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Abstract 
 
The age of data analytics requires "data scientists” across a wide range of business 

disciplines with deep knowledge of how to manage and analyse vast amounts of data to 

support decision-making. As a result, new analytical tools are being taught in the 

Management Information Systems (MIS) or business analytics (BA) programs to foster 

students’ development of this critical competency. Three waves of analytics tools are 

considered from an experiential perspective including how to introduce analytics to first-

year business students using an advanced data analytics software package with multiple 

techniques and data flow interface. SAS Enterprise Miner is used to teach technical 

topics and perform business-centric data analytics. An innovative exercise is designed in 

such a way that it guides first-year business students through a learning analytics 

journey to motivate them to understand the notion of data analytics and to develop 

skills around this emerging area without delving too much into extraneous technical 

details. A post-course survey indicated that the exercise helped students understand the 

opportunities as well as the challenges in doing analytics. 
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Introduction 
 

Analytics as a field has grown immensely over the last decade. Hadoop and similar big 

data platforms have used this period of growth to rise to prominence (Chambers & 

Dinsmore, 2014). Despite the rapid growth and importance of data analytics in the 

modern business environment, there has not been a commensurate increase in the 

number of individuals qualified and trained to manage and analyse the data used for 

business decision making (Russom, 2011, Abbasi et al. 2015). As in recent years, there 

has been a considerable shortage of analytics expertise worldwide (Schiller et al. 2015). 

Some predicted that in 2018 the United States alone faces a 1.5 million knowledge 

worker gap in analytics expertise (Henke et al. 2016; Rienzo et al. 2018). In response 

to this shortage of qualified professionals, many academic programs have prioritized 

data analytics education in their curriculums (Guthrie, 2013; Wixom et al., 2014). 

Despite the increase in curriculums incorporating data analysis, many programs still lack 

this element, causing data analysis education to lag in academia (Zhao et al., 2014). An 

important aspect of incorporating data analysis material into the classroom is 

overcoming student apprehension for the material using hands-on projects to demystify 

the techniques used in data analytics and maintain student interest (Zanakis & Valenzi, 

1997). The use of a hands-on education approach allows professors to overcome the 

apprehension that students show for math and statistics while also engaging them 

further in the material and showing them the usefulness of data analytics techniques in 

today’s decision making process. These hands-on techniques should be implemented 

using cutting-edge data-analysis programs in order to keep the material relevant and 

maintain teaching goals. A switch to this style as opposed to a more abstract method of 

education will allow professors to furnish their students with valuable skills and allow 

them to produce meaningful work in data-analytics (Sigman et al., 2014).  

 

Although there has been an increasing amount of research on the importance of data 

analytics skills, there have been few studies into how and what types of tools are 

more effective in facilitating business students’ understanding of analytical concepts and 

practice. This paper presents an experimental perspective on how business analytics can 

be introduced to first year business students. We provide an account of our practical 

experience and discuss how business analytics can be brought into the introductory core 

business courses to help business students recognize the importance of analytics and 

big data technologies in today’s marketplace and build analytical skills early on in their 

learning process. While a bottom-up approach has been a common way for teaching 

technical topics such as analytics, a hands-on approach can complement it and drive 

more motivation, enthusiasm, and passion among business students to learn business 

analytics. The exercise outlined in this paper demonstrates how an analytics project can 

be transformed into an effective and positive learning experience for first year business 

students. With the help of interactive analytics tools such as SAS Enterprise Miner, 

business students start by learning how to work through simple predictive modelling 

problems and slowly increase their complexity. A greater understanding of theory can 

be achieved later once students have a context in which to integrate their abstract 

knowledge. As such, our exercise is designed to be incorporated into an introductory 

level MIS or BA course transitioning to a hands-on practical approach for teaching BI/BA 

techniques and tools used to validate business decisions. The program that students will 

use in this exercise is SAS Enterprise Miner (SAS-EM), so chosen due to its combination 

of best practices in data analytics and visualization and enhancing the student’s 

engagement in the material. A large amount of data can be quickly and efficiently 

analysed using SAS-EM’s data mining and inbuilt analytical tools. This exercise trains 

students to produce actionable information from a large data set and is an introduction 

to predictive data-analytics.  
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Business Analytics in Brief 
 
