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Many programs and policies in education are imple-
mented at the school level. For example, schools adopt 
new curricula, extend the school day, or introduce 

professional learning communities to improve teaching and 
learning. Education researchers are often charged with estimat-
ing the effects of these kinds of school-level interventions on 
students’ academic outcomes. Cluster randomized trials, in 
which schools are randomly assigned to treatment conditions, 
are the best way to assess the effectiveness of school-level inter-
ventions. However, cluster randomized trials may not be feasi-
ble, either because random assignment is not ethically, politically, 
or financially tenable or because researchers are interested in ret-
rospectively examining the effects of interventions that have 
already been implemented. The increasing accessibility of publi-
cally available, longitudinal, aggregate school-level data provides 
an alternative when an experimental study is not possible: the 
comparative interrupted time series.

In its simplest form, interrupted time series (ITS) measures the 
same outcome for a treatment group multiple times before and 
after the introduction of an intervention, adjusting for any trend in 

the preintervention data. The effect of the intervention is estimated 
by examining the difference in outcomes before and after imple-
mentation. Adding comparison schools to this simple version of 
the design, to reduce potential threats to internal validity, converts 
the ITS design to a comparative ITS or CITS (sometimes know in 
the economics literature as a difference-in-difference design).

The use of ITS and CITS designs in evaluations to investigate 
the effects of education programs and policies, especially those 
implemented at the school level, has increased in recent years. 
Longitudinal data at both the student and school levels are 
increasingly available to education researchers, making the design 
easier to implement. In 2010, only 15% of i3-awarded projects 
proposed to use an ITS or CITS design to evaluate their interven-
tion; in 2011 and 2012, roughly 40% of projects proposed to use 
this method (U.S. Department of Education, 2013). The design 
has been used to study a wide range of education policies and 
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programs, including school turnaround in Chicago (de la Torre  
et al., 2012), comprehensive school reform (Miller & Mittleman, 
2012), universal class size reduction (Chingos, 2012), guaranteed 
tuition policies (Delany & Kearney, 2015), zero tolerance disci-
plinary policies (Curran, 2016), structured transfer pathways in 
community colleges, and the effect of the No Child Left Behind 
Act (NCLB) on academic outcomes (Dee, Jacob, & Schwartz, 
2013; Wong, Cook, & Steiner, 2015), and childhood obesity 
(Anderson, Butcher, & Schanzenbach, 2017).

However, the validity of school-level CITS designs hinge on a 
variety of assumptions and design decisions that are not clearly 
outlined in the literature. This paper aims to serve as a practice 
guide for applied researchers when deciding how and whether to 
use this approach. We will clarify the assumptions underlying the 
CITS design and the conditions under which it is valid and pro-
vide an overview of key decisions researchers face in practice when 
implementing the design. We begin by providing an overview of 
the assumptions needed to estimate causal effects using school-
level data, common threats to validity faced in practice and what 
effects can and cannot be estimated using school-level data. We 
then examine two analytic decisions researchers face in practice 
when implementing the design: selecting comparison cases and 
correctly modeling the pretreatment functional form. We focus on 
the short CITS designs that are frequently implemented in educa-
tion research for which there are between three and 20 pretreat-
ment measures of the outcome (Bloom, 2003). The penultimate 
section of the paper illustrates the use of this design in practice 
drawing on data from the implementation of the school improve-
ment grant (SIG) program in Ohio. We conclude with advice for 
applied researchers implementing this design. Sample R code for 
each of the matching and modeling approaches described in this 
paper can be found in Appendix A.

CITS in the Potential Outcomes Framework

The potential outcomes framework, or Rubin’s causal model, 
which characterizes causal effects as unit-specific differences 
between outcomes achieved under different treatment condi-
tions, provides a clear theoretical rationale for the conditions 
under which school-level CITS designs produce unbiased esti-
mates of causal effects (Heckman, 1979; Holland, 1986; 
Neyman, 1935; Rubin, 1978). Each school can be characterized 
by a set of variables ( , , , , ).Y Y T x xtj tj t j tj1 0( ) ( )  Ytj 1( )  and Ytj 0( )  
are the potential outcomes for unit j at time t under the treat-
ment and control conditions, respectively. Tj is an indicator of 
whether school j is ever treated. xj and xtj are time-invariant (e.g., 
grade levels served) and time-varying (e.g., demographic compo-
sition) school characteristics, respectively. Following Wong, 
Wing, Steiner, Wong, and Cook (2012), we assume that the 
potential outcomes are a function of time (t) such that 
Y f ttj t0 0( ) = ( ) + ε  and Y f ttj t1 1( ) = ( ) +ϑ , where f t1 ( )  is the 
time trend under the treated condition and f t0 ( )  is the time 
trend not under treatment. The treatment effect is the difference 
in potential outcomes: τ t f t f t t tc( ) = ( ) − ( ) ≥1 0 | , where tc is 
the introduction of the intervention (i.e., the interruption). 
However, in practice, we see f t0 ( )  only in the pretreatment 
period and f t1 ( )  in the posttreatment period. In the simple ITS 
(that include only schools in which Tj =1  are available), f t0 ( )  

is unobserved in the posttreatment period and therefore is esti-
mated as an extrapolation based on the functional form of the 
preintervention time series. This is depicted visually in Figure 1. 
The lack of a counterfactual in the postintervention period is 
denoted with the dotted line.

