Full Length Research Paper

Availability and accessibility of ICT-based instructional tools in medical colleges in Ogun State, Nigeria

Nwosu, Jonathan Chinaka¹, John, Henry Chukwudi² and Akorede, O. J.²

¹Department of Educational Foundations, Babcock University, Ogun State, Nigeria.
²Educational Foundations and Instructional Technology, Tai Solarin University of Education, Ogun State, Nigeria.

Received 7 March, 2018; Accepted 18 May, 2018

This study assessed the availability and use of ICT-based Instructional tools in selected medical colleges in Ogun State, Nigeria. This study adopted a descriptive survey research design. The population to be studied is medical lecturers (328), clinical instructors (42) and laboratory technologists (92) from Ben Carson Snr. Medical School, Babcock University, Obafemi Awolowo College of Health Sciences, and Olabisi Onabanjo University (OOU); total being 462. Simple random sampling technique was used to select 248 respondents for the study. This will represent the population to be studied. Data was collected with the use of titled questionnaires (ICT-bIPIMC) and a checklist during their faculty meetings/seminars, and the data collected were analysed using simple frequency and percentage techniques. It was revealed that Computer Aided Instruction (CAI), Social Media, Human Patient Simulation (HPS), PowerPoint Slides (Microsoft) [PP slides, and Medical videos (MV), Multimedia Classrooms (Audio Visual Centre), Projectors, E-Medical journals and animation clips] were the available ICT-based tools for Instructional tools in Ogun State medical colleges. Based on the available finding in this study, social media (45%), E-medical journals (40%), computer-aided instructions (39%), online educational forum (37%), and Internet connected laptops (34%), were the major ICT-based tools used at least twice daily. The study recommended that ICT-based instructional tools should be compulsory for instructional practices among lecturers, laboratory technologists and clinical instructors; also medical colleges should be motivated to use ICT-based tools as instructional tools through training and workshop on how to effectively use the available tools.

Key words: ICT-based Instructional tools, medical colleges, availability, usage.

INTRODUCTION

Technological advancements of this era have revolutionized every field of life; teaching is no exception. The basis of the medical curriculum consists of the fundamental theory and practice of medicine, specifically basic bio-medical, behavior and social sciences, clinical sciences and general clinical skills, including clinical decision skills, communication abilities, and inter-professional collaboration.

Information and Communication Technology (ICT) tools are important in training, educating and for capacity

*Corresponding author. E-mail: nwosuj@babcock.edu.ng

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
building programs which play key role in educational process. ICT’s impact on medical education has evolved a great deal as both medical science and computer technology have undergone profound enhancement. While developed countries could harvest their investments in ICT, medical schools in developing countries are still struggling with designing, implementing, and instructional delivering through ICT in medical education (Stefan et al., 2016).

World Federation for Medical Education (2016) refers to medical school as an educational institution providing a basic undergraduate and post graduate programs in medicine and other health related programs with medical faculty, medical college, medical academy or medical university. The medical school can be part of or affiliated to a university or can be an independent institution at equal level.

One of the key indicators of best global practices in medical colleges in the world is ICT-based instructional tools which may include software and hardware utilization during teaching and learning process in a medical college; it is a fundamental redesign of the instructional model, shifting from lecture to student-centered instruction, increasing all forms of interaction and incorporating formative and summative assessment (Stefan et al., 2016).

The Association of American Medical Colleges (2007) clearly indicates the following ICT-based instructional technologies that can be used for medical education, which is as follows: Computer Aided Instruction (CAI), Virtual Patients (VP), Social Media, Human Patient Simulation (HPS), Screen-based Virtual Reality, PowerPoint Slides Microsoft: (PP slides), and medical videos (MV) and animation clips.

Also, modern course delivery systems have been emphasized among core teaching facilities and modes of learning recommended by Nigerian University Commission (2016) which are: Clinical skills laboratory, classroom equipment, e-learning materials and research information platforms; the availability of Nigerian Research and Education Network (NgREN) has made access to teaching such as telemedicine and research information readily accessible, and all Nigerian universities are expected to key into it.

One issue regarding ICT in medical education is availability and usage. While industrialized countries benefit from investing in ICT, developing countries could particularly benefit from ICT mediated education because of the lack of human and non-human resources, poor distribution of facilities, and poor access to the latest educational infrastructure. However, access to technology is often an issue in developing countries and could be a useful tool to address many of the challenges in medical education, but the lack of technology and resources could pose a serious limitation (Maharana et al., 2009). However, researchers have paid more attention to the effect of ICT-based instruction on academic performance in medical colleges with less attention on the extent of availability and accessibility of ICT-based tools in medical colleges.