The field of Management Information Systems (MIS) is dedicated to electronic 

information systems as they relate to organizations, with research focused on 

development, adoption, implementation, use, and maintenance of information 

technologies. The goal of research in MIS is to make organizations more efficient using 

information technology resources to yield useful business intelligence (BI) and applying 

this intelligence. The term analytics has been employed to collectively refer to a variety 

of BI and application initiatives. However, a unified definition of what constitutes 

analytics has not been agreed upon with some using analytics to refer to the process of 

analyzing information from a domain, while others use the term more broadly to refer to 

usage of a variety of BI techniques on a specific area. Due to the amount of data that 

firms are collecting or have available externally, professionals in the business world are 

looking to use analytics to segment, score, and make predictions about the business 

environment and improve internal efficiency. For this article’s purposes, we define 

“Business Analytics” or BA as the use of information technology, statistical, 

mathematical data, data mining, or computer based techniques on massive datasets to 

generate deep insights necessary for improving organizational processes (Asamoah et 

al., 2017). Deeper knowledge of the data, regardless of source, requires that four 

characteristics of the data be considered. The volume, variety, velocity, and veracity of 

the data need to be managed properly while using tools and applying techniques to the 

data. To reveal the underlying pattern of the data, mathematical and statistical methods 

are married to computing and data visualization techniques.  

 

The last five years has seen BA gain momentum in the academic forum, with a search of 

google scholar suggesting that more than 15,000 articles have been published on 

Business Analytics between 2012 and 2018 (Figure 1). Gaining not just popularity in 

academia, practical application of business analytics has likewise grown over the last 

half decade, with a study by Gartner Group showing that the top technological priority 

for Chief Financial Officers is business analytics (Elliot, 2012). Business analytics’ 

perceived importance and advantages are driving factors in its modern popularity giving 

organizations the ability to (i) observe patterns and relationships in data, (ii) provide 

their managers and executives with business insights, and (iii) translate data into a 

competitive advantage (Holsapple et al., 2014). Overall commitment to BA and data 

driven decision making has been shown to be associated with a firm’s overall 

performance, measured through revenue, profit, process quality, and shareholder return 

(Brynjolfsson et al., 2011; La Valle et al., 2013). This may indicate that BA creates a 

competitive advantage through more informed decisions at various levels of the firm. 

While the trend may be present for firms to perform better, employing BA techniques 

regarding the quality of data, the processing capacity to support a high volume of data, 

the data driven organizational culture, are all crucial to successful business analytics 

programs (Philpott, 2010).  

 

The field of business analytics has a shortage of qualified practitioners; instrumental in 

addressing this shortage are the higher learning institutions where practitioners are 

trained. However, business schools have had their training requirements scrutinized. 

Chiang et al. (2012), for instance, argue that current information systems curriculums 

are lacking in practical and in-depth training, and academia has not been yielding the 

kind of individuals knowledgeable in applying the three perspectives of BA, managing 

data sources, and analyzing large datasets that the industry needs. As the needs of the 

industry change so to do the contents of the information systems curriculum to reflect 

the industry’s techniques and state of the art analytics programs. There are a number of 

barriers that need to be overcome to put an effective way of learning analytics into 

place. One of the biggest challenges facing analytics educators is motivating students to 

engage with high level analytics techniques, software, and concepts necessary to 

prepare them to produce actionable business intelligence from data. Some students 

seem to be reluctant to learning analytics because of math experience anxiety or 
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hostility against technology. Statistics and mathematics are important in learning 

analytics, but only because of the concepts they allow to surface and the tools they 

make possible. Therefore, business professors need to overcome students’ apprehension 

and insecurity in regards to the math, statistics and computer programming facets of 

analytics. Technology has proven to be a viable solution to promote mathematical 

creativity (Idris et al. 2010) and reduce student anxiety. In today’s digital world, 

business analytics isn’t about solving equations, it’s about coaxing math, statistics and 

computers to produce something people find useful, actionable and even enjoyable. To 

this end, computers and high-end software play an important role in analytics. Business 

analytics courses need to be taught in computer lab classrooms with BA software 

installed on each computer and students working at their own computers. Many 

software companies are developing and offering BA software under an entirely new 

paradigm where data and analysis drive their most important product features. Bringing 

students in the direction to learn how computer-based problem solving works in the real 

world is fundamental. To demonstrate the important role of software in business 

analytics, we can look at the history and progression of business analytics tools and 

technologies and use it as a basis to understand the need to utilize the right tool for 

business analytics education.  