In the simple ITS context, unbiased estimates of the treat-
ment effect can be achieved only if (1) the pretreatment trend is 
correctly specified, and (2) its projection into the postinterven-
tion period is an accurate estimate of the counterfactual (Wong 
et al., 2013). That is, the past is an accurate predictor of what the 
future would have been without the intervention. This could not 
be the case for a variety of reasons, often referred to as threats to 
validity in the ITS literature:

•• History. History threats can occur if changes from the 
pretreatment trend ( | ;f t t tc( ) <  the time points prior to 
the introduction of treatment) occur as a result of other, 
unrelated changes that act on the treatment units and 
occur simultaneously to the implementation of the pro-
gram of focus. For example, if a district implements two 
mathematics interventions simultaneously, it will be diffi-
cult to disentangle which program caused a change in dis-
trict mathematics achievement.

•• Selection. In school-level ITS designs, selection can be a 
threat if students who attend treated schools in the pre-
treatment period are inherently different from those who 
attend in the posttreatment period. For example, if a 
school undergoes a composition change simultaneous to 
the interruption, the effect estimate could be biased.

•• Instrumentation. This validity threat refers to changes in 
the outcome of interest that occur at or near the time of 
the interruption. For example, if a state changes its testing 
program, scores may not be comparable from one year to 
the next or may measure different content (if content stan-
dards are changed significantly) (Cook & Campbell, 
1979; Shadish, Cook, & Campbell, 2002).

In an attempt to address these threats, a comparison group 
often is added to the simple ITS, turning it into a comparative ITS 

Figure 1. Stylized depiction of the potential outcomes in a 
CITS design.
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or CITS. With a comparison group, potential threats must oper-
ate differentially across groups to threaten inference (Cook & 
Campbell, 1979; Shadish et al., 2002). For example, if a state 
changed their annual assessment, the only way an instrumentation 
threat would occur is if the change in assessment difficulty was 
greater for one group than the other. The CITS approach is a gen-
eralized version of what the econometrics literature refers to as a 
difference-in-differences design, in which both the pretreatment 
outcomes of the treated group and the change in outcomes in the 
comparison group contribute to estimating the counterfactual 
outcome for the treatment group (Ashenfelter, 1978; Ashenfelter 
& Card, 1985; Athey & Imbens, 2006; Imbens, 2009).1 Returning 
to the notation used in Figure 1, the treatment effect estimator in 
the CITS framework can be formulated as follows:

τ t f t T t t f t T t t

f t T t

j c j c

j

( ) = ( ) = >( ) − ( ) = <( )





− ( ) =



1

0

1 1

0

| |

|

, ,

( , >> ) − ( ) = <t f t T t tc j c( | , )],0

where f t( )  is the preintervention functional form of the out-
come time series. This formulation makes clear how CITS 
designs are an improvement over simple ITS designs. The first 
term is analogous to the treatment effect in a simple ITS design. 
The second term differences out secular trends (changes over 
time that are independent of treatment). Rewriting this equation 
illustrates how CITS is an improvement over simple matching 
designs that rely on the similarity of matched groups on observ-
able characteristics to identify causal effects:
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f t T t

j c j c
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In this formulation, the first term can be seen as the estimator in 
a simple matching design, in which the difference between 
matched treated and untreated schools serves as the treatment 
effect estimate. Such an approach relies on the assumption that 
matching on observable characteristics is sufficient for meeting 
the strong ignorability assumption to estimate unbiased causal 
effects (Rosenbaum & Rubin, 1983). The second term in the 
equation differences out time-invariant observable and unobserv-
able differences between treatment and comparison cases. As 
such, to estimate unbiased treatment effects, the CITS design 
requires proper model specification and selection of a compari-
son group that (1) does not differ from the treatment group in 
ways that vary over time that are related to the outcome of inter-
est and (2) is exposed to the same history or instrumentation 
threats as the treatment group.2 For example, if the preinterven-
tion slopes in the treatment and comparison group differ and 
these differences are not properly accounted for in the modeling 
approach employed, the estimated effects will be biased.

Meeting These Assumptions in Practice

Results from several recent within study comparisons (WSCs) 
provide some reason for optimism about the performance of 
CITS in education. WSC studies empirically estimate the extent 

to which a given observational (nonrandomized) study repro-
duces the result of an RCT when both share the same treatment 
group. In principle, in studies like these, the only thing that dif-
fers between the RCT and observational study is how the com-
parison group is formed—at random versus systematically (for 
example, see Cook, Shadish, & Wong, 2008; Glazerman, Levy, 
& Myers, 2003; Lalonde, 1986). WSCs both within and outside 
of education have shown that CITS can produce results that are 
very similar to those from an RCT (Fretheim, Soumerai, Zhang, 
Oxman, & Ross-Degnan, 2013; Jacob, Somers, Zhu, & Bloom, 
2016; Schneeweiss, Maclure, Carleton, Glynn, & Avorn, 2004; 
St. Clair, Cook, & Hallberg, 2014; St. Clair, Hallberg, & Cook, 
2016). However, in some cases, this correspondence is depen-
dent on modeling choices made by the researcher as well as the 
stability of the pretreatment trend (St. Clair et al., 2014 , 2016). 
Hallberg, Williams, and Swanlund (2017) explicitly examine the 
performance of CITS implemented with school-level data in 
three WSCs. They show that while the design is robust to a vari-
ety of modeling and comparison group choices 1 year postinter-
vention, substantial bias can be seen when examining outcomes 
further out from the implementation of the treatment.

Implications of Using School-Level Data in CITS

The growing availability of aggregate school-level data on state 
websites has led to an increased interest in conducting analyses at 
the school level. Jacob, Goddard, and Kim (2014), for example, 
argue that the use of aggregate school-level data reduces the costs 
associated with pulling student-level records. Stuart (2007) 
extended individual case matching to matching schools using 
aggregate data. The availability of multiple years of longitudinal 
aggregate data on many states’ department of education website 
makes CITS using school-level data a natural extension in this 
direction. CITS analyses using publically available data can be 
done relatively inexpensively with minimal burden to already 
overextended state and district research offices.