Several studies have been done by Albarrak and Al-Ghammas (2009) Baxi et al. (2011) and Potomkova, et al. (2012) in the use of ICT-based instructional practices for medical education in relation to academic performance of medical students, but less study has been done to determine the extent to which ICT-based Instructional tools are available and accessed in medical colleges in Nigeria. This study therefore seeks to investigate the availability and accessibility of ICT-based Instructional tools in medical colleges.

Medicine as a discipline is a sophisticated mix of knowledge, skills, behavior and attitudes; which requires hands-on and holistic teaching and learning approaches. However, best global practices have emphasized ICT-based Instructional practices which rely extensively on utilization of ICT-based Instructional tools in medical colleges. The best global practices in medical colleges cannot be achieved without the knowledge of whether the ICT-based tools are available and accessible or not hence, the need for this study. However, past studies have focused on effects of ICT on student’s academic performance in medical colleges while there are few studies that assess the availability and accessibility of ICT-tools in medical colleges in Nigeria. Therefore, this study investigates the availability and accessibility of ICT-based instructional tools in selected medical colleges in Ogun State, Nigeria.

Purpose of the study

The main purpose of this study is to investigate the availability and accessibility of ICT-based instructional tools in selected medical colleges in Ogun State, Nigeria. The specific objectives of the study are to:

1. Assess the availability of relevant ICT-instructional tools used for teaching and learning in medical colleges in Ogun State;
2. Assess the accessibility of the available ICT-based instructional tools in the medical colleges.

Research questions

The following research questions will be answered in this study:

1. What are the availability of relevant ICT-instructional tools used for teaching and learning in medical colleges in Ogun State?
2. Are the ICT-based instructional tools accessible in the medical colleges?

Conceptual framework

The conceptual model (Figure 1) shows the interface
between Computer Aided Instruction (CAI), Virtual Patients (VP), Social Media, Human Patient Simulation (HPS), Screen-based Virtual Reality, PowerPoint Slides Microsoft: (PP slides), Medical videos (MV), Animation clips and medical sciences as an integral symbiotic. Innovations in the adoption of ICT-based instructional in medical sciences toward a revolution in education, allowing adaptive and collaborative learning by the learners and transforming the role of the teacher. Traditionally, education has been based on attending classes day after day, listening to a lecturer providing the necessary course work information, and going through exams to assess knowledge. The evolution of ICT-based instructional practices and systems has changed the way medicine is taught. Medicine, as a complex multi-disciplinary field, has been implementing computerized technologies, with ICT-based tools being a central point of the process in many cases. ICT’s impact on medical education has evolved a great deal as both medical science and computer technology have gone under profound enhancement (AAMC Institute for Improving Medical Education, 2007).

METHODOLOGY

The descriptive survey research design of the expo-facto type was adopted for the study. The descriptive survey approach was chosen for the present study because it seeks to gain insight into a phenomenon as a means of providing basic information in an area of study. This study adopted a descriptive survey research design. The populations to be studied are medical lecturers (328), clinical instructors (42) and laboratory technologist (92) from Ben Carson Snr. Medical School, Babcock University and Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University (OOU). Total being 462. These represented the population sampled in the study. Probability sampling was used in this study to give equal opportunity to every unit in the population to be selected in this study. A simple random sampling technique was used to select medical lecturers (236), clinical instructors (65), and laboratory technologist (43). 344 respondents will be the actual sample size for this study. The researcher used a self-structured questionnaire and a check list designed for data collection in line with the research questions. The instrument on the ICT-based instructional tools (ICT-bIPIMC) in Ogun State Medical Colleges consisted of 49 set of items. The data collected from pilot study was used to calculate the reliability coefficient using split-half method. Also, Pearson Product Moment Correlation Coefficient was used to determine the reliability coefficient of the instrument. This indicates that the items were reliable within the acceptable limits. The requirements for internal consistency was an average value of the correlation coefficient which is 0.80. Data generated from the questionnaire are presented and the data were analysed using SPSS version 21.0, and the results were presented using simple frequency counts and percentages.

RESULTS

A total of three hundred and forty-four 344 copies of questionnaires were distributed, out of which, two hundred and forty-eight 248 were fully completed and returned. The results of the administered questionnaires were analyzed with the aid of SPSS 21.0 software.

