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Abstract
There is growing interest among researchers, policy makers, and
practitioners in identifying teachers who are skilled at improving
student outcomes beyond test scores. However, questions remain
about the validity of these teacher effect estimates. Leveraging
the random assignment of teachers to classes, I find that teach-
ers have causal effects on their students’ self-reported behavior in
class, self-efficacy in math, and happiness in class that are similar
in magnitude to effects on math test scores. Weak correlations be-
tween teacher effects on different student outcomes indicate that
these measures capture unique skills that teachers bring to the
classroom. Teacher effects calculated in nonexperimental data are
related to these same outcomes following random assignment, re-
vealing that they contain important information content on teach-
ers. However, for some nonexperimental teacher effect estimates,
large and potentially important degrees of bias remain. These re-
sults suggest that researchers and policy makers should proceed
with caution when using these measures. They likely are more
appropriate for low-stakes decisions—such as matching teachers
to professional development—than for high-stakes personnel de-
cisions and accountability.
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Validating Teacher Effects

1. INTRODUCTION
Decades’ worth of research on education production have narrowed in on the impor-
tance of teachers to student outcomes (Murnane and Phillips 1981; Todd and Wolpin
2003). Over the last several years, these studies have coalesced around two key findings.
First, teachers vary considerably in their abilities to improve students’ academic perfor-
mance (Nye, Konstantopoulos, and Hedges 2004; Hanushek and Rivkin 2010), which
in turn influences a variety of long-term outcomes including teenage pregnancy rates,
college attendance, and earnings in adulthood (Chetty, Friedman, and Rockoff 2014b).
Second, experimental and quasi-experimental studies indicate that “value-added” ap-
proaches to estimating teachers’ contributions to student test scores are valid ways to
identify effective teachers (Kane and Staiger 2008; Kane et al. 2013; Chetty, Friedman,
and Rockoff 2014a; Glazerman and Protik 2015; Bacher-Hicks et al. 2017). In other
words, on average, these teacher effect estimates are not confounded with the non-
random sorting of teachers to students, the specific set of students in the classroom,
or factors beyond teachers’ control. Policy makers have taken notice of these findings,
leading to widespread changes in teacher evaluation, compensation, and promotion.

While these studies have focused predominantly on teachers’ impact on students’
academic performance, the research community is starting to collect evidence that
teachers also vary in their contributions to a variety of other student outcomes in ways
that are only weakly related to their effects on test scores (Jennings and DiPrete 2010;
Jackson 2012; Gershenson 2016; Kraft, forthcoming). For example, in work drawing
on the study that generated data used in this paper, Blazar and Kraft (2017) found that
teachers identified as 1 standard deviation (SD) above the mean in the distribution of ef-
fectiveness improved students’ self-reported behavior in class, self-efficacy in math, and
happiness in class by between 0.15 SD to 0.30 SD. These effects are similar to or larger
than teacher effects on students’ test scores (Hanushek and Rivkin 2010). However,
teachers who were effective at improving these outcomes often were not equally effec-
tive at improving students’ math test scores, with correlations between teacher effect
estimates no higher than 0.19. Jackson (2012) came to similar conclusions using addi-
tional student outcomes, and also found that teacher effects on non-tested outcomes
captured in ninth grade predicted longer-run outcomes, including high school comple-
tion above and beyond teachers’ effects on test scores (Jackson 2016). Together, these
findings lend empirical evidence to the multidimensional nature of teaching and, thus,
the need for policy makers to account for this sort of complexity.

Given that the research base examining teachers’ contributions to student outcomes
beyond test scores is relatively new, important questions remain about the validity of
these measures. In the value-added literature more broadly, researchers have asked
about the sensitivity of teacher effects to different model specifications and the spe-
cific set of covariates included in the model (Goldhaber and Theobald 2012), as well
as the most appropriate ways to calculate these scores in light of measurement error
(Guarino et al. 2015). Further, it is not clear whether the key identifying assumption un-
derlying the estimation of teacher effects—that estimates are not biased by nonrandom
sorting of students to teachers (Kane et al. 2013; Chetty, Friedman, and Rockoff 2014a)—
holds when test scores are replaced with other student outcomes. Researchers who es-
timate value added to students’ test scores typically control for prior test scores because
they capture many of the predetermined factors that also affect current achievement,
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including the schools students attend, their neighborhoods, and the family members
with whom they interact. However, it is possible there are additional factors not cap-
tured by prior test scores or by prior measures of the outcome variable that lead to bias
in teacher effects on other student outcomes beyond test scores.

I examine these issues by drawing on a dataset in which participating students com-
pleted a survey that asked about a range of attitudes and behaviors in class. In the third
year of the study, a subset of participating teachers (N = 41) was randomly assigned
to class rosters within schools. Together, these data allow me to examine the extent to
which teachers vary in their contribution to students’ attitudes and behaviors, even after
random assignment; the sensitivity of teacher effects on students’ attitudes and behav-
iors to different model specifications, including those that control for students’ prior
academic performance versus prior attitudes and behaviors; and, ultimately, whether
nonexperimental estimates of teacher effects on these attitudes and behaviors predict
these same outcomes following random assignment, which produces a measure of
forecast bias.

Findings indicate that teachers have causal effects on students’ self-reported behav-
ior in class, self-efficacy in math, and happiness in class. The magnitude of the teacher-
level variation on these outcomes is similar to or larger than effects on math test scores
(e.g., Hanushek and Rivkin 2010). Weak correlations between teacher effects on differ-
ent student outcomes indicate that these measures capture unique skills that teachers
bring to the classroom. However, in some cases, value-added approaches to estimating
these teacher effects appear to be insufficient to account for all sources of bias. One
exception is teacher effects on students’ behavior in class, where predicted differences
perfectly predict actual differences following random assignment. In the observational
portion of this study, teacher effects are not particularly sensitive to models that control
for students’ prior achievement, student demographic characteristics, or prior survey
responses. Given that these are the tools and data typically available to the econometri-
cian, it is not clear that bias could easily be reduced further. In turn, it will be important
for researchers and policy makers to use these estimates of teacher effectiveness with
caution. In the Conclusion, I describe some potential uses of these measures, focus-
ing on low-stakes decision making (such as matching teachers to professional develop-
ment) rather than high-stakes decisions (such as teacher evaluation and promotion).

2. VALIDATING METHODS FOR ESTIMATING TEACHER EFFECTS
ON STUDENT OUTCOMES

Over the last decade, several experimental and quasi-experimental studies have tested
the validity of nonexperimental methods for estimating teacher effects on student
achievement. In the first of these, Kane and Staiger (2008) described the rationale
and setup for such a study: “Non-experimental estimates of teacher effects attempt
to answer a very specific question: If a given classroom of students were to have
teacher A rather than teacher B, how much different would their average test scores
be at the end of the year?” (p. 1). However, as these sorts of teacher effects estimates
are derived from conditions where nonrandom sorting is the norm (Clotfelter, Ladd,
and Vigdor 2006; Rothstein 2010), these models assume that statistical controls (e.g.,
students’ prior achievement, demographic characteristics) are sufficient to isolate the
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talents and skills of individual teachers rather than “principals’ preferential treatment
of their favorite colleagues, ability-tracking based on information not captured by prior
test scores, or the advocacy of engaged parents for specific teachers” (Kane and Staiger
2008, p. 1).1

Random assignment of teachers to classes offers a way to test this assumption.
If nonexperimental teacher effects are causal estimates that capture true differences
in quality between teachers, then nonexperimental or predicted differences should be
equal, on average, to actual differences following the random assignment of teachers to
classes. In other words, a 1 SD increase in predicted differences in achievement across
classrooms should result in a 1 SD increase in observed differences, on average. Esti-
mates that are statistically significantly greater than 0 SD indicate that nonexperimen-
tal teacher effects contain some information content about teachers’ underlying talents
and skills. However, deviations from the 1:1 relationship would signal that these scores
also are influenced by factors beyond teachers’ control, including students’ background
and skill, the composition of students in the classroom, or strategic assignment poli-
cies. These deviations often are referred to as “forecast bias.”