However, when conducting school-level analyses, it is impor-
tant to be clear about exactly what effect one is estimating (i.e., the 
estimand). School-level CITS estimates the difference in school 
performance under treatment and comparison conditions by com-
paring cohorts of students that attend treatment and comparison 
schools over time. It does not provide an estimate of what would 
have happened to individual students or groups of students under 
the two treatment conditions. Misinterpretation of estimates from 
school-level analyses as student-level effects can lead to an ecologi-
cal fallacy or Simpson’s paradox (Freedman, 2001), where out-
comes at the student and school levels may operate differentially.

School-level CITS estimates do not account for changes in 
the composition of students in schools over time, sometimes 
referred to as “stayers, leavers, and joiners” in the RCT literature 
(What Works Clearinghouse, 2018). As such, school-level CITS 
estimates can be seen as estimating the effect of the combination 
of two forces: the change in the composition of students in the 
school that results from the introduction of a new intervention 
as well as the change in performance of the students in the school 
that results from the introduction of the new intervention. For 
some interventions, this combined effect may be of policy inter-
est. For example, the introduction of a new magnet program in 
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a school may be intended to both draw talented students to the 
school and improve the performance of students who attend. 
For other interventions, this might be less appropriate. In these 
cases, the substantive question is the effect of introducing the 
intervention to the group of students that would have attended 
the school whether or not the intervention had been imple-
mented. In these cases, analysts should examine the extent to 
which compositional shifts have accompanied the introduction 
of the intervention. Statistical controls can be included in the 
model to account for observable shifts. For example, analysts 
might include the percent of students who qualify for free and 
reduced price lunch in each year as a control variable in the 
model. Such statistical controls cannot account for unobserved 
compositional changes, such as more motivated students moving 
into treatment schools. Choosing what controls to include and 
whether those controls are sufficient should be driven by a thor-
ough understanding of an intervention’s theory of change.

Finally, applied researchers should be careful in calculating 
and interpreting effect sizes in school-level CITS studies. 
Researchers may use the standard deviation of average school 
performance to calculate effect sizes, but these are not equivalent 
to the student-level effect sizes commonly estimated in educa-
tion studies because the standard deviation of average school 
performance is generally much smaller than that of student per-
formance. To estimate comparable effect sizes, researchers should 
use student-level standard deviations (often available in state 
testing reports) or estimate the student-level standard deviation 
by dividing the school-level standard deviation by the square 
root of the intraclass correlation (What Works Clearinghouse, 
2018). Hedges and Hedberg (2007) provide guidance for esti-
mating the intraclass correlation if it is not known.

Selecting a Comparison Group

A key analytic decision that analysts employing the CITS designs 
need to make is how to identify a comparison group. As we dis-
cussed above, the comparison group is added to the simple ITS to 
address potential threats to validity, such as history, instrumenta-
tion, or selection. However, until recently, little guidance has been 
available to guide analysts in selection of a comparison group in the 
context of CITS. The criteria for selecting a comparison group in 
this context differ a bit from those in a pure matching study. In a 
matching study, the analyst’s goal is to match on all characteristics 
that are related both to treatment status and outcomes. In the CITS 
context, the analyst only must match on the subset of characteristics 
that are related to treatment status and outcomes and vary over 
time. That is, in the matching context differences in preintervention 
outcomes could introduce substantial bias to the impact estimate, 
but in the CITS context any fixed differences between treatment 
and comparison schools are accounted for. In this section, we con-
sider the implications of four commonly used approaches to identi-
fying a comparison group in CITS: using all available nontreatment 
schools, matching on preintervention measures of the outcome or 
other observable characteristics, local matching, and a hybrid 
approach that balances local and focal matching.

All available nontreatment schools.  This approach compares treat-
ment schools to nontreatment schools in the same district, state, 

or country. For example, Dee et al. (2013) and Wong et al. (2015) 
examined the effect of NCLB by comparing the performance of 
implementing states to nonimplementing or lower implementing 
states. No attempt was made to find cases that were similar in 
preintervention trend or other observable characteristics. While 
this approach would be inadvisable in most matching studies, 
where it is often referred to as the “naïve treatment effect,” it can 
provide unbiased estimates of causal effects in the CITS context 
as long as time-varying confounds do not operate differentially 
across the treatment and comparison groups.

Matching on preintervention characteristics.  Researchers also 
could select a subset of schools that are similar to the treatment 
schools on preintervention measures of the outcome or other 
school-level characteristics. This could be done using a variety of 
matching methods, including a nearest neighbor or n to 1 match-
ing method, radius matching (Jacob et al., 2016), or synthetic 
matching (Abadie, Diamond, & Hainmueller, 2010). Nearest 
neighbor, n to 1, and radius matching approaches identify intact 
schools that most closely resemble the schools that opted into 
treatment, whereas synthetic matching approaches reweight 
existing available comparison cases to most closely approximate 
the treatment schools. Although each approach has advantages 
and disadvantages in terms of ease of application, transparency to 
a policy or practitioner audience, and coarseness of the matches 
that result, the matching literature generally suggests that the 
approach to matching is generally not as salient as the covariates 
on which one matches (Steiner, Cook, & Shadish, 2011).

The decision of which covariates should be included when 
matching in the CITS context should be informed by the threats 
to validity inherent in this design. While in a pure matching 
study, researchers are trying to identify all preintervention covari-
ates that are associated with selection into treatment and the out-
comes of interest, in a CITS context researchers are focused on 
covariates that are time varying or characteristics that could be 
associated with history threats (e.g., researchers might want to 
match on percent of students qualifying for free or reduced-
priced lunch if they are concerned that a policy change targeting 
low-income students could co-occur with the introduction of 
the intervention of interest). In terms of the former, preinterven-
tion measures of the outcome of interest are particularly salient, 
both in terms of level and trends. Preintervention measures can 
be included in any of the matching approaches described above, 
either by matching on each individual preintervention measure 
or by matching on the preintervention mean and slope.