 

Figure 1:  
The Rise of Business Analytics over Time 

 

 
 
 

Analytics Software Over Time 
 

The first wave of business analytics was mostly composed of trained statisticians and 

data scientists, this is due to the nature of the programs employed for BA. These 

programs, from companies like SAS, SPSS, IBM, and MATLAB, which are still around 

today, required knowledge of programming and cost anywhere from hundreds to 

thousands of dollars. However, this represented an important step for companies in 

embarking on BA capabilities, because rather than developing an in-house data 

analytics system for themselves, firms could purchase one. We call this first wave of BA 

“Monopolization of Analytics”, which lasted for decades (Nishida, 2017).  

 

One obstacle faced by firms in the first wave was the programming expertise required 

to properly interface with the data analytics software. Programming is a complex skill 

requiring experience, something firms couldn’t always afford to provide. To address this 

issue, we see User Interface (UI) based tools such as SPSS Modeler, Tableau, SAS 

Enterprise Miner/Guide, Weka, Domo, Rapid Miner, Orange, Exploratory etc. being 
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employed to make data analytics software more accessible to individuals with less 

programming proficiency.  

 

This advancement of UI allowed business analysts and consultants, individuals with 

deeper domain knowledge but less programming experience, to do work that formerly 

only those proficient with programming such as data analysts were able to do. Using 

machine learning algorithms these analysts and consultants could gain a greater 

understanding of business data than they could from traditional BI tools. This shift in 

usership constitutes the second wave of BA, called “Commoditization of Analytics”, 

marked by high quality, accessible algorithms that enabled users to quickly draw high 

quality business intelligence from data (Nishida, 2017).  

 

The third wave of business analytics is in full swing at present, characterized by cutting 

edge, high quality open source algorithms/languages such as R, Python, etc. However, 

these open source algorithms require a degree of programming proficiency, which 

presents similar issues as those seen in the first wave, though to a lesser degree. This 

third wave of business analytics is called “Democratization of Analytics” (Nishida, 2017).  

 

This article demonstrates how second wave analytical tools can equip business analytics 

educators with the tools necessary to introduce first year students to core concepts in 

business analytics without intimidating them with coding or complex technical 

explanations as seen in the first or third waves. Retaining student interest is important 

for educators; therefore, the exercise presented in this article was created to provide 

first year students with a hands-on understanding of BA material and an approach 

geared toward managerial level decision making. Providing students with a better 

understanding of the technical aspects of business analytics is an important 

responsibility for educators. Through the lens of addressing problems that might be 

faced by a managerial level decision maker, students can come to better understand the 

applications of BA on decision making in organizations. Due to the nature of an ever 

advancing technology based field such as BA, educators are better served providing 

students with the fundamental principles of BA. Educators must balance between hands 

on teaching methods that require technical skills instruction and providing students with 

the knowledge needed to make data-driven decisions.  

 

The Case Study: Analytics Exercise  
 

Learning Objectives 
 

Purpose:  To demonstrate to first-year business students how knowledge of business 

analytics aids in understanding and solving certain business problems. 

 

The design of this exercise incorporates some of the most interesting elements of SAS-

EM, training students to use the market basket application and analysing transactional 

databases to discover patterns (i.e. business rules) in customer purchase behaviour. 

Important skills taught by the exercise include querying, transforming, and analysing, 

scoring and visualization of data. We extend the market basket analysis exercise by SAS 

and cover additional steps to guide business students along a full journey of 

data analytics, dashboard insights, and the action they inspire. Figure 2 shows a 

conceptual map of all the BA topics covered in this exercise. The first steps in the 

exercise include preparing and exploring the data and the process culminates in 

analysing and visualizing the data in a way that illuminates relationships present in the 

data. This exercise is intended to simulate a typical market basket analysis, which would 

consist of analysing the data to show the relationship between items frequently 

purchased together. An example of this kind of relationship would be the relationship 

between bread, milk, and peanut butter where we want to know if given that bread and 

milk is in someone’s basket what are the chances of them buying peanut butter as well? 
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By analysing the data, we find that 10% of all purchases include these three items, and 

that peanut butter is present in 70% of purchases that include milk and bread. Using 

this information we can produce a cross-selling rule for milk and bread -> peanut 

butter. This kind of information allows businesses to target individual customer groups. 