Results from Kane and Staiger (2008) and other experimental studies (Kane et al.
2013; Glazerman and Protik 2015; Bacher-Hicks et al. 2017) have accumulated to pro-
vide strong evidence against bias in teacher effects on students’ test scores. Pooling
results from three experimental studies with the same research design (i.e., teachers
randomly assigned to class rosters within schools2), Bacher-Hicks et al. (2017) found an
estimate of 0.96 SD relating predicted, nonexperimental teacher effects on students’
math achievement to actual differences in this same outcome following random as-
signment. Predicted teacher effects were calculated from models that controlled for
students’ prior achievement. Given the nature of their meta-analytic approach, the stan-
dard error around this estimate (0.099) was much smaller than in each individual
study, and the corresponding 95 percent confidence interval included 1 SD, indicating
little or no bias. This result was quite similar to findings from quasi-experimental stud-
ies in much larger administrative datasets, which leveraged plausibly exogenous varia-
tion in teacher assignments due to staffing changes at the school-grade level (Bacher-
Hicks, Kane, and Staiger 2014; Chetty, Friedman, and Rockoff 2014a).

Following a long line of inquiry around the sensitivity of value-added estimates to
different model specifications and which may be most appropriate for policy (Aaronson,
Barrow, and Sander 2007; Newton et al. 2010; Goldhaber and Theobald 2012; Blazar,
Litke, and Barmore 2016), many of these studies also examined the predictive validity of
alternative methods for estimating teacher effects. For example, some have advocated
for controlling for the composition of students in the classroom, which is thought to
influence test scores beyond teachers themselves (Hanushek et al. 2003; Kupermintz
2003). Others have specified models that only compare teachers within schools in order

1. See Bacher-Hicks et al. (2017) for an analysis of persistent sorting in the classroom data used in this study.
2. In a fourth experimental study, Glazerman and Protik (2015) exploited random assignment of teachers across

schools as part of a merit pay program. There, findings were more mixed. In the elementary school sample, the
authors estimated a standardized effect size of roughly 1 SD relating nonexperimental value-added scores (stack-
ing across math and reading) to student test scores following random assignment. However, in their smaller
sample, the standard error was large (0.34), meaning they could not rule out potentially large degrees of bias.
Further, in the middle school sample, they found no statistically significant relationship between nonexperi-
mental and experimental teacher effect estimates.
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to limit bias due to sorting of teachers and students across schools (Rivkin, Hanushek,
and Kain 2005); however, this approach can lead to large differences in teacher rank-
ings relative to models that compare teachers across schools (Goldhaber and Theobald
2012). The general conclusion across validation studies is that controlling for students’
prior achievement is sufficient to account for the vast majority of bias in teacher effect
estimates on achievement (Chetty, Friedman, and Rockoff 2014a; Kane et al. 2013; Kane
and Staiger 2008).

To my knowledge, only one study has examined the predictive validity of teacher
effects on student outcomes beyond test scores.3 Drawing on the quasi-experimental
design described by Chetty, Friedman, and Rockoff (2014a), Backes and Hansen (2018)
examined the validity of teacher effects on a range of observed school behaviors cap-
tured in administrative records. They found that teacher effects on students’ suspen-
sions and percent of classes failed did not contain bias when pooling across all grade
levels. However, teacher effects on unexcused absences, grade point average, and on-
time grade progression did contain moderate to large degrees of bias, as least in some
grade levels. For teacher effects on both unexcused absences and on-time grade pro-
gression, predicted differences at the elementary level overstated actual differences (i.e.,
coefficient less than 1 SD), likely due to sorting of higher-performing students to higher-
performing teachers in a way that could not be controlled for in the model. The opposite
was true at the high school level, where predicted differences in teacher effectiveness
understated actual differences (i.e., coefficient greater than 1 SD). This suggests that
bias in teacher effects on outcomes beyond test scores may not be easily quantified or
classified across contexts.

3. DATA AND SAMPLE
As in Blazar and Kraft (2017) and Bacher-Hicks et al. (2017), this paper draws on data
from the National Center for Teacher Effectiveness (NCTE), whose goal was to develop
valid measures of effective teaching in upper-elementary mathematics. Over the course
of three school years (2010–11 through 2012–13), the project collected data from partic-
ipating fourth- and fifth-grade teachers (N = 310) in four anonymous districts from
three states on the east coast of the United States. Participants were generalists who
taught all subject areas. This is important, as it provided an opportunity to estimate
the contribution of individual teachers to students’ attitudes and behaviors that was not
confounded with the effect of another teacher with whom a student engaged in the
same year. Teacher–student links were verified for all study participants based on class
rosters provided by teachers.

Measures of students’ attitudes and behaviors came from a survey administered in
the spring of each school year (see Appendix table A.1 for survey item text and descrip-
tive statistics). Based on theory and exploratory factor analyses (see Blazar and Kraft

3. Two additional studies have examined teacher effects on students’ attitudes and behaviors using the random
assignment portion of the Measures of Effective Teaching (MET) project. Kraft (forthcoming) found sizeable
teacher effects on students’ grit, growth mindset, and effort in class (0.10 to 0.17 SD). Correlations between
teacher effects on students’ academic performance versus effects on other outcomes were no higher than 0.22.
Kane et al. (2013) found that a composite measure of teacher effectiveness based on observational data predicted
student effort following random assignment. However, measures of students’ attitudes and behaviors were col-
lected in only one year. Therefore, it was not possible to relate teacher effects calculated under nonexperimental
conditions to teacher effects on this same outcome calculated under experimental ones.
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2017), I divided items into three constructs: Behavior in Class (internal consistency re-
liability [α] is 0.74), Self-Efficacy in Math (α = 0.76), and Happiness in Class (α = 0.82).
Teacher reports of student behavior and self-reports of versions of the latter two con-
structs have been linked to labor market outcomes even controlling for cognitive ability
(Lyubomirsky, King, and Diener 2005; Mueller and Plug 2006; Chetty et al. 2011), lend-
ing strong consequential validity to these metrics. Blazar and Kraft (2017) describe ad-
ditional validity evidence, including convergent validity, for these constructs. For each
of these outcomes, I created final scales by reverse coding items with negative valence,
averaging student responses across all available items, and then standardizing to mean
of 0 and SD of 1.4 Standardization occurred within school year but across grades.

Student demographic and achievement data came from district administrative
records. Demographic data included sex, race/ethnicity, free- or reduced-price lunch
(FRPL) eligibility, limited English proficiency (LEP) status, and special education
(SPED) status. These records also included current- and prior-year test scores in math
and reading on state assessments, which were standardized within district by grade,
subject, and year using the entire population of students in each district, grade, sub-
ject, and year.

I focus on two subsamples from the larger group of 310 teachers. The primary ana-
lytic sample includes the subset of 41 teachers who were part of the random assignment
portion of the NCTE study in the third year of data collection. I describe this sample
and the experimental design in the next section. The second sample includes the set of
students (and their teachers) who took the project-administered survey in both the cur-
rent and prior years. This allowed me to test the sensitivity of teacher effect estimates to
different model specifications, including those that controlled for students’ prior survey
responses, from a balanced sample of teachers and students. As noted previously, the
student survey only was administered in the spring of each year; therefore, this sample
consisted of the group of fifth-grade teachers who happened to have students who also
were part of the NCTE study in the fourth grade (N = 51 teachers; N = 548 students).5

Generally, I found that average teacher characteristics, including their sex, race,
math course taking, math knowledge, route to certification, years of teaching expe-
rience, and value-added scores calculated from state math tests were similar across
samples (see table 1).6 Given that teachers self-selected into the NCTE study, I also

4. For all three outcomes, composite scores that average across raw responses are correlated at 0.99 and above
with scales that incorporate weights from the factor analysis.

5. This sample size is driven by teachers whose students had current- and prior-year survey responses for Happiness
in Class, which was only available in two of the three years of the study. Additional teachers and students had
current- and prior-year data for Behavior in Class (N = 111) and Self-Efficacy in Math (N = 108), both of which were
available in all three years of the study. For consistency, I limit this sample to teachers and students who had
current- and prior-year scores for all three survey measures. I did not place any restriction on the number of
students each teacher needed to have in order to be included in this sample. Although others advocate excluding
teachers with fewer than five students per class (Kane and Staiger 2008), for example, this would have further
reduced my sample. Instead, I rely on the fact that shrinkage estimators shrink estimates more for teachers
with few students than for teachers with larger classes.