No matter what covariates or matching approach is employed, 
identifying a matched comparison group may represent a trade-
off in statistical power (the sample is smaller than would be the 
case if all available comparison schools were used). However, this 
precision trade-off may be worthwhile if sufficient bias reduc-
tion results, simplifying the modeling demands on the CITS.

Local matching.  Limiting the comparison pool to geographically 
local matches has a strong tradition, especially in the job-train-
ing literature (Bell, Orr, Blomquist, & Cain, 1995; Bifulco, 
2012; Bloom, Michalopoulos, & Hill, 2005; Friedlander & 
Robins, 1995; Heckman, Ichimura, Smith, & Todd, 1998). The 
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logic behind local matching is that schools that are geographi-
cally proximal often are similar in both observable and unob-
servable ways. Schools within the same school district, for 
example, often have similar student-teacher ratios and are similar 
in unobserved ways, such as district policies, community percep-
tions of schools and the importance of schooling, and the labor 
markets that graduates of the public schools will enter. In the 
CITS framework, local matching has the added benefit of 
decreasing the likelihood of history confounds because schools 
that are geographically proximal are more likely to experience 
similar events than those that are not. For example, schools in 
the same district will be exposed to the same district-level policy 
changes, leadership changes, and budgetary or economic shifts.

Hybrid matching.  Another approach might be to select com-
parison schools that are drawn from the same local area (e.g., 
school district) and that are similar in their preintervention 
trends. In practice, however, finding comparison schools that fit 
both criteria may not be feasible. This trade-off between local 
and so-called focal matching has been noted in the matching 
literature (Hallberg, Wong, & Cook, 2017; Stuart & Rubin, 
2008). Stuart and Rubin (2008) introduced an approach to 
addressing this trade-off between local and focal matching. 
Their approach draws on two populations of students as poten-
tial matches for treated students in a given district: students 
within the same school districts and a nonlocal group of stu-
dents located in a different state. Observable preintervention 
characteristics are used to calculate each student’s propensity to 
take up the treatment. Students are matched to students within 
the same school district if they are within a certain caliper (max-
imally acceptable difference in propensity scores) of one another 
on observable characteristics (e.g., 0.75 standard deviations of 
the propensity score). If a matched student is not available 
within this caliper, then a student is drawn from the nonlocal 
group of comparison students. Hallberg et al. (2017) found that 
this approach could reduce bias when used in intact school 
matching. However, the approach has not been explored for 
finding a comparison group in the CITS context, nor has the 
relative importance of local and focal matching been studied 
systematically.

To date, evidence on the value of various approaches to select-
ing comparison cases is mixed. Betts et al. (2010) conducted a 
simulation study for the Institute for Education Sciences and 
found that matching schools to all other schools in the same 
district performed better than matching on preintervention 
covariates, but the simulated setup of their analysis did not 
attempt to recreate selection processes as they would occur in 
practice, instead using random draws to create null treatment 
effects. Jacob et al. (2016) and St. Clair et al. (2014) examined 
the performance of using all other schools in the state as a com-
parison group versus matching on preintervention characteris-
tics and found that both approaches performed comparably in 
terms of bias reduction. St. Clair et al. (2016) found some evi-
dence that matching on preintervention measures and demo-
graphic characteristics of the outcome led to reduced sensitivity 
to modeling choice and closer correspondence to the benchmark 
than simply using all available comparison cases. Little work has 
been done to examine the relative performance of different 

approaches for matching on preintervention outcomes (e.g., 
nearest neighbor, radial, or synthetic matching) or on the trade-
off between local and focal matching in the context of CITS.

Approaches to Modeling CITS

As described above, CITS draws on data from both the preinter-
vention outcomes in the treatment schools and the pre-post 
treatment outcomes in the comparison schools to estimate the 
counterfactual outcomes for the treatment schools in the post-
treatment period. Correctly modeling the preintervention func-
tional form is key to the validity of this design. Several different 
modeling approaches have been suggested to estimate effects in 
CITS. Bloom (2003) outlined three main modeling approaches: 
the baseline mean model, the linear baseline trend model, and 
the nonlinear baseline trend model. Another approach com-
monly used in the econometrics literature, the year and school 
fixed effects model, is also frequently used.

Baseline mean model.  The baseline mean model is the simplest 
of the modeling approaches and closely resembles the simple 
difference-in-differences approach commonly used in the econo-
metrics literature. This modeling approach assumes the differ-
ences between treatment and comparison cases are fixed (i.e., 
that in the absence of treatment, the distance between the treat-
ment group slope and the comparison group slope would be 
constant across preintervention and posttreatment periods). In 
practice, we assess the validity of this assumption by examining 
preintervention trends. Preintervention slopes need not be flat 
(i.e., zero) so long as they are parallel between treatment and 
comparison groups. The average preintervention performance is 
projected into the posttreatment period as the best estimate of 
performance in the absence of treatment. The difference between 
the average preintervention and postintervention performance 
in the treatment schools, less this same difference in the com-
parison schools, serves as the estimate of treatment effects. The 
baseline mean model can be formulated as follows:

Y Z post trt post trt v ujt jt t j t j j jt= + + + + + +β β β β β0 1 2 3 4  (1)