 
Figure 2:  

Exercise's Workflow 
 

 

 

 

 

 

 
 

 
 

 
A detailed transactional dataset containing purchase transactions of over 1,000 

customers was provided to students. The students should import the market basket 

data set into the SAS EM environment and load the data into the SAS EM diagram. Once 

this is complete, the students can use either the association node or market basket 

node for the association and sequence analysis. The students should then be directed to 

the network analysis tool and instructed on how to generate graphical representations 

of item associations. One example of these graphical representations is the constellation 

plot, which displays item co-purchasing association with lines connecting points which 

signify each product, the thickness of these lines indicates strength of association. Next 

students should use the embedded recommendation system tool to make 

recommendations to theoretical consumers, they should figure out what products will be 

recommended to which customers based on same or similar purchase histories. Lastly, 

after a model has been created based on historical data, students were introduced to 

the idea of scoring where the association-rule predictive model is taken to apply to 

new customer transactional data in order to make predictions about unseen behaviour 

which can be used for targeted promotion recommendations. 

 

The exercise also provides students with detailed instruction on how to use SAS’s 

SEMMA analytics framework for data mining. There are five stages to the SEMMA 

framework: Sample, Explore, Modify, Model, Assess. The first stage, Sample, involves 

selecting the most appropriate for the established business purpose. The second stage, 

Explore, involves revealing the relationships between variables in the data to better 

understand the data. The third stage, Modify, involves selecting and transforming 

variables using various methods to prepare for the Modelling stage. This third stage is 

one of the most important and labour-intensive aspects of the data mining process often 

comprising as much as 80 percent of the time and effort spent on a project. Important 

aspects of this process include understanding volume, variety, and velocity of the data 

(Douglas, 2001), an understanding of what the data represents as well as binding data 

streams, transforming the data so that it can be queried and analysed, filtering and 

reducing the data, among other tasks. The fourth stage, Modelling, involves using a 

prepared data set to create predictive models using various data modelling techniques 

to yield the desired result. The last stage, Assess, involves examining the models 

produced in the modelling phase and identifying the useful and reliable candidates. 

 

Predictive 
Modelling  

Association 
Rules Mining 

Customer 
Transaction 
Database 

Network 
Analysis 

Recommender 
Systems  

Data Visualization 
 

New 
Transactions 
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All course objectives were addressed in the case study, the complete set of which is 

listed in Table 1. However, a particular emphasis was placed on the student objectives 

detailed in Table 2. 

  

Table 1:  

Course Objectives 
 

LO Course Objective Program Learning Goal 

1 Understand the role of Information Systems in 

organizations 

• Business Knowledge & 

Competency 

2 Be able to use information systems as a 

resource in decision making 

• Technology Skills 

3 Understand the impact of technological change 

in accessing and disseminating information 

• Business Knowledge & 

Competency 

4 Learn how E-Commerce and E-Business have 

changed how we do business  

• Business Knowledge & 

Competency 

5 Be able to work with a database and data 

management tools  

• Technology Skills 

• Analytics Skills 

6 Perform business analytics tasks using Excel 

and other advanced software programs 

• Technology Skills 

• Analytics Skills 

7 Be able to apply analytic and computer-based 

techniques from science and business to 

analyze and interpret data 

• Critical and Creative 

Thinking 

 
 

Table 2:  
Key Case Objective 
 
By the end of the case students will have: 

• Gained experience working within a Data Analytics and Visualization 

environment;  

• Applied current modelling and visualization techniques to the Market Basket 

Data;  

By the end of the case, students will have learned how to complete all the 

following tasks: 

• Create a data analytics project in SAS EM; [LO 5] 

• Create a Library for use in SAS EM and Import the data source to the workbench 

diagram; [LO 5, 7] 

• Explore the customer transaction database; [LO 2]  

• Work with data without going through complicated technical steps; [LO 7] 

• Perform association rules mining to discover interesting patterns; [ LO 1, 2, 6]  

• Create visualizations of the data; [LO 3] 

• Use link analysis node for detailed and precise insights about the co-purchase 

networks; [LO 4, 7] 

• Perform recommender systems analysis using the recommender table of SAS EM 

to recommend items to users; [LO 4, 7] 

 

 

This exercise fosters an understanding of data analytics and encourages students to 

develop the necessary skills to participate in this emerging area of business. This hands-

on style of exercise was chosen to provide an interactive learning experience on the 



Zadeh, Schiller, Duffy & Williams – Volume 12, Issue 1 (2018)  

© e-JBEST Vol.12, Iss.1 (2018)   127 

topic of business analytics to freshman business students. The exercise was designed so 

that students would focus on and engage with advanced data analytics programs, 

keeping the mathematics side of the process to a minimum so as not to discourage 

students from engaging with the exercise. 