6. Background information on teachers was captured on a questionnaire administered in the fall of each year. Sur-
vey items included years teaching math, route to certification, amount of undergraduate or graduate coursework
in math and math courses for teaching (1 = No classes, 2 = One or two classes, 3 = Three to five classes, 4 =
Six or more classes). For simplicity, I averaged these last two items to form one construct capturing teachers’
mathematics coursework. Further, the survey included a test of teachers’ mathematical content knowledge,
with items from both the Mathematical Knowledge for Teaching assessment and the Massachusetts Test for
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Table 1. Demographic Characteristics of Participating Teachers

Experimental Sample Nonexperimental Sample District Populations

Full NCTE p-value on p-value on p-value on
Sample Mean Difference Mean Difference Mean Difference

Male 0.16 0.15 0.95 0.19 0.604 — —

African American 0.22 0.18 0.529 0.24 0.790 — —

Asian 0.03 0.05 0.408 0.00 0.241 — —

Hispanic 0.03 0.03 0.866 0.02 0.686 — —

White 0.65 0.70 0.525 0.67 0.807 — —

Mathematics coursework 2.58 2.62 0.697 2.54 0.735 — —

Mathematical content knowledge 0.01 0.05 0.816 0.07 0.671 — —

Alternative certification 0.08 0.08 0.923 0.12 0.362 — —

Teaching experience 11.04 14.35 0.005 11.44 0.704 — —

Value added on state math test 0.02 0.00 0.646 0.01 0.810 0.00 0.065

p-value on joint test 0.533 0.958 NA

Teachers 310 41 51 3,454

Note: p-value refers to difference from the full National Center for Teacher Effectiveness (NCTE) sample.

tested whether these samples differed from the full population of fourth- and fifth-
grade teachers in each district with regard to value-added scores on the state math test
(see equation 1 for more details on these value-added predictions). Although I found a
marginally significant difference between the full NCTE sample and the district popu-
lations (p = 0.065), I found no difference between the district populations and either
the experimental or nonexperimental subsamples used in this analysis (p = 0.890 and
0.652, respectively; not shown in table 1). These similarities lend external validity to my
findings.

4. EXPERIMENTAL DESIGN
In the spring of 2012, the NCTE project team worked with staff at participating schools
to randomly assign sets of teachers to class rosters of the same grade level (i.e., fourth
or fifth grade) that were constructed by principals or school leaders. To be eligible for
randomization, teachers had to work in schools and grades in which there was at least
one other participating teacher. In addition, their principal had to consider these teach-
ers as capable of teaching any of the rosters of students designated for the group of
teachers.

In order to fully leverage this experimental design, it was important to limit the
most pertinent threats to internal validity: attrition and noncompliance among partic-
ipating teachers and students (Murnane and Willett 2011). My general approach was
to focus on randomization blocks in which attrition and noncompliance were not a
concern. As these blocks are analogous to individual experiments, dropping individual
ones should not threaten the internal validity of results. First, I restricted the sample to
blocks where teachers and their randomization block partner(s) had both current-year

Educator Licensure. Teacher scores were generated by IRTPro software and standardized in these models, with
a reliability of 0.92. For more information about these constructs, see Hill, Blazar, and Lynch 2015.
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student outcomes and prior-year, nonexperimental teacher effect estimates. Of the orig-
inal 79 teachers who agreed to participate and were randomly assigned to class rosters
within schools7, I dropped seven teachers who left the study before the beginning of
the 2012–13 school year for reasons unrelated to the experiment (i.e., leaving the district
or teaching, maternity leave, change in teaching assignment); eleven teachers who only
were part of the study in the third year and, therefore, did not have the necessary data
from prior years to calculate nonexperimental teacher effects on students’ attitudes and
behaviors; and seven teachers whose random assignment partner(s) left the study for
either of the two reasons above.8

Next, I restricted the remaining sample to randomization blocks with low levels
of noncompliance among participating students. Here, noncompliance refers to the
fact that some students switched out of their randomly assigned teacher’s classroom.
Other studies that exploit random assignment between teachers and students have ac-
counted for this form of noncompliance through instrumental variables estimation and
calculation of treatment on the treated (Kane et al. 2013; Glazerman and Protik 2015;
Bacher-Hicks et al. 2017). However, this approach was not possible in this study, given
that students who transferred out of an NCTE teacher’s classroom no longer had sur-
vey data to calculate teacher effects on these outcomes. Further, I would have needed
to have prior student survey responses for these students’ actual teachers, which I did
not. In total, 28 percent of students moved out of their randomly assigned teachers’
classroom (see Appendix table A.2 for information on reasons for and patterns of non-
compliance). At the same time, noncompliance was nested within a small subset of six
randomization blocks. In these blocks, rates of noncompliance ranged from 40 percent
to 82 percent due primarily to principals and school leaders who made changes to the
originally constructed class rosters. By eliminating these blocks, I am able to focus on
a sample with a much lower rate of noncompliance (11 percent) and where patterns of
noncompliance are much more typical. The remaining eighteen blocks had a total of
67 noncompliers and an average rate of noncompliance of 9 percent per block; three
randomization blocks had full compliance.

In table 2, I confirm the success of the randomization process among the teach-
ers in my final analytic sample (N = 41) and the students on their randomly assigned
rosters (N = 598).9 In a traditional experiment, one can examine balance at baseline
by calculating differences in average student characteristics between the treatment and
control groups. In this context, though, treatment consisted of multiple possible teach-
ers within a given randomization block. Thus, to examine balance, I examined the rela-
tionship between the assigned teacher’s predicted effectiveness at improving students’

7. Two other teachers from the same randomization block also agreed to participate. However, the principal de-
cided that it was not possible to randomly assign rosters to these teachers. Thus, I exclude them from all anal-
yses.

8. One concern with dropping teachers in this way is that they may differ from other teachers on post-
randomization outcomes, which could bias results. Comparing attriters for whom I had post-randomization
data (N = 21, which excludes the four teachers who either left teaching, left the district, moved to third grade
and therefore out of my dataset, or were on maternity leave) to the remaining teachers (N = 54) on their ob-
served effectiveness at raising students’ math achievement in the 2012–13 school year, I found no difference (p =
0.899). Further, to ensure strong external validity, I compared attriters to the experimental sample on each of
the teacher characteristics listed in table 1 and found no difference on any.

9. Thirty-eight students were hand-placed in these teachers’ classrooms after the random assignment process. As
these students were not part of the experiment, they were excluded from all analyses.
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Table 2. Relationship between Randomly Assigned Teacher Effective-
ness in Math and Student Characteristics

Teacher Effects on State
Math Scores from

Randomly Assigned Teacher

Male −0.005
(0.009)

African American 0.028
(0.027)

Asian 0.030
(0.029)

Hispanic 0.043
(0.028)

White 0.010
(0.028)

FRPL 0.002
(0.011)

SPED −0.023
(0.021)

LEP 0.004
(0.014)

Prior achievement on state math test 0.009
(0.007)

Prior achievement on state reading test −0.001
(0.007)

p-value on joint test 0.316

Teachers 41

Students 598

Notes: The regression model includes fixed effects for randomization
block. Robust standard errors in parentheses. FRPL = free- or reduced-
price lunch eligible; LEP = limited English proficiency status; SPED =
special education status.

state math test scores in years prior to the experiment and baseline student character-
istics. Specifically, I regressed these teacher effect estimates on a vector of observable
student characteristics and fixed effects for randomization block. As expected, observ-
able student characteristics were not related to teacher effects on state math tests, either
tested individually or as a group (p = 0.808), supporting the fidelity of the randomiza-
tion process. Students who did not stay in their randomly assigned teacher’s classroom
(i.e., “noncompliers”) look similar to compliers at improving state math test scores in
years prior to random assignment, based on observable baseline characteristics, as well
as the observed effectiveness of their randomly assigned teacher (see Appendix table
A.3).10 As such, I am less concerned about having to drop the few noncompliers left in
my sample from all subsequent analyses.

10. Twenty-six students were missing baseline data on at least one characteristic. In order to retain all students, I
imputed missing data to the mean of the students’ randomization block. I take the same approach to missing
data in all subsequent analyses. This includes the nineteen students who were part of my main analytic sample
but happened to be absent on the day that project managers administered the student survey and, thus, were
missing outcome data. This approach to imputation seems reasonable given that there was no reason to believe
that students were absent on purpose to avoid taking the survey.
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5. EMPIRICAL STRATEGY
For all analyses, I began with the following model of student production:

OUTCOMEidsg jt = α f (Ait−1)+ζOUTCOMEit−1 +πXit +ωX̄ c
it +ϕX̄ s

it +εidsg jt . (1)

OUTCOMEidsg jct was used interchangeably for each survey construct—that is, Behavior
in Class, Self-Efficacy in Math, and Happiness in Class—for student i in district d, school s,
grade g taught by teacher j in year t. As a point of comparison, I also specify models that
use students’ math achievement as an outcome. Throughout the paper, I test a variety of
alternative models that include different combinations of control variables. The full set
of controls includes a cubic function of students’ prior academic achievement, Ait−1,
in both math and reading; a prior measure of the outcome variable, OUTCOMEit−1;
student demographic characteristics, Xit , including gender, race, FRPL eligibility, SPED
status, and LEP status; these same test-score variables and demographic characteristics
averaged to the class level, X̄ c

it , and to the school level, X̄ s
it ; and school fixed effects, σs,

which replace school characteristics in some models.
To generate teacher effect estimates, which I refer to as τ̂ S

jt , I took two approaches,
each with strengths and limitations. First, I calculated teacher effects by fitting equation
1 using ordinary least squares (OLS) regression and then averaging student-level resid-
uals to the teacher level. I did so separately for each outcome measure, as well as with
several different model specifications denoted by the superscript, S. This approach is
intuitive, as it creates an estimate of the contribution of teachers to student outcomes
above and beyond factors already controlled for in the model. It also is computationally
simple.11 At the same time, measurement error in these estimates due to, for example,
small class sizes, sampling idiosyncrasies, and measurement error in students’ survey
responses may lead me to overstate the variance of true teacher effects; it also could
attenuate the relationship between different measures of teacher effectiveness (e.g.,
measures at two points in time), even if they capture the same underlying construct.