Where Yjt is the outcome for school j at time t; β0 is a constant 
term showing average achievement in comparison schools before 
the intervention; Zjt is a vector of school characteristics at time t; 
β1 is a vector of coefficients associated with each of those covari-
ates showing the association of each school-level characteristic 
and the outcome; postt is a vector of indicators for each postinter-
vention time period t. Alternatively, an indicator variable of 
whether a given year was in the posttreatment period could be 
included. This would provide one average estimate of the effect of 
the intervention in the posttreatment period rather than an esti-
mate of the program effect for each postintervention year as 
would be the case in this model. β2 is a vector showing the differ-
ence in average outcomes between the preintervention time 
period and each postintervention time period t for comparison 
schools; trtj is an indicator for whether a school received the inter-
vention of interest; β3 shows the average difference in perfor-
mance between treatment and comparison schools in the 
preintervention time period; β4 is a vector showing the change in 
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the difference in average performance between treatment schools 
and comparison schools at each time t after the intervention was 
implemented (i.e., the treatment effect in each of the postinter-
vention years); v j  is a school-level random error term, with an 
assumed normal distribution with mean zero and variance φ2; 
and ujt is a year-level random error term, with an assumed normal 
distribution with mean zero and variance τ2. For this and the 
other modeling approaches described here, we employ random 
effects models rather than more formal time series modeling 
approaches, such as ARIMA models, because the number of time 
points generally available in education research are normally not 
sufficient to support these kinds of modeling approaches.

Baseline linear-trend model.  The linear baseline trend model 
accounts for differences in preintervention trends by including a 
linear term for time (β1timet) as well as an interaction of this term 
with the treatment indicator (β5timettrtj), as shown in Model 2:

Y time Z post trt

time trt post trt

jt t jt t j

t j t

= + + + +

+ +

β β β β β

β β
0 1 2 3 4

5 6 jj j jtv u+ +
           (2)

β1 is now the preintervention slope in the comparison group, and 
β1 + β5 is the preintervention slope in the treatment group. The 
difference in the actual posttreatment performance from the pro-
jected posttreatment performance in the treatment schools, less 
this same difference in the comparison schools, serves as the esti-
mate of treatment effects (β6). This formulation assumes that all 
treatment schools share the same trend and all comparison schools 
share the same trend (though possibly different from the treat-
ment trend). However, this assumption could be relaxed by mod-
eling the trends as random effects. Relaxing this assumption would 
mean that each school has its own trend adding more variance to 
the estimating equation, and that schools with lower variance in 
their time series will carry more weight in estimating the relation-
ship between time and outcomes. Further, if for substantive rea-
sons investigators were interested in whether the slope of 
performance changed after the introduction of the intervention, 
the researchers could code Tt as a dichotomous variable that takes 
the value of 0 in the preintervention period and 1 in the posttreat-
ment period (rather than as a vector of indicators for each postint-
ervention time period t). The change in slope could then be 
estimated adding a three-way interaction between the treatment 
indicator (trtj), the postintervention indicator (postt), and the lin-
ear time trend (timet ). In this formulation, timet should be coded 
to be centered on the introduction of the intervention, so that β6 
can be interpreted at the immediate shift in outcomes following 
the introduction of treatment. Inclusion of this interaction could 
be warranted if treatment effects are expected to grow or decline 
over time (e.g., when a school selects a new curriculum and full 
implementation and program impacts take a while to take hold). 
However, one should be cautious of interpreting a change in slope 
because estimating this change relies on differences between the 
treatment and control groups further out from implementation, 
which as we note above, tend to be estimated with more bias.

Baseline nonlinear-trend model.  The nonlinear baseline trend 
model is an extension of the linear baseline trend model that 

addresses a more complicated functional form in the relationship 
between time and the outcome of interest. This approach is 
implemented in a way that parallels the linear time trend in 
Equation 2 by replacing the linear time parameter with a func-
tion of time (f (timet), such as a first degree polynomial if change 
in school outcomes is expressed as a quadratic form. Because 
both the linear and nonlinear baseline trend models involve the 
inclusion of additional parameters and thus the use of additional 
degrees of freedom, these approaches have greater data require-
ments than the baseline mean model. In particular, while the 
baseline mean model may be estimated with as little as 1 prein-
tervention year of data (becoming a difference-in-differences 
design) and the baseline trend model may be estimated with 2 
years of preintervention data if one assumes that all schools share 
the same trend, the nonlinear baseline trend model will require 
3 or more years of data, depending on the complexity of the 
nonlinearity.3 In the short CITS designs, modeling higher order 
polynomials is infrequently feasible and can exaggerate bias due 
to overfitting.

School and year fixed effects model.  An approach that was not 
mentioned in the Bloom (2003) paper but is often used in the 
econometrics literature is a model that does not explicitly model 
the preintervention trend but includes school and year fixed 
effects. This can be seen as a more flexible modeling approach 
because it does not impose any functional form assumptions on 
the relationship of student achievement over time. Unlike the 
baseline mean model, this approach uses only the variation 
within schools to estimate treatment effects. Both models, how-
ever, assume parallel preintervention time series. The year fixed 
effects serve to account for year-to-year deviations across schools. 
This can be seen as an extension of the baseline mean model 
which accounts for the year to year deviations in school perfor-
mance. The treatment effect estimate is the difference-in-difference 
demeaned to account for overall performance over the study 
period. The model can be formulated as follows:

Y year trt post s ujt
t

T

t t trt jt
k

N

sk k jt= + + +
= =
∑ ∑
0 0

β β β_         (3)

Where Yjt is the outcome for school j at time t; yeart is a vector of 
indicator variables for each year in the study period (year fixed 
effects for both pre- and postintervention years); βt is a vector of 
coefficients associated with each of the year fixed effects; trt–postjt 
is an interaction of two indicator variables, one signifying 
whether a school is in the treatment condition and the other 
whether the year is in the postintervention period. This variable 
is always 0 for comparison cases, 0 for treatment cases in the 
preintervention period, and 1 for treatment cases in the postint-
ervention period; βtrt is the difference in average performance 
between treatment schools and comparison schools in the period 
after the intervention was implemented, net of school and year 
fixed effects; Sk is a vector of school indicator variables (school 
fixed effects); and βsk is a vector of coefficients associated with 
each of the school fixed effects.