 

Prior to the exercise a handout detailing the concepts and tools that were addressed in 

the exercise as well as a step by step walkthrough of the exercise was given to the 

students by the instructors. The instructors then informed students that they were 

expected to read the handout and prepare for the exercise before class. In class a 

simple tutorial composed of point and click responses was used to cover simple 

introductory information so that more time could be devoted to higher level material. 

Technical and practical aspects of the exercise were the focus of instruction; however, 

students were still expected to show some degree of proficiency in class. Planned 

learning outcomes were achieved using a blended learning methodology that included a 

mix of in person and learning technologies (Liam & Morris, 2009). During class time 

instructors presented the business scenario before a live demonstration and a practical 

hands-on session; this consisted of 35 to 70 percent of the class period. The hands-on 

session was designed to increase the student’s familiarity and confidence with the 

process by having them replicate the work shown on the handout. Throughout students 

were given explicit instructions to keep interest and attention high. After the initial 

exposure to the tools in the learning environment students were encouraged to draw 

their own conclusions from the market basket data and to develop their own ideas, 

questions, and solutions. The goal of the exercise was to challenge and engage students 

in a learning experience where they would become content developers and problem 

solvers. 

 

Exercise Activity:  
 
Through this exercise, students are exposed to the concept of turning data into business 

insights and the mechanisms used to implement it. After learning these concepts, the 

students will engage in the following activities: 

 

• Exposure, exploration, and engagement 

• Data preparation and pre-processing 

• Data modelling, visualization, and interpretation 

• Elaboration and recommendation 

 

Outcome:  
 

Before engaging in this activity, the students have been briefly exposed to the 

theoretical concepts and mechanisms behind analytics. After engaging in this activity, 

the students will have formed a concrete connection from the theoretical to the actual 

by realizing how analytics can be applied to mine and to analyse business data.  

 

The Exercise  
 

The SAS SEMMA data mining framework was used as a reference when delineating the 

various stages of the exercise. The five major components of the data analytics 

methodology are exposure and exploration, data preparation and preprocessing, data 

modelling and visualization, and interpretation and elaboration, consistent with the SAS 

SEMMA framework. In the following section, we will briefly discuss the steps of the 

analytics workflow displayed in Figure 3. 
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Exposure, exploration, and engagement 

 

The exercise tutorial begins with the instructor who introduces students to various data 

analytics tools, visualization applications, and unfamiliar data analytics content, 

including the market basket analysis. The material for this presentation is easily drawn 

from online sources such as Teradata University Networks, Tableau and SAS, and text 

sources, such as course texts. In order to engage students the material selected should 

be current, relevant, and interesting. This stage is designed to educate students on 

business analytics’ uses and importance. Through this stage students’ familiarity with 

and openness toward data analytics and visualization tools is increased, expanding their 

comprehension of the resources employed for data analytics beyond Microsoft Excel and 

Access. 

 

Figure 3:  

Analytics Workflow of the Exercise in SAS EM 
 

 
 

 

 

 

Data preparation and preprocessing 

 

In the data preparation and preprocessing stage of the exercise students use a pre-

established list of steps to explore the possibilities of SAS EM, chosen for its usefulness 

as a data mining and visualization tool. The handout that the instructor provided the 

students with prior to the exercise should contain a full list of the steps for this stage. 

The steps are 1) create a new SAS EM project, 2) create a workbench diagram, 3) select 

a data source, 4) drag and drop associated nodes to the diagram, 5) configure the link 

analysis and association nodes, 6) customize the properties, 7) re-run the nodes to get 

customized results, and 8) preview the results. The instructor can determine, based off 

the time available in the course, if these steps are completed in their entirety or in 

parts. We will subsequently elaborate on each of these steps. 

 

The most important elements of this stage, like in most data mining operations, are the 

elements of data preparation and understanding, and creating business value. The 

instructor should impress on the students the importance of these elements through the 

exercise. A transactional dataset containing purchase transactions of over 1,000 

customers was provided to students. Note that, included in the SAS EM program, there 

is a Sample library named Assocs which can be alternatively used for this exercise. The 

students should bring the market basket data source into the SAS EM environment. To 

do so, they will need to create a library and use a File Import Node to import the 

transactional data into the SAS diagram. The data source wizard in SAS EM is a valuable 

tool for introducing students to the language and definitions relevant to data mining. 

