or her residence.

The edges indicate the relationships among the figures (i.e., spousal or parental

relationships). For each relationship, the source and target are defined, e.g., Chaos has

a daughter named Gaia and, therefore, Chaos is the source and Gaia is the target of an

edge named “hasDaughter”.

Section I: Create the graph

The following SQL code can be used to create the two tables and the graph

workspace:

CREATE COLUMN TABLE "MEMBERS" (

 "NAME" VARCHAR(100) PRIMARY KEY,

 "TYPE" VARCHAR(100),

 "RESIDENCE" VARCHAR(100)

);

INSERT INTO "MEMBERS"("NAME", "TYPE") VALUES ('Chaos', 'primordial deity');

INSERT INTO "MEMBERS"("NAME", "TYPE") VALUES ('Gaia', 'primordial deity');

INSERT INTO "MEMBERS"("NAME", "TYPE") VALUES ('Uranus', 'primordial deity');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Rhea', 'titan', 'Tartarus');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Cronus', 'titan', 'Tartarus');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Zeus', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Poseidon', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Hades', 'god', 'Underworld');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Hera', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Demeter', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Athena', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Ares', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Aphrodite', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Hephaestus', 'god', 'Olymp');

INSERT INTO "MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Persephone', 'god',

'Underworld');

CREATE COLUMN TABLE "RELATIONSHIPS" (

 "KEY" INT UNIQUE NOT NULL,

 "SOURCE" VARCHAR(100) NOT NULL REFERENCES "MEMBERS" ("NAME") ON UPDATE

CASCADE ON DELETE CASCADE,

 "TARGET" VARCHAR(100) NOT NULL REFERENCES "MEMBERS" ("NAME") ON UPDATE

CASCADE ON DELETE CASCADE,

 "TYPE" VARCHAR(100)

https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 159

);

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (1, 'Chaos', 'Gaia',

'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (2, 'Gaia',

'Uranus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (3, 'Gaia',

'Cronus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (4, 'Uranus',

'Cronus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (5, 'Gaia', 'Rhea',

'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (6, 'Uranus',

'Rhea', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (7, 'Cronus',

'Zeus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (8, 'Rhea', 'Zeus',

'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (9, 'Cronus',

'Hera', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (10, 'Rhea',

'Hera', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (11, 'Cronus',

'Demeter', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (12, 'Rhea',

'Demeter', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (13, 'Cronus',

'Poseidon', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (14, 'Rhea',

'Poseidon', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (15, 'Cronus',

'Hades', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (16, 'Rhea',

'Hades', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (17, 'Zeus',

'Athena', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (18, 'Zeus', 'Ares',

'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (19, 'Hera', 'Ares',

'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (20, 'Uranus',

'Aphrodite', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (21, 'Zeus',

'Hephaestus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (22, 'Hera',

'Hephaestus', 'hasSon');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (23, 'Zeus',

'Persephone', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (24, 'Demeter',

'Persephone', 'hasDaughter');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (25, 'Zeus', 'Hera',

'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (26, 'Hera', 'Zeus',

'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (27, 'Hades',

'Persephone', 'marriedTo');

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 160

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (28, 'Persephone',

'Hades', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (29, 'Aphrodite',

'Hephaestus', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (30, 'Hephaestus',

'Aphrodite', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (31, 'Cronus',

'Rhea', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (32, 'Rhea',

'Cronus', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (33, 'Uranus',

'Gaia', 'marriedTo');

INSERT INTO "RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (34, 'Gaia',

'Uranus', 'marriedTo');

CREATE GRAPH WORKSPACE "GRAPH"

 EDGE TABLE "RELATIONSHIPS"

 SOURCE COLUMN "SOURCE"

 TARGET COLUMN "TARGET"

 KEY COLUMN "KEY"

 VERTEX TABLE "MEMBERS"

 KEY COLUMN "NAME"

;

To verify that the graph workspace was created successfully, enter the following code

and you should see your graph workspace listed:

SELECT * FROM "SYS"."GRAPH_WORKSPACES";

Figure 2:

Listing of All Graph Workspaces in the System

The second workspace named “GRAPH” in the screenshot was created by the code used

in this assignment.