Choosing among models.  Little guidance is available to applied 
researchers regarding selecting from among these modeling 
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approaches in a particular case. Bloom (2003) argues that the 
baseline mean model is the “least risky” of the models he consid-
ers because it avoids large errors associated with incorrectly spec-
ifying the slope. However, the baseline mean model itself assumes 
that year-to-year variations in the preintervention trend are 
essentially random variation around the school’s mean perfor-
mance and not evidence of a consistent increase or decrease, 
essentially constraining the slope to be zero. If this assumption 
does not hold, the baseline mean model can lead to bias. In fact, 
St. Clair et al. (2014) found that for at least one of the outcomes 
they examined in a WSC, use of the baseline mean model, led to 
biased results. Notably, the bias increased as additional years of 
preintervention data were included in the model. This result 
showed evidence of a difference in preintervention trend across 
treatment condition, as theory would predict. Somers, Zhu, 
Jacob, & Bloom (2013), however, found no difference in perfor-
mance between the baseline mean model and the linear baseline 
trend model in another empirical application.

To our knowledge, St. Clair et al. (2016) provide the most 
thorough examination of the implications of modeling decisions 
in short CITS to date. They examined the performance of the 
baseline mean and the baseline trend modeling approaches. The 
data in each of the three WSCs exhibited a different pattern of 
preintervention outcomes. In the first dataset, preintervention 
outcomes in the treatment and comparison cases were relatively 
flat and parallel over time. In the second datasets, inspection of 
the preintervention data revealed evidence of differential slopes; 
the treatment group was at a different rate than the comparison 
group. In the third dataset, the pretreatment outcomes were 
characterized by unclear functional forms in which performance 
fluctuated from year to year without displaying a clear pattern. 
The authors found that in the first two datasets, employing the 
modeling approach suggested by visually inspecting the pretreat-
ment data—the baseline mean model for dataset 1 and the base-
line trend model for dataset 2—led to very close correspondence 
between the CITS and the RCT. In the case of the third dataset, 
the degree of correspondence was more mixed. In this dataset, 
the closest correspondence to the RCT was found when model-
ing approaches were combined with matches on pretreatment 
measures of the outcome and demographic characteristics.

These results suggest that, as theory predicts, modeling 
choices matter in CITS. Applied education researchers should 
closely inspect pretreatment data to select the modeling approach 
that best fits their data. Further, in cases in where there is no 
clear functional form in the pretreatment period, for example 
when only a very small number of pretreatment data points are 
available, analysts should proceed with caution.

Advice for Applied Researchers

Table 1 below provides a summary of guidance around each 
phase of implementing a CITS design with school-level data. It 
is intended to be a resource to help researchers navigate decision 
points during the design and analysis for a CITS study. The fol-
lowing section provides on example of how these decisions might 
be made in practice.

An Example of CITS in Practice: The Effect of 
Receiving a School Improvement Grant in Ohio

To demonstrate how CITS is implemented in practice, we turn 
to an applied example: studying the effect of receiving a School 
Improvement Grant (SIG) in Ohio. The federal SIG program 
provided states with resources to make competitive subgrants to 
local education agencies (LEAs) to improve the performance of 
their lowest performing schools. SIG schools could use the 
resources to implement one of four approved school improve-
ment. In 2010–2011, the first cohort of SIGs was distributed 
among 41 Ohio schools in 11 LEAs.

Evaluating the effectiveness of the SIG program provides a use-
ful example of implementing CITS in practice using aggregate 
data. The effects of interest are at the school level, and necessary 
data are publically available. Our team collected, from the Ohio 
Department of Education website,4 school-level academic achieve-
ment data from 2004 to 2014. Academic achievement data, 
including aggregate (mean) scale scores on the state standardized 
test, were disaggregated by grade, subject, and year. That is, for 
each year, for each grade, we had the average scale score in reading 
and mathematics5 for all students tested. We also collected school-
level demographic data from the Elementary and Secondary 
Information System (ElSi; formerly known as the Common Core 
of Data). Demographic data on school composition included the 
following variables: free or reduced priced lunch; race, gender, 
school level, Title I eligibility, school size, and urbanicity. The out-
comes of interest were standardized by grade, year, and subject to 
account for any changes in the scale scores over time.

Is school-level CITS the right design?.  The first major decision in 
conducting a school-level CITS is confirming that it is the right 
design. SIG was implemented as a larger policy initiative, out-
side of an experimental research setting. The 41 Ohio schools 
that received funds demonstrated a need for the funds and were 
historically low performing. Given the nature of the program, 
inferences about school-level effectiveness are especially relevant. 
CITS is a promising quasi-experimental design option for evalu-
ating SIG, especially because historical school-level performance 
data are available for all public schools in Ohio.