The wizard is helpful for creating metadata, data types, measurement levels for all 

columns in the dataset. This stage includes investigating the data using the data source 
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node, this investigation should yield preliminary information about the data’s content 

and structure. During the data preparation and preprocessing steps the dataset role 

must be TRANSACTION for the association analysis to be performed. 

 

Data modelling, visualization, and interpretation 

 

The three main approaches in our analytics initiative for this exercise are association 

rules mining, network analysis, recommender systems and predictive modelling. Over 

the last 20 years the tools being used for this type of analytics have grown and evolved 

into a multitude of powerful and sophisticated instruments, ensuring that practitioners 

need not reinvent the wheel. The use of graphical representations to display data is an 

invaluable tool for data analysts when recognizing the patterns present in a given 

customer transaction dataset. A plethora of options for graphics and visualizations are 

present in the SAS EM software, giving users the ability to display the data in the most 

effective manner. 

 

The first step is for students to identify patterns of interest in the customer transaction 

data set, this is done using the Association node to generate business rules. The rules 

are represented in the following format: A->B, A is referred to as the precedent, and is 

referred to as the consequent. A single variable may represent more than just one 

product. For instance, beer -> wine & soda. A typical method of establishing rules like 

this is to count the number of co-occurrences of A and B in the data (Faron & 

Chakraborty, 2012). The students can manage the results of their rules searches using 

the property panel in the Association node. Before running the association mining node, 

students must set Maximum Items, Minimum Confidence, and Minimum Support, as 

these metrics aid in identifying the importance of rules. Rules with higher confidence 

and support percentages are preferred. These rules can be seen located in the top right 

corner of the statistics plot in Figure 4. 

 

 

Figure 4:  
Statistics plot for Association Node 

 
 

 
 

 

As its name suggests, the Maximum Items property of the Association node controls the 

maximum number of items that can be considered when generating rules. The Minimum 

Support dimension is the smallest joint probability that both items were found in the 

cart that is still acceptable for the rule. The Minimum Confidence is the lowest 

conditional probability that is acceptable for the rule, representing the probability that 

“B is in the cart given that A is in the cart”. These minimum acceptable scores represent 
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the minimum benchmarks for screening rules (Faron & Chakraborty, 2012). Figure 5 

shows various examples of rules with their accompanying confidence and support 

scores. For instance, the rule ice cream -> coke has a confidence value of 70% and a 

support of 22%. This indicates that 22% of carts/transactions contain these two items 

and 70% of carts/transactions with ice cream will also contain coke. 

 

 

Figure 5:  

Output window 
 

 
 

 

This exercise seeks to expose students to various visualization tools in SAS EM. The SAS 

built-in link graph tool gives a graphical representation of the association between the 

items. Each line represents a rule connecting one item to another. Figure 6 displays the 

default link graph for the data.   

 

Figure 6:  

Link Graph 
 

 
 

 

Network analysis is another powerful visualization tool in SAS EM that shows a network 

of connections and interactions between various items and groups. The Link Analysis 

Node can produce complex graphical representations of networks, one such example is 

the item constellation plot (Figure 7) which shows associations between all items in the 

set.  
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Figure 7:  
All Items constellation plot:  a co-purchasing graph view 

 

 
 

 

An alternate setting for the item constellation plot allows a single item to be selected for 

a co-purchasing graph. Figure 8 shows an items constellation plot for co-purchasing 

associated with apple. In the plot, thicker connecting lines show that the association 

rule between the two is stronger. 

 

Figure 8:  

A single Item constellation plot 
 

 
 

 

Students can also examine an individual customer’s transaction behaviour using the 

Exploratory Plot. The exploratory plot will yield different insights about the consumer’s 

behaviour. In order to view an individual customer’s purchasing information, a student 
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must select customer from the Group list and Customer ID # from the Node list. Figure 

9 shows an exemplary exploratory plot where the thickness of the lines connecting each 

product represents the number of times a given customer purchased it. 

 

Figure 9:  
Exploratory Plot for individual customer’s purchasing behaviours 

 

 
 

 

The penultimate step of this stage involves introducing the students to recommender 

systems. These systems have changed how media and products reach consumers. 

Recommender systems have been widely adopted by many firms such as Amazon, 

Netflix, Last.fm, and Facebook. These firms use recommender systems to recommend 

music, products, and potential friends to their users, attempting to predict their user’s 

taste and habits. Using their transactional data, one can make recommendations to 

customers through the Link Analysis node. Students can view the next best offer list 

generated to discover what items should be recommended to customers with similar 

purchase histories. Figure 10 shows a next best offer list in which customers are being 

offered to purchase various products based on their purchase history, behaviour and/or 

other customer data.    