Next, log onto SAP HANA Graph Viewer and select your graph workspace and you

should see the graph taxonomy of your graph as illustrated below (Figure 3):

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 161

Figure 3:
Graph Taxonomy in the Graph Viewer

Section II: Modify the graph

Visualize your graph and see the properties of Rhea as follows (Figure 4):

Figure 4:

Properties of a Vertex

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 162

Change her residence to Othrys using the following code:

UPDATE "MEMBERS" SET "RESIDENCE" = 'Othrys’ WHERE "NAME" = 'Rhea';

The next screenshot (Figure 5) shows that her residence has been changed to Othrys.

Figure 5:

Updated Properties of a Vertex

Section III: Process the graph

Graph algorithms include the neighbourhood search, the shortest path and the strongest

connected components (SCC). The SCC can be used to partition the graph into

subgraphs where every vertex is connected to every other vertex. Executing SCC in the

Graph Viewer will result in the output as illustrated below. The component index

represents the subgraphs and vertices with the same index number are connected to

each other (i.e., married to each other). See if you can tell the number of couples

represented in the graph (hint: look for vertices with the same color).

Figure 6:
Strongly Connected Components

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 163

Pattern matching can be used to find vertices with similar attributes. For example, we

can find gods that have sons. The following screenshot shows two gods, Zeus and Hera,

with their sons, Hephaestus and Ares.

Figure 7:
Pattern Matching

Critical thinking questions:

1. Modify the graph by adding or deleting vertices or relationships.

2. Process the graph by executing a graph algorithm (e.g., the shortest path or

neighbourhood search). In addition, execute a pattern matching. Explain why

this query is important and how it can be used to find answers in other domains

(e.g., recommendation systems).

Conclusion

Graph processing represents a critical skill of information systems developers in the age

of big data. Knowing how to construct and process a graph enables developers to work

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 164

with data integral to wide ranging applications including social networks, logistics, and

recommendation systems. While pure graph database systems exist, a hybrid system

that combines relational technology with graph processing capability reduces the

learning curve. SAP HANA is an in-memory relational database with a built-in graph

engine that makes graph processing off of relational tables easy to learn and use. This

teaching case details how a small graph database can be created, modified and

processed using SAP HANA. Instructors whose schools are members of the SAP

University Alliances program can readily incorporate the teaching case into a class on

database or emerging technologies.

Figure 8:
Sample Graph Database

References

Elhadi, A. A. E., Maarof, M. A., Barry, B. I. A., & Hamza, H. (2014). Enhancing the Detection of

Metamorphic Malware Using Call Graphs, Computers & Security, 46, 62-78.

Hwang – Volume 12, Issue 2 (2018)

© e-JBEST Vol.12, Iss.2 (2018) 165

Hurlburt, G.F., Thiruvathukal, G.K., & Lee, M.R. (2017). The Graph Database: Jack of All Trades
or Just Not SQL?, IT Professional, 19, 6, 21-25.

Longbottom, C. (2016). Graph Databases: What Are The Benefits for CIOs?, Computer Weekly.
Retrieved from http://www.computerweekly.com/opinion/Graph-databases-What-are-the-

benefits-for-CIOs.

McKenna, B. (2016). Panama Papers Revealed By Graph Database Visualisation Software,
Computer Weekly. Retrieved from
http://www.computerweekly.com/news/450280758/Panama-Papers-revealed-by-graph-
database-visualisation-software.

Mortleman, J. (2016). Graph Databases: Joining the Dots, Computer Weekly. Retrieved from
http://www.computerweekly.com/feature/Graph-databases-Joining-the-dots.

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases: New Opportunities for Connected
Data, 2nd edition, Sebastopol, CA: O’Reilly.

Rudolf, M., Paradies, M., Bornhövd, C., & Lehner, W. (2013). The Graph Story of the SAP HANA
Database, BTW, 403–420.

Yegulalp, S. (2017). What Is NoSQL? NoSQL Databases Explained, InfoWorld. Retrieved from
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-

explained.html

http://www.computerweekly.com/feature/Graph-databases-Joining-the-dots
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html