Selecting a comparison group.  The second major decision in con-
ducting a school-level CITS is determining how to select a com-
parison group. We considered each of the four approaches 
described above for selecting a comparison group: using all non-
SIG schools in Ohio (all available nontreatment cases); creating a 
matched comparison from all other non-SIG schools in the state 
using pre-SIG achievement and demographic data (matching on 
preintervention characteristics); using all other non-SIG schools 
in districts receiving SIG funding (local matching); and an 
approach that balances finding a local match with finding com-
parison cases that are similar on pretreatment characteristics 
(hybrid matching). In deciding between these approaches, we 
carefully considered the specifics of the SIG program. First, the 
program was designed to target persistently low performing 
schools in the state. Across the state, persistently low performing 
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schools are likely similar in a variety of ways. In addition, several 
other large-scale programs or policy initiatives were introduced 
during the post-SIG period, including a new state funding for-
mula that reallocates aid away from top performing districts 
(2011); a new teacher evaluation system that tied half of evalua-
tion scores to student performance (2011); Race to the Top fund-
ing (2011); adoption of Common Core (2011); federal stimulus 
funding for Ohio public schools (2010 and 2011); and doubling 
the number of school vouchers available in low-performing dis-
tricts (2011). Most of these initiatives were statewide initiatives, 
but several were specifically targeted at low-performing schools. 
Because these initiatives coincide with the introduction of 2010–
2011 SIG funding, it becomes critically important to find matched 
comparisons that would mirror the effects these programs might 
have on SIG schools. This would suggest that matching on treat-
ment characteristics would be particularly useful.

At the same time, Ohio, like other states, awarded SIG fund-
ing competitively to districts that in turn selected persistently 

low performing schools for the program. This suggests that dis-
trict context could be particularly important to control for in 
this case. Districts that successfully sought out SIG funding 
might be engaging in other initiatives designed to the perfor-
mance of their lowest performing schools. Moreover, SIG schools 
may be among the better managed schools across the state.

Ideally, one would use schools that are within district but also 
similar on pretreatment performance. However, in some tar-
geted districts, all low-performing schools received funding. This 
is a situation for which hybrid matching is well suited because it 
preferences local matches when they are similar enough but 
draws on matches from outside the district when they are not 
available. To implement the hybrid approach, we first calculated 
propensity scores for all schools in the state, then computed pro-
pensity score differences between each of the SIG schools against 
each of the potential comparison schools. Using a prespecified 
caliper (maximally acceptable difference in propensity scores), 
we then identified all schools that sufficiently match each of the 

Table 1
Design Considerations and Guidance

Design Considerations Guidance

Is school-level CITS the right 
design?

•  �Is an RCT feasible? If so, an RCT is preferable to a CITS design because it requires fewer assumptions to support causal 
inference.

•  �Is your research question about school-level effects? School-level CITS estimates the difference in school performance under 
treatment and comparison conditions.

•  �We recommend having at least three preintervention and one postintervention measure of the outcome. The availability of 
publicly available school-level data has increased the ease of implementing this design, but researchers should be aware of 
changes in assessments that could bias effect estimates.

How do you create a 
comparison group?

•  �What other changes could explain a change in outcome that co-occurs with the implementation of the treatment? Comparison 
schools should be selected to rule out potential threats to validity.

•  �Correctly selecting comparison cases can also help simplify modeling assumptions. To take advantage of this design feature, 
select comparison cases with similar preintervention trends in outcomes.

•  �A variety of approaches, including using all available nonimplementing schools, local/within district matching, focal matching 
on observable characteristics, and a hybrid approach that balances finding local and focal matching, are all possibilities to 
consider.

How do you model outcomes? •  �Are the preintervention trends equivalent between the treatment and comparison schools? If so, the baseline mean model 
will maximize efficiency without introducing bias. However, if the preintervention trends are divergent, more flexible modeling 
approaches, such as the baseline trend model, should be used. Visual inspection and more formal statistical tests comparing 
preintervention trends can both be used to make this assessment.

•  �Postintervention outcomes can be examined as annual differences between the treatment and control cases in the 
postintervention period or whether there is a shift in intercept and slope. If the latter approach is employed, time should be 
centered on the intervention year.

•  �Staggered implementation provides additional opportunities to vet internal validity, but must be taken into account in 
modeling.

How should results be 
interpreted?

•  �Because more assumptions must be met for a CITS to be causally valid, they should be interpreted more cautiously than 
results from an RCT.

•  �The longer the lag between the collection of outcome data and the implementation of the treatment, the less confidence one 
should have in a causal interpretation of the estimated effects.

•  �School-level CITS only provides estimates of school level effects, not what would have happened to individual students or 
groups of students under the two treatment conditions.

•  �Like all experimental and quasi-experimental studies, the effects from CITS studies only provide estimated effects for the 
schools that actually implement the program. This may or may not be the estimand of interest for policy or practice. Although 
the naturalistic setting under which CITS designs are frequently implemented may lead to greater external validity than RCTs 
that are limited to schools that are willing to be randomized, researchers should still think carefully before generalizing beyond 
the study population.
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SIG schools, with a target ratio of two matches for each SIG 
school. Then, any acceptable matching that was available within 
a SIG district was prioritized over schools in other districts, to 
the extent they were available, even if there were slightly better 
matches elsewhere. We matched 37 of the 40 SIG schools to 57 
unique comparison schools. Over half (60 percent) matched 
comparisons from this approach were within-district matches.

Modeling outcomes.  The third major decision that needs to be 
made when conducting a school level CITS is how to model the 
outcomes (i.e., the pretreatment trends). Figure 2 illustrates the 
pre- and posttreatment achievement trends in the Ohio SIG 
schools and the comparison group identified through hybrid 
matching. Based on visual inspection of these figures, there 
appears to be little evidence of differential slopes in the treat-
ment and comparison groups. As such, we decided to implement 
the baseline mean model.

Interpreting results.  The results do not provide strong evidence 
that SIG had a positive impact on school-level achievement, 
with an initial drop in performance in 2011 followed by a steady 

increase in performance over the following 3 years, similar to the 
comparison schools. The effects for each postintervention year 
are provided in Table 2. While we suggest specifying one’s pre-
ferred modeling approach before running the analysis, the other 
modeling approaches can be implemented as a robustness check. 
In this case, using the baseline trends or year and school fixed 
effects modeling approaches do not substantively change the 
results.