Therefore, I also calculated a form of empirical Bayes estimates that take into ac-
count measurement error and shrink teacher effects back toward the mean based on
their precision. To do so, I included a teacher-level random effect in the model, which
I fit using restricted maximum likelihood. This approach is similar to a two-step ap-
proach described by others (e.g., Kane et al. 2013; Chetty, Friedman, and Rockoff 2014a;
Guarino et al. 2015) that first calculates the unshrunken teacher effects using OLS and
then multiplies these by a shrinkage factor. The shrinkage factor generally is calculated
by looking at variation in teacher effects within teachers and across classrooms. It was
not possible to use this two-step approach here given that data from multiple class-
rooms from the same teacher were not available in the experimental portion of the
study; elementary teachers in the sample all worked with just one class in a given year.
Instead, the one-step random effects approach I use shrinks estimates back toward the
mean based on the variance of the observed data (Raudenbush and Bryk 2002). Al-
though shrinking teacher effects is commonplace in both research and policy (Koedel,

11. An alternative fixed-effects specification is preferred by some because it does not assume that teacher assign-
ment is uncorrelated with factors that predict student outcomes (Guarino et al. 2015). However, in these data,
this approach returned similar estimates in models where it was feasible to include teacher fixed effects in addi-
tion to the other set of control variables, with correlations of 0.99 or above (see Blazar and Kraft 2017 for more
details).
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Mihaly, and Rockoff 2015), theory and simulated analyses show that shrunken estimates
are biased downward relative to the size of the measurement error (Jacob and Lefgren
2005). I refer to these two sets of estimates as “unshrunken” and “shrunken” teacher
effects.

I utilized these teacher effect estimates for three subsequent analyses. First, I es-
timated the variance of τ̂ S

jt in order to examine the extent to which teachers vary in
their contributions to students’ attitudes and behaviors. I focused on the experimental
sample in order to be assured that estimates were not biased by nonrandom sorting.
Given that the variance of true teacher effects is bounded between the unshrunken
and shrunken estimates (Raudenbush and Bryk 2002), I present both. The latter are
model-based estimates reported directly from the random effects model. By calculating
pairwise correlations between these teacher effect estimates, I also examined whether
teachers who improved one student outcome were equally effective at improving
others.

Second, I examined the sensitivity of τ̂ S
jt to different model specifications. I began

with a baseline model that calculated teacher effects controlling only for students’ prior
academic achievement, as this is the measure typically used to account for nonrandom
sorting when test scores are the outcome of interest (Kane and Staiger 2008; Kane et al.
2013; Chetty, Friedman, and Rockoff 2014a). I also considered a model that conditioned
estimates on a lagged measure of students’ survey response, which is a more direct
analog of the value-added approach by looking at gains in student outcomes. Additional
variations of these models include ones that control for student, class, or school char-
acteristics. In order to address concerns about “reference bias” in self-reported survey
measures (Duckworth and Yeager 2015; West et al. 2016), I also replaced school charac-
teristics with school fixed effects. By making within-school comparisons, I am able to
difference out school-level factors, including norms around behavior or engagement,
that can create an implicit standard of comparison students use when judging their
own behavior or engagement. It was not possible to run this second set of analyses in
the experimental sample, given that only a small subset of students and teachers in that
sample had lagged survey measures. There also was no guarantee that a teacher who
had students with prior survey measures had a randomization block partner whose stu-
dents had these measures. Instead, I focused on the balanced sample of teachers and
students with all possible control variables from the larger observational dataset.

In my third and final set of analyses, I examined whether nonexperimental teacher
effect estimates calculated in years prior to 2012–13 predicted student outcomes follow-
ing random assignment. The randomized design allowed for a straightforward analytic
model:

OUTCOMEi jsg2012−13 = δτ̂ S
jt<2012−13 + νsg + εi jsgt . (2)

OUTCOMEi jsg2012−13 was used interchangeably for each outcome measure for student
i in teacher j’s classroom in the 2012–13 school year. I predicted these measures in
the random assignment year with predicted, nonexperimental teacher effect estimates,
τ̂ S

jt<2012−13. That is, when Behavior in Class is the outcome of interest, τ̂ S
jt<2012−13 rep-

resents a nonexperimental estimate of teachers’ effectiveness at improving students’
Behavior in Class in prior years; when Self-Efficacy in Math is the outcome of interest,
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Table 3. Standard Deviation of Teacher-Level Variance

(1) (2) (3)

Panel A: Unshrunken Estimates

State math test 0.28 0.19 0.13

Behavior in Class 0.28 0.24 0.14

Self-Efficacy in Math 0.29 0.27 0.19

Happiness in Class 0.35 0.35 0.26

Panel B: Shrunken Estimates

State math test 0.22 0.18 0.13

Behavior in Class 0.13 0.09 0.05

Self-Efficacy in Math 0.00 0.00 0.08

Happiness in Class 0.33 0.33 0.34

Prior achievement X X

Student characteristics X

Class characteristics X

School-by-grade fixed effects X X X

Teachers 41 41 41

Students 531 531 531

τ̂ S
jt<2012−13, represents a nonexperimental estimate of teachers’ effectiveness at improv-

ing Self-Efficacy in Math in prior years. Following the research design, I included fixed
effects for each randomization block, νsg. In order to increase the precision of my es-
timates, I calculated nonexperimental teacher effects using all available teacher-years
prior to the experiment. For the same reason, in equation 2, I also controlled for stu-
dents’ prior achievement, demographic characteristics, and class characteristics cap-
tured from the randomly assigned rosters. I clustered standard errors at the class level
to account for the nested structure of the data.

My parameter of interest is δ, which describes the relationship between nonexperi-
mental teacher effect estimates and current student outcomes. As in Kane and Staiger
(2008), I examined whether these estimates had any predictive validity (i.e., whether
they were statistically significantly different from 0 SD) and whether they contained
some degree of bias (i.e., whether they were statistically significantly different from
1 SD).

6. RESULTS
Experimental Teacher Effects on Students’ Attitudes and Behaviors

In table 3, I present results describing the extent to which teachers vary in their contri-
butions to students’ attitudes and behaviors, as well as their math achievement. Es-
timates represent the standard deviation of the teacher-level variance, with panel A
and panel B presenting unshrunken and shrunken estimates, respectively. In table 4,
I present correlations between corresponding unshrunken and shrunken estimates.
All models focus on the experimental sample in which teachers were randomly as-
signed to class rosters within schools, and therefore include randomization block (i.e.,
school-by-grade) fixed effects to match this design. Model 1 estimates teacher effects
with no additional controls, and model 2 adds students’ prior achievement in math and
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Table 4. Correlations between Unshrunken and Shrunken Teacher
Effect Estimates

(1) (2) (3)

Teacher effects on state math test 0.93 0.95 0.84

Teacher effects on Behavior in Class 0.87 0.84 0.87

Teacher effects on Self-Efficacy in Math — — 0.83

Teacher effects on Happiness in Class 0.95 0.95 0.87

Prior achievement X X

Student characteristics X

Class characteristics X

School-by-grade fixed effects X X X

Teachers 41 41 41

Note: Empty cells indicate that variation in unshrunken or shrunken
teacher effects is close to 0 SD (see table 3).

reading, which is standard practice when estimating teacher effects. In model 3, I add
student demographic characteristics, as well as class characteristics that aim to remove
the contribution of peer effects from the teacher effect estimates. It was not possible to
model classroom-level shocks directly, as random assignment data were not available
over multiple classes or school years. Class characteristics describe the set of students
included on the randomly assigned rosters rather than the students who ultimately
stayed in that classroom.