Presentation of data

The data were presented in tables using simple frequency and percentage techniques.

Demographic features of the respondents

Table 1 also revealed that faculty of clinical sciences, which houses the department of Medicine, Surgery and Obstetrics and so on have the highest respondents, while
Table 1. Distribution of respondents by faculty.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Sciences</td>
<td>105</td>
<td>42.3</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>18</td>
<td>7.3</td>
</tr>
<tr>
<td>Basic Medical Sciences</td>
<td>87</td>
<td>35.1</td>
</tr>
<tr>
<td>Ben Carson School of Medicine</td>
<td>38</td>
<td>15.3</td>
</tr>
<tr>
<td>Total</td>
<td>248</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2. Distribution of respondents by qualifications.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD.</td>
<td>30</td>
<td>12.0</td>
</tr>
<tr>
<td>M.Phil.</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>M.Ed.</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>B.Sc.</td>
<td>16</td>
<td>7.0</td>
</tr>
<tr>
<td>M.Sc.</td>
<td>38</td>
<td>15.0</td>
</tr>
<tr>
<td>MBBS</td>
<td>100</td>
<td>40.0</td>
</tr>
<tr>
<td>BMChB.</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>BMBS</td>
<td>54</td>
<td>22.0</td>
</tr>
<tr>
<td>HND</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>248</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3. Distribution of respondents by job designation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>126</td>
<td>51.0</td>
</tr>
<tr>
<td>Laboratory Technologist</td>
<td>68</td>
<td>27.0</td>
</tr>
<tr>
<td>Clinical Instructor</td>
<td>54</td>
<td>22.0</td>
</tr>
<tr>
<td>Total</td>
<td>248</td>
<td>100</td>
</tr>
</tbody>
</table>

Basic Medical Science has 35%, Ben Carson School of Medicine 15% and the Faculty of Pharmacy 7.3% has the lower respondents due to the staff strength available as at the period the research was conducted.

Table 2 revealed that majority of the respondents from the two medical schools possesses MBBS 40%, BMBS 22% which is the main medical degree requirements for teaching and practice of the field of medicine. It was also revealed that M.Ed. and M.Phil. Degrees were not indicated as part of their educational degrees. The respondents (12%) also indicated that they have gotten their PhD in the field of their profession. HND (1.6%) and MBChB. (2.4%) were not indicated as part of the degree they possess in their field. Some of the respondents have indicated that they have B.Sc. (15%) and M.Sc (7%) in the field of practice, which were basically the Laboratory technicians and clinicians from the two universities.

Table 3 showed that majority (51%) of the respondents was lecturers and the laboratory technologist were 27%, while the clinical instructors were 22%. The result was in concomitant with the staff strength of the two universities based on the percentage indicated in this study.

Research question one: What are the available ICT-based instructional tools used for teaching and learning in medical colleges?

Table 4 revealed that Internet-based desktop computers were available (100%). For E-learning availability, 7.7% was available while 92.3% were not available. Mp3 lectures recorded playback where not available for
lecturers. Projectors were available for use (100%). For
the use of medical videos, 63.7% where available; For
PowerPoint, 51.6% were available for use. The table also
revealed that for social media platform, 77.4% indicated it
was available for the lecturers and 22.6% indicated that
it was not available. In addition, it was revealed that E-
medical journal was 100% available for lecturers use.
87.1% revealed that the medical colleges have faculty
cybercafé in their faculty while 12.9% indicated that it
was not available for use. Also 36.3% indicated that they have
an institutional virtual library (digital library), while 63.7%
indicated that it is not available for lecturers use. 51.6%
indicated that Computer-aided instruction (CAI) was
available for lecturer’s use, while 48.4% indicated that it
was not available for lecturers use. And finally, 58.1%
revealed that online educational forums where available
while 41.9% indicated that the forum is not available for
lecturers use.
Table 5 depicted that electronics class roll (ECR) were
not available for use. Pertaining multimedia classrooms
(Audio Visual Centers) availability, 42.3% indicated it was
available, while 57.7% indicated that it was not adequately
available for the laboratory technologist’s use. It was also
indicated in the table that Gaming application was not
available for use. And finally, concerning institutionally-
produced educational software availability, 8.9% indicated
it was available, while 91.1% indicated that the software
is not available for use.

As shown in Table 6, 32.3% indicated that virtual
patients (VP) were not available for teaching and
learning, while 67.7% indicated were not available. Also, the
table depicts that human patients were 100% available for teaching and learning. Finally, 39.9% clinical
instructors indicated that screen-based virtual reality is
available for use while 60.1% indicated that screen-based
virtual reality is not adequately available for teaching and
learning.