As a reference guide, we have summarized the decision-mak-
ing process for this CITS analysis in Table 3. We have also pro-
vided, in Appendix A, sample code for conducting the CITS 
modeling in R.

Conclusions

CITS designs using aggregate data offer promise to applied educa-
tion researchers. The designs are fairly straightforward to imple-
ment using data that are frequently publically available. In addition, 
findings from within-study comparisons suggest that these designs 
can replicate the findings from RCTs. However, there are no one-
size-fits-all approaches to implementing these designs. Rather in 
each application, researchers must assess whether the assumptions 
that undergird this design hold. In this case, is the past an accurate 
predictor of what the future would have been had the intervention 
not been implemented? Careful selection of both the comparison 
group and modeling of the pretreatment trends are critical to 
ensuring that this assumption holds.

Table 1 summarizes the most up-to-date guidance from the 
empirical and theoretical literature on how to make these deci-
sions in practice. We believe the field would benefit from addi-
tional empirical WSCs that expand on this knowledge base. 
Insights from this work could serve to improve the implementa-
tion of CITS designs and the evidence they generate to inform 
policy and practice. For the promise of this design to be fully real-
ized, such evidence is needed to help applied research know a pri-
ori which approaches to modeling and selection of a comparison 
group are most likely to yield estimates with moderate or no bias.

Figure 2. Achievement trends in SIG schools,hybrid matched comparison schools.

Table 2
Ohio SIG CITS Results, Baseline Mean and Hybrid 

Matched Comparison

Subject Year Estimate SE

Mathematics 2011 –0.07 0.09
2012 0.14 0.09
2013 0.01 0.09
2014 –0.01 0.10

Reading 2011 –0.09 0.09
2012 0.11 0.10
2013 0.00 0.10
2014 –0.07 0.10
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Notes

Funding for this article was provided by Institute of Education 
Sciences (grant no. R305D140030).

1Note that some scholars use the terms difference-in-differences 
and CITS interchangeably, whereas others use difference-in-differences 
to refer exclusively to cases in which there are only two time points (pre 
and post) or the subset of CITS designs that we refer to below as the 
baseline mean model.

2Lechner (2010) provides a more formal discussion of these 
assumptions, which he refers to as the common trends and common 
bias assumptions, as well as a proof that when these assumptions are 
met, CITS/difference-in-difference analyses can provide unbiased esti-
mates of the average effect of treatment for the treated.

3This assumes more than one school and that the preintervention 
trend is the same for all schools. Otherwise, more data may be required.

4Staff at the department of education assisted with providing addi-
tional years of school-level data that were not available directly from the 
state website.

5Data are also available for writing, social studies, and science.
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Appendix A

Below is sample R code for running the models discussed in this 
paper (baseline mean, linear trend, and school and year fixed effects). 
A simulated dataset (with 80 schools, 10 time points, and a simulated 
treatment effect of .25 standard deviations) is provided as an online 
supplement, available in the online journal.

load(“simulated_cits_data.rdata”)
library(lme4)
#################################################
############################
#CREATE POST VARIABLE
#################################################
############################
data$post1 <- “pre”
data$post1[data$time == 6] <- “post year 1”
data$post1[data$time == 7] <- “post year 2”
data$post1[data$time == 8] <- “post year 3”
data$post1[data$time == 9] <- “post year 4”
data$post1[data$time == 10] <- “post year 5”
data$post1 <- relevel(factor(data$post1), ref = “pre”)
#################################################
############################
#CREATE A SEPARATE TREATMENT INDICATOR (AND 
TIME INDICATORS FOR THE SCHOOL/YEAR
#FE MODEL

#################################################
############################
data$tx1 <- 0
data$tx1[data$tx == “comparison”] <- 0
data$tx1[data$tx == “treatment”] <- 1

data$post2 <- 0
data$post2[data$post == “post”] <- 1

data$posty0 <- 0
data$posty0[data$post1 == “pre”] <- 1
data$posty1 <- 0
data$posty1[data$post1 == “post year 1”] <- 1
data$posty2 <- 0
data$posty2[data$post1 == “post year 2”] <- 1
data$posty3 <- 0
data$posty3[data$post1 == “post year 3”] <- 1
data$posty4 <- 0
data$posty4[data$post1 == “post year 4”] <- 1
data$posty5 <- 0
data$posty5[data$post1 == “post year 5”] <- 1
#################################################
############################
#MODEL OUTCOMES (OVERALL PRE-POST EFFECTS)
#################################################
############################

#BASELINE MEAN MODEL
fit_bm_1 <- lmer(y1 ~ tx * post + (1 | clust), data = data)
summary(fit_bm_1)

#BASELINE TREND MODEL
fit_bt_1 <- lmer(y1 ~ tx * post + tx * time + (1 | clust), data = 
data)
summary(fit_bt_1)

#SCHOOL AND YEAR FIXED EFFECTS MODEL
fit_syfe_1 <- lm(y1 ~ tx1:post2 + factor(time) + factor(clust), 
data = data)
summary(fit_syfe_1)
#################################################
############################
#MODEL OUTCOMES (SEPARATE EFFECTS FOR EACH 
POST YEAR)
#################################################
############################

#BASELINE MEAN MODEL
fit_bm_2 <- lmer(y1 ~ tx * post1 + (1 | clust), data = data)
summary(fit_bm_2)

#BASELINE TREND MODEL
fit_bt_2 <- lmer(y1 ~ tx * post1 + tx * time + (1 | clust), data = 
data)
summary(fit_bt_2)

#SCHOOL AND YEAR FIXED EFFECTS MODEL
fit_syfe_2 <- lm(y1 ~ tx1:posty1 + tx1:posty2 + tx1:posty3 + 
tx1:posty4 + tx1:posty5 + factor(time) + factor(clust), data = 
data)
summary(fit_syfe_2)