I begin by describing the magnitude of teacher effects on students’ math perfor-
mance on state tests, which have been well documented in the academic literature (for
a review, see Hanushek and Rivkin 2010) and thus provide a point of comparison for the
magnitude of teacher effects on students’ attitudes and behaviors. I find that a 1 SD in-
crease in teacher effectiveness is equivalent to between a 0.13 SD and 0.28 SD increase
in students’ math achievement. Results are fairly similar between the corresponding
unshrunken and shrunken estimates, particularly when controlling for students’ prior
achievement. In models 2 and 3, the magnitude of the teacher-level variation for these
unshrunken and shrunken estimates are almost identical to two decimal places, and
correlations between them range from 0.84 to 0.95. These results are quite similar to
those found by Guarino et al. (2015), who argued that the “effect of shrinkage itself does
not appear to be practically important for properly ranking teachers or to ameliorate the
performance of the [unshrunken] estimator” (p. 212).

Whereas I do not find large differences in the magnitude of teacher effects on math
test scores between shrunken and unshrunken estimates, I do observe differences de-
pending on the set of covariates included in the model. In particular, the variance of
teacher effects on math test scores is substantively larger in model 1 (0.28 and 0.22 SD
for unshrunken and shrunken estimates, respectively), which only controls for random-
ization block fixed effects, than in model 3 (0.13 SD for both unshrunken and shrunken
estimates), which also controls for student and class characteristics. This is consistent
with other literature, suggesting that controlling for observable class or peer characteris-
tics produces a conservative estimate of the magnitude of teacher effects on student test
scores (Kane et al. 2013; Thompson, Guarino, and Wooldridge 2015). In model 3, both
shrunken and unshrunken teacher effect estimates of 0.13 SD indicate that, relative to

293



Validating Teacher Effects

an average teacher, teachers at the 84th percentile of the distribution of effectiveness
move the median student up to roughly the 55th percentile of math achievement.

I also find that teachers have substantive impacts on self-reported measures of
students’ attitudes and behaviors. The largest of these teacher effects is on students’
Happiness in Class, where a 1 SD increase in teacher effectiveness leads to a roughly
0.30 SD increase in this outcome. Similar to teacher effects on students’ math perfor-
mance, results for teacher effects on students’ Happiness in Class are fairly consistent
between panel A and panel B, indicating that shrinkage does not necessarily boost per-
formance. Correlations between unshrunken and shrunken estimates range from 0.87
to 0.95. For the unshrunken teacher effects, estimates are smaller when controlling for
student and class characteristics in model 3 (0.26 SD) compared with estimates from
the other two models (0.35 SD). This is not the case for the shrunken teacher effects,
where estimates across all three models are roughly 0.33 SD. In model 3, the variance
of the unshrunken teacher effects on students’ Happiness in Class is slightly larger than
the variance of the analogous shrunken estimates. This is possible given that, as de-
scribed above, the shrunken estimates are not derived by directly shrinking the un-
shrunken estimates. Rather, these estimates come from a separate model that includes
a teacher-level random effect and generates model-based estimates of the variance
component.

The evidence also points to sizeable teacher effects on students’ Behavior in Class
and Self-Efficacy in Math, though results are less consistent between unshrunken and
shrunken estimators. Without shrinkage, the magnitude of teacher effects on these
two outcomes generally is larger than teacher effects on students’ math performance
but smaller than teacher effects on students’ Happiness in Class: between 0.14 SD and
0.28 SD for teacher effects on students’ Behavior in Class, and between 0.19 SD and
0.29 SD for teacher effects on students’ Self-Efficacy in Math. Shrunken estimates are
considerably smaller. For example, in model 3, these shrunken estimates are 0.05 SD
for teacher effects on Behavior in Class and 0.08 SD for teacher effects on Self-Efficacy in
Math. Correlations between the unshrunken and shrunken estimates still are strong,
but never above 0.87. Models that exclude class characteristics and use shrinkage to
calculate teacher effects on students’ Self-Efficacy in Math produce estimates close to
0 SD. For this reason, I exclude from table 4 correlations between unshrunken and
shrunken estimates for this outcome and these models.

It is counterintuitive that models that include class characteristics produce esti-
mates that are larger than those that exclude these control variables. It is possible the
error structure for students’ self-reported Self-Efficacy in Math is quite different from
the error structure for other measures, which in turn leads to challenges when imple-
menting shrinkage through a random effects model fit using restricted maximum like-
lihood estimation. Although restricted maximum likelihood aims to address concerns
that full maximum likelihood tends to produce variance estimates that are biased down-
ward, this may also be a concern in the relatively small sample of teachers and students
(Harville 1977; Raudenbush and Bryk 2002). Mixed models can result in singular fits
(i.e., variance-covariance components that are exactly zero) in several instances, includ-
ing a small number of random effects and complex random effects models (Gelman
2006). This topic is beyond the scope of this paper but is an important one for future
research.
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Table 5. Pairwise Correlations between Teacher Effects on Different Student Outcomes

Teacher Effects Teacher Effects Teacher Effects Teacher Effects
on State on Behavior on Self-Efficacy on Happiness
Math Test in Class in Math in Class

Panel A: Unshrunken Estimates

Teacher effects on state math test 1.0

Teacher effects on Behavior in Class 0.16 1.0

Teacher effects on Self-Efficacy in Math 0.17 0.48** 1.0

Teacher effects on Happiness in Class −0.22 0.17 0.44** 1.0

Panel B: Shrunken Estimates

Teacher effects on state math test 1.0

Teacher effects on Behavior in Class 0.17 1.0

Teacher effects on Self-Efficacy in Math −0.03 0.65*** 1.0

Teacher effects on Happiness in Class −0.38* 0.17 0.59*** 1.0

Notes: Teacher effects are calculated from model 3 in tables 3 and 4, which controls for prior achievement, student
characteristics, class characteristics, and randomization block fixed effects. Samples include 41 teachers.
*p < 0.05; **p < 0.01; ***p < 0.001.

In table 5, I present a correlation matrix of teacher effects on different student
outcomes. Here, teacher effects come from model 3 (see tables 3 and 4), which con-
trols for prior achievement, student characteristics, and class characteristics. I focus on
this model given that the magnitude of shrunken and unshrunken teacher effects are
greater than 0 SD for all outcomes. One concern when estimating relationships be-
tween different measures of teacher quality is that individual teacher effect estimates
are measured with error, which will attenuate these correlations (Spearman 1904). In-
deed, correlations between the shrunken teacher effect estimates in panel B—which
are estimated in a way that aims to reduce measurement error—generally are larger
than correlations between the unshrunken ones in panel A. At the same time, differ-
ences in correlations between these two panels are not large, suggesting that additional
approaches to address attenuation due to measurement error are unlikely to change
overall patterns of results.

The largest of these correlations is between teacher effects on different measures of
students’ attitudes and behaviors. For example, teacher effects on students’ Self-Efficacy
in Math and teacher effects on the other two non-tested outcomes fall between 0.44
and 0.65. However, teachers do not appear to be equally effective at improving all three
attitudes and behaviors. The correlation between teacher effects on students’ Happi-
ness in Class and teacher effects on students’ Behavior in Class is weak and nonsignifi-
cant. Correlations between teacher effects on students’ attitudes and behaviors versus
effects on students’ math achievement are similarly weak; most are not statistically sig-
nificant. One exception is the relationship between teacher effects on students’ math
performance and teacher effects on students’ Happiness in Class, which is negative and
statistically significantly correlated when using the shrunken estimates (r = −0.38).
This suggests teachers who are skilled at improving students’ math achievement may
do so in ways that make students less happy or less engaged in class.

Overall, these findings provide strong evidence that teachers impact several
student attitudes and behaviors in addition to their academic performance. Weak,
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Table 6. Pairwise Correlations between Teacher Effects across Model Specifications

ρModel 1,Model 2 ρModel 1,Model 2 ρModel 2,Model 3

Panel A: Unshrunken Estimates

Teacher effects on Behavior in Class 0.89*** 0.89*** 1.00***

Teacher effects on Self-Efficacy in Math 0.88*** 0.91*** 0.98***

Teacher effects on Happiness in Class 0.96*** 0.97*** 0.99***

Panel B: Shrunken Estimates

Teacher effects on Behavior in Class 0.90*** 0.91*** 1.00***

Teacher effects on Self-Efficacy in Math 0.86*** 0.90*** 0.97***

Teacher effects on Happiness in Class 0.96*** 0.96*** 0.99***

Notes: Model 1 calculates teacher effectiveness ratings that control for students’ prior achievement
in math and reading. Model 2 controls for a prior measure of students’ attitude or behavior. Model 3
controls for prior scores on both prior achievement and prior attitude or behavior. Samples include
51 teachers.
***p < 0.001.