Research question two: Are the ICT-based
instructional tools accessible in the medical
colleges?

Table 7 depicted that the respondents use Internet-
Connected Desktop Computers once weekly (34%), twice
weekly (39%), thrice weekly (12%) daily (6%) and 7%
does not use it at all for instructional purposes. Also, the
respondents use Virtual Patient VP once weekly (11%),
Table 6. Availability of ICT-based instructional tools used for teaching and learning in the medical colleges.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Available</th>
<th>Not available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Virtual Patient VP</td>
<td>80</td>
<td>32.3</td>
</tr>
<tr>
<td>Human Patient Stimulation HPS</td>
<td>248</td>
<td>100</td>
</tr>
<tr>
<td>Screen-based Virtual Reality</td>
<td>99</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Table 7. Accessibility of ICT-based instructional tools in medical colleges.

<table>
<thead>
<tr>
<th>ICT-based instructional tools</th>
<th>Once weekly</th>
<th>Twice weekly</th>
<th>Thrice weekly</th>
<th>Daily</th>
<th>Not at all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet-Connected Desktop Computers</td>
<td>86</td>
<td>34.7</td>
<td>98</td>
<td>39.5</td>
<td>30</td>
</tr>
<tr>
<td>Virtual Patient VP</td>
<td>28</td>
<td>11.3</td>
<td>18</td>
<td>7.3</td>
<td>10</td>
</tr>
<tr>
<td>E-Medical journals</td>
<td>100</td>
<td>40.3</td>
<td>12</td>
<td>4.8</td>
<td>24</td>
</tr>
<tr>
<td>Faculty Cybercafé</td>
<td>42</td>
<td>16.9</td>
<td>30</td>
<td>12.1</td>
<td>19</td>
</tr>
<tr>
<td>Institutional V/Library Digital Library</td>
<td>22</td>
<td>8.9</td>
<td>52</td>
<td>20.9</td>
<td>32</td>
</tr>
<tr>
<td>Human Patient Stimulation HPS</td>
<td>62</td>
<td>25</td>
<td>48</td>
<td>19.4</td>
<td>44</td>
</tr>
<tr>
<td>Social Media</td>
<td>112</td>
<td>45.2</td>
<td>14</td>
<td>5.6</td>
<td>64</td>
</tr>
<tr>
<td>Projectors</td>
<td>194</td>
<td>78.2</td>
<td>6</td>
<td>2.4</td>
<td>16</td>
</tr>
<tr>
<td>Screen-based Virtual Reality</td>
<td>32</td>
<td>12.9</td>
<td>Nil</td>
<td>Nil</td>
<td>52</td>
</tr>
<tr>
<td>Computer-aided Instruction CAI</td>
<td>99</td>
<td>39.9</td>
<td>63</td>
<td>25.4</td>
<td>24</td>
</tr>
<tr>
<td>Electronics Class Roll ECR</td>
<td>4</td>
<td>1.6</td>
<td>44</td>
<td>17.7</td>
<td>22</td>
</tr>
<tr>
<td>Multimedia Classrooms A/V Centre</td>
<td>30</td>
<td>12.1</td>
<td>49</td>
<td>19.8</td>
<td>7</td>
</tr>
<tr>
<td>Gaming application</td>
<td>2</td>
<td>0.8</td>
<td>52</td>
<td>20.9</td>
<td>2</td>
</tr>
<tr>
<td>Institutionally made Educational Software</td>
<td>16</td>
<td>6.5</td>
<td>38</td>
<td>15.3</td>
<td>20</td>
</tr>
<tr>
<td>Online Educational forums</td>
<td>94</td>
<td>37.9</td>
<td>15</td>
<td>6.0</td>
<td>20</td>
</tr>
<tr>
<td>Mp3 lectures recorded playback</td>
<td>8</td>
<td>3.2</td>
<td>8</td>
<td>3.2</td>
<td>2</td>
</tr>
<tr>
<td>E-learning</td>
<td>10</td>
<td>4.0</td>
<td>10</td>
<td>4.0</td>
<td>74</td>
</tr>
</tbody>
</table>

twice weekly (7%), thrice weekly (4%) daily (39%) and 38% does not use it at all for instructional purposes. Next to the table indicates that the respondents use E-Medical journals once a weekly (40%), twice weekly (4%), thrice weekly (9%), daily (19%), while 9% does not use it at all for instructional purposes. The table indicated that the respondents use Faculty Cybercafé once weekly (16%), twice weekly (12%), thrice weekly (7%), daily (42%), while 20% does not use it at all for instructional purposes.