 

 

Figure 10:  
Recommendation table in SAS EM 
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As shown in Figure 11, the next best offer tool can be sorted and filter based on factors 

such as “Customer ID”, “Top N”, and “Minimum Confidence (%)”. In particular, Figure 

11 shows the next best offer list for customer 10150. 

Figure 11:  

Next-best-offer list in SAS EM 

 

 

After a model has been created based on historical data, students were 

introduced to the concept of scoring where the association-rule predictive model is then 

applied to new customer data in order to make predictions about unseen behaviour. We 

provided a new set of (customer transactions) data which was held out and not used at 

the training stage. Similar to steps in the data preparation process, students use 

another File Import Node to import the new transaction spreadsheet into the SAS 

diagram and label it as “New Transactions”. At this stage, students needed to examine 

the data structure, measurement levels and variable roles of the new data and ensure 

that the dataset role is “Score”.  In addition, because the Association Rules created by 

Association Rule Node is needed as an input to the scoring process, students were 

guided to change the Association role Node’s setting accordingly (Export Rule by 

ID: Yes, Recommendation: Yes). After running the Score Node, students examined the 

Exported Data set. In the output data set of the score node, students will find new 

columns with binary variables for each rule.  For each rule, a customer is assigned a 

recommendation value of 1 or 0.  If a customer already has both the antecedent and 

the consequent of a rule, then the corresponding rule variable takes a value of 0 (rule 

not recommended). However, if the antecedent of a rule exists, but the consequent 

does not, then the rule variable takes a value of 1 (rule recommended).  

 

Figure 12:  

Scoring New Customer Data 
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Elaboration 

At this stage student’s should have sufficient exposure to SAS EM to begin developing 

their own ideas and insights. Students should be encouraged to move beyond the 

materials provided in the handout. Allowing students to experiment with the tools that 

they have been introduced will keep their engagement with the material high, allowing 

them to learn from mistakes and discover useful functions that may not have been 

addressed (Chen, Chiang, & Storey, 2012; Dupin-Bryant & Olsen, 2014). Allowing the 

students to move beyond the material gives them the opportunity to interpret the 

information in a more creative way and bolstering their understanding of data analytics. 

To facilitate this the professor should ask provocative questions such as “how could you 

apply association mining to other industries?”, having a discussion to take place in the 

class will allow students to explore their ideas and make connections between the 

exercise material and the outside world. 

 

Discussion 

 
Incorporating business analytics exercises into the introductory core business courses 

has given students a greater appreciation for the role and value of data analytics to 

today’s successful businesses. In addition, the students’ involvement with the course 

material has grown. Once the students overcome the immediate barrier of how to bring 

data to the software environment and how to explore their data with drag-and-drop 

tools, they become immensely engaged in the exercise. Next we summarize the key 

lessons we learned throughout this process. 

Lessons Learned  

 
• The conventional  bottom-up approach does not work. Business analytics is an 

applied field that creates models from data to gain business benefits. A top-

down/hands-on approach can be more suited to business students than a bottom-

up approach. This allows instructors to walk students through simple predictive 

modeling problems and slowly increase their complexity.  

• Start with business cases not mathematical/statistical definitions and theory. The 

unique feature of analytics allows BA instructors to focus on business problems and 

also enables to provide deeper insights that are highly relevant to business and 

industry. Therefore, it is important for BA professors to lay out business problems 

that focus on practicing the process of analyzing business data, getting results 

immediately, and going deeper into areas as needed within the context of the 

result/business problem.  

• Business analytics it different. Business analytics does not use traditional ways of 

thinking. It is an iterative approach that requires discovery, curiosity and 

explanation. Results may be poor in the beginning, but improve with practice. 

• Make changes one at a time and examine the results. Today’s analytics software 

such as SAS, is designed to do most of the mathematical and statistical analyses 

and generate results immediately. This enables business students to learn analytics 

and technology in a fast, interactive way. For example, analytics tools such as SAS 

EM allows students to play with different parameter settings, perform “what if” and 

sensitivity analyses and immediately predict the effect of different scenarios on 

the business problem at hand.  