Table 7. Pairwise Correlations between Unshrunken Teacher Effects from Model 1 Versus other Model Specifications

ρModel 1,Model 4 ρModel 1,Model 5 ρModel 1,Model 6 ρModel 1,Model 7

Panel A: Unshrunken Estimates

Teacher effects on state math test 0.98*** 0.72*** 0.64*** 0.49***

Teacher effects on Behavior in Class 0.95*** 0.74*** 0.64*** 0.38***

Teacher effects on Self-Efficacy in Math 0.99*** 0.84*** 0.78*** 0.46***

Teacher effects on Happiness in Class 0.97*** 0.85*** 0.52*** 0.49***

Panel B: Shrunken EB Estimates

Teacher effects on state math test 0.99*** 0.76*** 0.54*** 0.53***

Teacher effects on Behavior in Class 0.98*** 0.69*** 0.63*** 0.41***

Teacher effects on Self-Efficacy in Math 0.99*** — — —

Teacher effects on Happiness in Class 0.99*** 0.90*** 0.71*** 0.66***

Notes: Baseline model to which others are compared (model 1) calculates teacher effectiveness ratings that only control
for students’ prior achievement in math and reading. Model 4 adds student demographic characteristics, including gender,
race, free or reduced-price lunch eligibility, special education status, and limited English proficiency status; Model 5 adds
classroom characteristics. Model 6 adds school characteristics. Model 7 replaces school characteristics with school fixed
effects. Empty cells indicate that variation in teacher effects from one of the models is close to 0 SD (see Appendix table
A.4). Samples include 51 teachers.
***p < 0.001.

nonsignificant correlations between many of these teacher effect estimates indi-
cate these measures identify unique skills that teachers bring to and engage in the
classroom.

Sensitivity of Teacher Effects Across Model Specifications

In tables 6 and 7, I present results describing the relationship between teacher ef-
fects on students’ attitudes and behaviors across model specifications. As before, panel
A shows correlations for unshrunken estimates, and panel B shows correlations for
shrunken estimates. Because patterns of results are quite similar for the unshrunken
and shrunken estimates, I focus my discussion on the latter for simplicity. This anal-
ysis includes the balanced sample of teachers and students with all possible control
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variables from the larger observational dataset. In Appendix table A.4, I present the
magnitude of the teacher-level variation on all student outcomes using this sample,
and find that results are similar to those presented in table 3 using the experimental
sample.

In the first of these tables (table 6), I examine the correlations between teacher
effects on students’ attitudes and behaviors that are estimated controlling for prior
achievement (model 1), a prior measure of the survey outcome (model 2), or both (model
3). Because this analysis examines the sensitivity of teacher effects to inclusion or ex-
clusion of lagged measures of the outcome variable, I focus only on teacher effects
on the three measures of students’ attitudes and behaviors. For teacher effects on stu-
dents’ math performance used elsewhere in the paper, all models control for lagged
achievement.

Here, I find correlations of teacher effects across model specifications above 0.86.
As expected, the smallest of these correlations describe the relationship between
teacher effects that control either for prior achievement (model 1) or for students’ prior
survey responses (model 2). However, these correlations still are quite strong: 0.90 for
teacher effects on Behavior in Class, 0.86 for Self-Efficacy in Math, and 0.96 for Happi-
ness in Class. Correlations between teacher effects from models that have overlapping
sets of controls (i.e., between models 1 and 3 or between models 2 and 3) are stronger, be-
tween 0.90 and 0.99. This suggests teacher effects on these attitudes and behaviors are
not particularly sensitive to inclusion of prior achievement or prior survey responses.
In light of these findings, I exclude prior measures of students’ attitudes and behaviors
from most subsequent analyses, allowing me to retain the largest possible sample of
teachers and students.

Next, I examine the sensitivity of teacher effects from this baseline model (model
1) to models that control for additional student, class, or school characteristics (see
table 7). In the table, empty cells indicate instances where the teacher-level variation
is close to 0 SD (i.e., for shrunken teacher effects on students’ Self-Efficacy in Math gen-
erated from models 5 through 7; see Appendix table A.4). I find that teacher effects
on students’ math performance and on the three measures of students’ attitudes and
behaviors are not particularly sensitive to student demographic characteristics but are
sensitive to additional control variables. Correlations between teacher effect estimates
from model 1 (which controls for prior test scores) and model 4 (which builds on model
1 by adding student demographic characteristics) all are greater than or equal to 0.95.
For teacher effects on students’ math performance, Behavior in Class, and Self-Efficacy
in Math, correlations between estimates from model 1 and from model 5 (which builds
on previous models by adding classroom characteristics) are substantively smaller, at
0.76, 0.69, and 0.82, respectively. For teacher effects on students’ Happiness in Class,
the correlation stays above 0.90.

Adding school characteristics to teacher effect specifications appears to have the
largest impact on teacher rankings. Correlations between estimates from model 1 and
from model 6 (which builds on previous models by adding observable school character-
istics) range from 0.54 (for teacher effects on students’ math performance) to 0.71 (for
teacher effects on students’ Happiness in Class). Correlations between estimates from
model 1 and from model 7 (which replaces observable school characteristics with school
fixed effects) range from 0.41 (for teacher effects on students’ Behavior in Class) to 0.66
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(for teacher effects on students’ Happiness in Class). Correlations between estimates
from models 6 and 7 (not shown in table 7) are 0.94, 0.70, 0.71, and 0.92 for teacher
effects on students’ math performance, Behavior in Class, Self-Efficacy in Math, and Hap-
piness in Class, respectively. Reference bias is one possible explanation for lower corre-
lations in models that do and do not control for school fixed effects. At the same time,
these estimates are well within the range reported in studies looking at the sensitivity
of teacher effects on test scores across models that control for school characteristics or
school fixed effects, between roughly 0.5 and 0.9 (Aaronson, Barrow, and Sander 2007;
Hill, Kapitula, and Umland 2011; Goldhaber and Theobald 2012).

Predictive Validity of Nonexperimental Teacher Effects

In table 8, I report estimates describing the relationship between nonexperimental
teacher effects on student outcomes and these same measures following random
assignment. Cells contain estimates from separate regression models where the de-
pendent variable is the student attitude or behavior listed in each column. The inde-
pendent variable of interest is the nonexperimental teacher effect on this same out-
come estimated in years prior to random assignment. Nonexperimental teacher effects
are modeled from five separate equations discussed above, each with different sets of
covariates. I exclude teacher effects calculated from models 2 and 3 (described in table
6), both of which controlled for prior measures of students’ attitudes and behaviors
that were not available for many teachers’ students in the experimental portion of the
study. However, at the end of this section I describe results from additional analyses
that estimate the relationship between nonexperimental teacher effects that control for
imputed lagged survey measures; results are consistent with the main results. Stars
indicate whether point estimates are statistically significantly different from 0 SD, and
p-values testing the null hypothesis that effect sizes are equal to 1 SD are presented next
to each estimate. The sample sizes for Happiness in Class is reduced by one teacher who
did not have nonexperimental teacher effects on this outcome.

Validity evidence for teacher effects on students’ math performance are consis-
tent with other experimental studies (Kane and Staiger 2008; Kane et al. 2013), where
predicted differences in teacher effectiveness in observational data are equal to or
come close to actual differences following random assignment of teachers to classes.
The nonexperimental teacher effect estimate that comes closest to a 1:1 relationship is
the shrunken estimate that controls for students’ prior achievement and other demo-
graphic characteristics (0.995 SD). Despite a relatively small sample of teachers, the
standard error for this estimate (0.084) is substantively smaller than those in other
experimental studies—including the meta-analysis conducted by Bacher-Hicks et al.
(2017)—and allows me to rule out relatively large degrees of bias in teacher effects cal-
culated from this model. A likely explanation for greater precision in this study rel-
ative to others is the fact that other studies generate estimates through instrumen-
tal variables estimation to calculate treatment on the treated. Instead, I use OLS re-
gression and account for noncompliance by narrowing in on randomization blocks in
which very few, if any, students moved out of their randomly assigned teachers’ class-
room. Nonexperimental teacher effects calculated without shrinkage are related less
strongly to current student outcomes, though differences in estimates and associated
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standard errors between panel A and panel B are not large. All corresponding estimates
(e.g., model 1 from panel A versus panel B) have overlapping 95 percent confidence
intervals.

Results examining forecast bias in teacher effects on students’ Behavior in Class are
not substantively different from what I would expect based on the math test-score out-
come. I find that teacher effects with the best predictive validity are the shrunken esti-
mates from model 1, which calculates nonexperimental teacher effects only controlling
for students’ prior achievement.12 Here, I find an estimate of 1.00 SD that matches the
hypothesis described by Kane and Staiger (2008), where predicted differences across
classroom should equal observed differences. However, the standard error around this
estimate is substantively larger (0.25) than the standard error for test-score estimates.

Comparison of estimates between panel A and panel B provides some insight here
and, in particular, the tradeoff between accuracy and precision. In panel B, estimates
relating nonexperimental, shrunken teacher effect estimates on students’ Behavior in
Class to current student outcomes are notably larger and closer to 1 SD than estimates
in panel A relating unshrunken estimates to current student outcomes. This makes
sense, as shrunken estimates are adjusted for the amount of measurement error the
unshrunken estimates contain. Measurement error will attenuate the relationship be-
tween two teacher effect estimates, even if the true relationship is equal to 1 SD. Indeed,
earlier in the paper, I showed that teacher effects on students’ Behavior in Class gener-
ally underwent more shrinkage than teacher effects on students’ math test scores (see
table 3). At the same time, relationships between shrunken teacher effect estimates
and current student outcomes in panel B are measured with considerably less preci-
sion than relationships drawing on unshrunken teacher effect estimates in panel A.
Standard errors in panel B are roughly two to three times as large as those in panel A.
This also makes sense, as shrunken estimates provide a lower bound on the variation of
true teacher effects, particularly when measurement error is large (Jacob and Lefgren
2005); decreased variation in the independent variable decreases statistical power. Con-
sidering results from panels A and B jointly provides evidence that nonexperimental
methods for estimating teacher effects on students’ Behavior in Class account for a large
degree of bias due to nonrandom sorting and factors beyond teachers’ control.

For both Self-Efficacy in Math and Happiness in Class, nonexperimental teacher ef-
fect estimates have moderate predictive validity. Generally, I can distinguish estimates
from 0 SD, indicating they contain some information content on teachers. The excep-
tion is shrunken estimates for Self-Efficacy in Math. Although estimates are similar in
magnitude to the unshrunken estimates in panel A, between 0.42 SD and 0.58 SD
standard errors are large and 95 percent confidence intervals cross 0 SD. I also can

12. Results in panel B suggest that adding class- and school-level controls to the model calculating nonexperimental
teacher effects on students’ Behavior in Class may in fact add bias. Point estimates describing the relationship
between current student outcomes and nonexperimental teacher effects calculated from models 3 through 5 all
are greater than 1.2 SD. These patterns are somewhat consistent with findings from the MET project, in which
researchers suggested that some models “over control,” resulting in removal of peer effects that actually predict
important differences in teacher performance (Kane et al. 2013). This explanation makes sense here as well,
where teachers’ ability to improve individual students’ behavior likely is closely related to the control they have
over other peer-to-peer relationships. At the same time, I do not want to place too much emphasis on these
differences across models, given that standard errors are large and, thus, point estimates have overlapping 95
percent confidence intervals.
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distinguish many estimates from 1 SD. This indicates that nonexperimental teacher ef-
fects on students’ Self-Efficacy in Math and Happiness in Class contain potentially large
and important degrees of bias. For both measures of teacher effectiveness, point esti-
mates around 0.5 SD suggest that they contain roughly 50 percent bias.

One concern with these results is that nonexperimental teacher effects do not con-
trol for prior survey responses, and such a model might reduce bias. Earlier in the pa-
per, I show that in the observational portion of the study, teacher effects that control for
some combination of prior achievement and/or prior survey responses do not return
markedly different teacher rankings. However, in some instances correlations are lower
than 0.90 (see table 6), leaving open the possibility that controlling for lagged survey
responses may boost performance. To address this concern in the experimental data,
I conduct a robustness check that calculates nonexperimental teacher effects after im-
puting students’ lagged survey responses. To impute, I fit a series of regression models
that predict students’ lagged survey response with all other available data (i.e., prior test
scores in math and reading, and the student demographic characteristics listed in table
2) for the sample of students with these data used elsewhere in this paper.13 Then, I use
this model to infer predicted values for all students without lagged survey responses.
Finally, I calculate nonexperimental teacher effects on students’ attitudes and behaviors
controlling for these lagged measures, an indicator for whether or not the lagged survey
measure was imputed, and in some instances, students’ prior test scores. Model 2 cal-
culates nonexperimental teacher effects controlling for students’ prior survey response,
while model 3 calculates nonexperimental teacher effects controlling for prior achieve-
ment and prior survey response. I present results that relate these teacher effects to
student outcomes following random assignment in Appendix table A.5. Patterns of re-
sults are very similar to those presented in table 8, suggesting that controlling for lagged
measures of the outcome variable when calculating nonexperimental teacher effects on
students’ attitudes and behaviors does not appear to change inferences regarding bias
in these measures. These results also are similar to those from the quasi-experimental
validation study by Backes and Hansen (2018), where the authors controlled for prior
measures of their non-tested outcomes in all models and still found large degrees of
bias in some instances.

7. DISCUSSION AND CONCLUSION
Where does this leave policy, practice, and research? Should these measures be used
in policy settings, despite concerns about bias? This is not an easy question to answer.
For some readers, the relationships presented in this paper could point to considerable
policy usefulness for the nonexperimental estimates. If one were to rank teachers using
experimental and nonexperimental estimates, results would be similar. Thus, ignoring
reference bias problems and possible gaming, a teacher de-selection policy using biased
measures would still improve outcomes on average.

13. Students’ prior test scores are statistically significant predictors of all three measures of students’ attitudes and
behavior, as are several demographic characteristics. Together, prior achievement and demographic character-
istics explain a sizeable amount of the variation in prior survey responses: 22 percent for Behavior in Class,
10 percent for Self-Efficacy in Math, and 7 percent for Happiness in Class. Further, imputed measures of stu-
dents’ prior survey responses are moderately to strongly related to current survey responses, with standardized
regression coefficients between 0.43 SD (Happiness in Class) and 0.63 SD (Behavior in Class).
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Another possible reason to incorporate measures of students’ attitudes and behav-
iors and teachers’ ability to improve them into selection and accountability policy, in
spite of bias, would be to create clear incentives for improving these skills in school.
Many, including myself, see students’ social and emotional development as a central
goal of teachers’ and schools’ work (e.g., Pianta and Hamre 2009; Durlak et al. 2011;
Farrington et al. 2012). Yet, accountability systems that focus predominantly or exclu-
sively on student achievement send a message that the skills captured on these tests are
the ones that policy makers want students to have when they leave school. Broadening
what it means to be a successful student and “making the development of the whole
child central to the mission of education” (Garcia 2014, p. 4) clearly is good policy.

At the same time, lessons learned from new teacher evaluation systems that incor-
porate teacher effects on students’ test scores highlight several reasons why making
high-stakes policy decisions based on teacher effects on students’ attitudes and behav-
iors may not be appropriate or advantageous. Despite convincing evidence against bias
in teacher effects on students’ academic performance, teachers still are skeptical about
their use and the fairness of these measures (Jiang, Sporte, and Luppescu 2015). One
reason for this skepticism discussed in the academic literature is that, even if teacher ef-
fects are unbiased, they often are quite noisy measures of teachers’ effectiveness (Ballou
and Springer 2015). Large confidence intervals around individual teachers’ scores—due
to the number of students attached to that teacher and error in the student-level assess-
ment itself—mean that a teacher’s underlying ability often is statistically indistinguish-
able from other teachers. This likely would be an even greater issue for teacher effects
on students’ attitudes and behaviors given well-documented concerns about error in
student-, teacher-, and parent-reports of these measures (Duckworth and Yeager 2015).
Even if systems were to incorporate classical measurement error into teachers’ effec-
tiveness ratings, which most do not, there still would be lingering concerns about other
sources of error. In particular, there are bound to be concerns about cheating (Campbell
1979; Koretz 2008). In this study, student surveys were administered under low-stakes
conditions where student responses were not visible to the teacher or other students
in the classroom. It is possible that estimates of bias might differ—likely to increase—
under high-stakes settings where survey responses could be coached or influenced by
other pressures.