• Business analytics means different things to different people, but at its core, 

proceeds in the same way regardless of domain or context. BA seeks to provide 

business insights that involve data from across the organization. While the market 

basket analysis exercise is likely to be fairly easy for most students, it allows 

business students to participate in a real-world problem solving environment. It is 

worth noting that in addition to the market basket analysis, other similar BA 
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exercises such as customer segmentation (cluster analysis), churn prediction, RFM 

(recency, frequency, monetary) analysis, path analysis (analyzing the footsteps of 

customers) and social media sentiment analysis will be appropriate and helpful in 

introducing important BA concepts in the context of specific applications.    

• Business analytics is an emerging field, and its adoption by higher education 

institutions around the world is uneven. While business schools in North America, 

Europe and Australia are generally considered leaders in this domain, other regions 

in the world are still at an initial stage of exploring its possibilities. 

 
Feedback and Learning Assessment  
The learning objectives achieved in the exercise detailed in this article are: (1) improve 

student comprehension of business analytics and it’s practical application, 2) introduce 

students to a new data analytics tool and have them perform data analysis without 

burdening them with unnecessary technical details, and 3) encourage students to 

explore business analytics as it relates to their future courses. Multiple sections of MIS 

3000 in spring and fall semesters of 2016 and 2017 at wright state university 

participated in this exercise and provided feedback. MIS 3000, titled Fundamentals of 

Information Systems, is a core business course and thus a required course for all 

business majors. Assessment was anonymous and voluntary with a response rate of 

83% of those enrolled (287 of 312). The results of the survey on the exercise’s 

effectiveness is shown in Table 3. 

  

Table 3:  
Results from the Survey  

  

# Question Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1 Demonstrated how to preform market 
basket analysis using point-and-click and 
graphical data model to perform data 

analytics 

80.2% 11.9% 7.2% 0.7%  

2 Improved my understanding of market 
basket analysis using the association rule 
mining without delving too much into the 
mathematics of it 

84.1% 13.6% %2.3   

3 Demonstrated how visualization can help 
gain business insights and grasp 
trends/patterns in data quickly 

71.3% 23.5%  5.2%  

4 The goals of this exercise are clearly 
stated and consistently pursued 

95.2% 4.0% 0.8%   

5 Improved my understanding of business 
analytics and how it can be applied in 
practice 

81.9% 13.1% 3.2% 1.8%  

6 Helped me understand what business 

analytics is about and what it can do 

95.4% 2.1% 2.5%   

7 Was reasonable and useful 82.7% 14.1% 0.7% 2.5%  

8 The step-by-step handout helped me go 
through the exercise 

92.2% 5.1% 2.7%   

9 The steps described in the handout were 
not working 

   6.3% 93.7% 

10 This exercise was irrelevant for this course  1.5% 3.7% 15.85% 78.95% 

11 I gained no new knowledge from this 

exercise 

  1.4% 9.7% 88.9% 

12 I like to learn more about business 
analytics 

83.1% 10.7% 1.6% 3.5% 1.1% 

13 I like to do more hands-on analytics 

exercises like the basket analysis 

72.7% 17.5% 5.1% 4.6%  
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The survey result implies that all the learning objectives as listed in Table 2 were 

successfully achieved through this exercise. Student responses indicate that the 

exercise engaged students and increased their understanding of data analytics and 

visualization. Students expressed enhanced confidence in their understanding of data 

analytics and a desire to learn more about the subject. The students expressed an 

appreciation for the advantages that those who master data analytics have over their 

peers.  

This study is not without limitations. The effectiveness of our case study was assessed 

based on student opinion survey data that was collected at the end of the activity. The 

feedback from students was very positive and they indicated that the activity was 

beneficial to them. Future research can include collecting additional measures of the 

effectiveness of the activity in comparison to more traditional approaches.  

 

Conclusion 
 

This instructional note presented an experiential perspective on how a business 

analytics exercise was implemented in an introductory business course. An account of 

the practical experience gained from teaching this emerging subject was presented. The 

analytics initiative comprised important concepts in BA including, but not limited to, 

association mining, network analysis, recommender systems, predictive analytics and 

visualization and can be easily added to any intro to MIS or BA course or in any course 

where students gain from exposing to data analytics technology. This paper showed 

how the exercise could be aligned with the intended learning goals and course 

objectives. SAS Enterprise Miner and similarly advanced data analytics tools give 

instructors a variety of methods and options for visualization and data analysis 

techniques, this allows the instructor to maximize students’ understanding of the 

material.  
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