Despite concern about using teacher effects on students’ attitudes and behaviors
in high-stakes policy settings, I believe there are other uses of these measures that fall
within and would enhance existing school practices. In particular, measures of teachers’
effectiveness at improving students’ attitudes and behaviors could be used to identify
areas for professional growth and connect teachers with targeted professional devel-
opment. Bringing costly but effective development programs, such as teacher coach-
ing (Kraft, Blazar, and Hogan 2018), to scale requires at least two key pieces of infor-
mation that measures such as those used in this study could provide. First, it would
be useful to know which teachers require immediate support in order to allocate pro-
fessional development dollars to these teachers, as opposed to investing in lower-cost
but less-effective programs that reach all teachers. Second, the individualized nature
of coaching and related development programs require that school leaders know teach-
ers’ individual strengths and weaknesses in order to facilitate appropriate teacher-coach
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or teacher-team matches, where members have complementary skill sets (Papay et al.
2016). Observation rubrics provide one source of data for this purpose, yet have logisti-
cal constraints, including needing school leaders who have the time and knowledge to
assess multiple teachers on multiple teaching skills (Hill and Grossman 2013). In light
of moderate to strong relationships between teachers’ observed classroom behaviors
captured on established observation rubrics, and teacher effects on several student at-
titudes and behaviors (Blazar and Kraft 2017), it is possible that the latter could be used
as a lower-cost proxy for the former. In these instances, biased measures are less likely
to be a concern than in settings where teachers’ jobs are on the line.

Finally, supporting teachers in the work of developing students’ attitudes and behav-
iors will require investments in research in addition to changes in policy and practice.
Based on experimental studies of teacher effects on student achievement, newer re-
search is starting to examine related questions (e.g., how instructional supports im-
pact students’ achievement; Kane et al. 2016) using observational and value-added
approaches that generally are less expensive and considerably more tractable than ran-
domized control trials. Making this important decision in the context of research on
students’ attitudes and behaviors will require close consideration of the tradeoffs be-
tween two key issues: bias and availability of data. The analyses presented here suggest
that value-added approaches likely will reduce some but not all of the sorting bias that
could influence estimates of the impact of different inputs on measures of students’
behavior, self-efficacy, and happiness. Even if some degree of bias remains, this ap-
proach likely would improve upon much of the existing body of research to date that
lacks convincing evidence about what works in education (Murnane and Willett 2011;
Kane 2015). At the same time, such studies would not have the benefit of easily acces-
sible administrative data that have made this type of work possible when examining
gains in student achievement outcomes. Building up administrative datasets that in-
clude rich measures of students’ attitudes and behaviors in addition to their academic
performance is, in my opinion, a worthy goal (see West 2016 for how this is starting to
happen in some education agencies, including the CORE districts in California). Un-
til that happens, though, researchers will need to continue to collect these measures
themselves. In turn, we likely will want to conduct more and learn as much as possible
from random assignment studies.
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APPENDIX A: ADDIT IONAL DATA

Table A.1. Univariate and Bivariate Descriptive Statistics for Student Survey

Univariate Statistics Pairwise Correlations

Cronbach’s Behavior Self-Efficacy Happiness
Mean SD Alpha in Class in Math in Class

Behavior in Class 4.10 0.93 0.74 1.00

My behavior in this class is good. 4.23 0.89

My behavior in this class sometimes annoys the teacher. 3.80 1.35

My behavior is a problem for the teacher in this class. 4.27 1.13

Self-Efficacy in Math 4.17 0.58 0.76 0.35*** 1.00

I have pushed myself hard to completely understand math in
this class.

4.23 0.97

If I need help with math, I make sure that someone gives me
the help I need.

4.12 0.97

If a math problem is hard to solve, I often give up before I
solve it.

4.26 1.15

Doing homework problems helps me get better at doing math. 3.86 1.17

In this class, math is too hard. 4.05 1.10

Even when math is hard, I know I can learn it. 4.49 0.85

I can do almost all the math in this class if I don’t give up. 4.35 0.95

I’m certain I can master the math skills taught in this class. 4.24 0.90

When doing work for this math class, focus on learning not
time work takes.

4.11 0.99

I have been able to figure out the most difficult work in this
math class.

3.95 1.09
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Validating Teacher Effects

Table A.1. Continued.

Univariate Statistics Pairwise Correlations

Cronbach’s Behavior Self-Efficacy Happiness
Mean SD Alpha in Class in Math in Class

Happiness in Class 4.10 0.85 0.82 0.27*** 0.62*** 1.00

This math class is a happy place for me to be. 3.98 1.13

Being in this math class makes me feel sad or angry. 4.38 1.11

The things we have done in math this year are interesting. 4.04 0.99

Because of this teacher, I am learning to love math. 4.02 1.19

I enjoy math class this year. 4.12 1.13

Notes: Statistics are generated from all available data. All survey items are on a scale from 1 to 5. Statistics drawn from all available data.
***p < 0.001.

Table A.2. Summary of Random Assignment Student Compliance

Number of Students Percent of Total

Remained with randomly assigned teacher 677 72

Switched teacher within school 168 18

Left school 40 4

Left district 49 5

Unknown 9 1

Total 943 100

Table A.3. Comparison of Student Compliers and Noncompliers in Randomization Blocks with Low Levels
of Noncompliance

Noncompliers Compliers p-value on Difference

Student Characteristics

Male 0.38 0.49 0.044

African American 0.38 0.33 0.374

Asian 0.12 0.15 0.435

Hispanic 0.15 0.21 0.128

White 0.31 0.27 0.403

FRPL 0.64 0.66 0.572

SPED 0.06 0.05 0.875

LEP 0.11 0.21 0.016

Prior achievement on state math test 0.30 0.26 0.689

Prior achievement on state reading test 0.28 0.30 0.782

p-value on joint test 0.146

Teacher characteristics

Prior teacher effects on state math scores −0.01 −0.01 0.828

Students 67 531

Note: Means and p-values are calculated from regression framework that controls for randomization block.
FRPL = free- or reduced-price lunch eligible; LEP = limited English proficiency status; SPED = special
education status.
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Table A.4. Standard Deviation of Teacher-Level Variance in Nonexperimental Sample

(1) (2) (3) (4) (5) (6) (7)

Panel A: Unshrunken Estimates

State math test 0.26 NA NA 0.25 0.19 0.15 0.13

Behavior in Class 0.48 0.38 0.38 0.41 0.31 0.29 0.16

Self-Efficacy in Math 0.35 0.30 0.30 0.33 0.37 0.30 0.14

Happiness in Class 0.48 0.45 0.44 0.43 0.43 0.34 0.27

Panel B: Shrunken Estimates

State math test 0.17 NA NA 0.17 0.13 0.11 0.14

Behavior in Class 0.33 0.22 0.22 0.26 0.19 0.21 0.10

Self-Efficacy in Math 0.15 0.14 0.14 0.13 0.00 0.00 0.00

Happiness in Class 0.34 0.31 0.31 0.34 0.34 0.30 0.33

Prior achievement X X X X X X

Prior survey response X X

Student characteristics X X X X

Class characteristics X X X

School characteristics X

School fixed effects X

Teachers 51 51 51 51 51 51 51

Students 548 548 548 548 548 548 548

Table A.5. Relationship between Student Outcomes Following Random Assignment and Prior, Nonexperimental Teacher Effect Estimates
that Control for an Imputed Measure of Students’ Prior Survey Response

Behavior in Class Self-Efficacy in Math Happiness in Class

p-value on p-value on p-value on
Difference Difference Difference

Estimate/SE from 1 SD Estimate/SE from 1 SD Estimate/SE from 1 SD

Panel A: Unshrunken Estimates

Teacher effects calculated from model 2 0.692*** 0.059 0.452* 0.008 0.346* 0.000
(0.159) (0.197) (0.141)

Teacher effects calculated from model 3 0.702*** 0.078 0.447* 0.013 0.347* 0.000
(0.165) (0.213) (0.141)

Panel B: Shrunken Estimates

Teacher effects calculated from model 2 1.067*** 0.805 0.604 0.279 0.423* 0.002
(0.269) (0.360) (0.175)

Teacher effects calculated from model 3 1.073*** 0.799 0.563 0.241 0.421* 0.002
(0.286) (0.367) (0.175)

Teachers 41 41 40

Students 531 531 509

Notes: Cells include estimates from separate regression models that control for students’ prior achievement in math and reading, student
demographic characteristics, classroom characteristics from randomly assigned rosters, and fixed effects for randomization block. Robust
standard errors clustered at the class level in parentheses. Model 2 calculates nonexperimental teacher effects controlling for a prior measure
of students’ attitude or behavior. Model 3 controls for prior scores on both prior achievement and prior attitude or behavior. Both models
include an indicator for whether or not students’ lagged survey response was imputed.
*p < 0.05, ***p < 0.001.
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