Also, the table indicated that the respondents use Institutional V/Library Digital Library once weekly (8%), twice weekly (20%), thrice weekly (12%), daily (20%), while (36%) does not use it at all for instructional purposes. The table depicts that the respondents use Human Patient Stimulation HPS at least once weekly (25%), twice weekly (19%), thrice weekly (17%), daily (13%), while 24% does not use it at all for instructional purposes.

Also, the above table revealed that the respondents at least use social media once weekly (45%), twice weekly (5%), thrice weekly (25%), daily (12%), while 10% does not use it at all for instructional purposes. The above table revealed that the respondents use projectors at least once weekly (78%), twice weekly (2%), thrice weekly (6%), and daily (8%), while 4% does not use it at all for instructional purposes.

The table also revealed that the respondents use screen-based virtual reality at least once weekly (12%), thrice weekly (20%), and daily (25%), while 40% does not use it at all for instructional purposes. The table depicts that the respondents use computer-aided instructions (CAI) at least once weekly (39%), twice weekly (25%), and daily (9%), while 5% does not use it at all for instructional purposes. Also the above table indicates that the respondents use electronic class roll at least once weekly (1%), twice weekly (17%), thrice weekly (8%), and daily (7%), while 64% does not use it at all for instructional purposes. The table also revealed that the respondents
use multimedia classroom A/V at least once weekly (12%), twice weekly (19%), thrice daily (2%) and daily (12%), while 53% does not use it at all for instructional purposes. The table depicts that the respondents use gaming applications at least once weekly (0.8%), twice weekly (20%), thrice weekly (0.8%) and daily (16%), while 60% does not use it at all for instructional purposes. Also the table revealed that the respondents use institutionally made educational software at least once weekly (6%), twice weekly (15%), thrice weekly (8%) and daily (21%) while 44% does not use it at all for instructional purpose. It also revealed that the respondents use online educational forums at least once weekly (37%), twice weekly (6%), thrice weekly (8%) and daily (6%) while 41% does not use it at all for instructional purpose. The table also revealed that the respondents use Mp3 lecture recorded playback at least once weekly (3%), twice weekly (3%), thrice weekly (0.8) and daily (15%) while 77% does not use it at all for instructional purpose. Finally, the table depicts that respondents use e-learning at least once weekly (4%), twice weekly (4%), thrice weekly (29%) and 10% daily, while 51% does not use it at all for instructional purpose.

DISCUSSION

This study revealed that Internet-based desktop computers, E-Medical journals, faculty cybercafé, social media, projectors, CAI, PowerPoint Slides, online educational forums, and Medical videos/animation clips are adequately available teaching and learning tools for lecturers in the medical colleges. Which is in concomitant with the basic requirements by the Association of American Medical Colleges (2007) and Nigeria Undergraduate Medical and Dental Curriculum Template, 2012 which clearly states that Computer Aided Instruction (CAI), Social Media, PowerPoint Slides Microsoft: PP slides, and Medical videos MV and animation clips should be the best global tools for instructional tools in medical education. These ICT-based instructional tools are very crucial for teaching and learning in the medical colleges. Asefheh et al. (2012) affirmed that ICT-based tools will help medical lecturers spend less time delivering information and will allow students to take a more active role in their learning and alter the pace of their own learning using the tools.

The study revealed that E-learning, Mp3 lectures recorded playback and institutional virtual library digital library are not readily available for lecturers use. These findings are in agreement with the findings of Stefan et al. (2016) that Mp3 lectures recorded playback is an important mobile educational tool for the target audience to access the information “where, when and how” they want, but it is yet to be fully used in medical colleges. Albarrak and Al-Ghammas (2009) also affirmed with the findings that e-learning can be effective in addressing most health and medical education through the delivery of learning material without boundaries.

Finally, the findings of this study revealed that Internet-Connected Desktop Computers, Medical videos MV and animation clips, Microsoft PowerPoint Slides, Projectors, Social Media, E-Medical journals, Faculty Cybercafé, Institutional Virtual Library Digital Library, Computer-aided Instruction (CAI), Online Educational forums, Multimedia Classrooms Audio Visual Centre, Virtual Patient VP, Human Patient Stimulation HPS, Screen-based Virtual Reality were the ICT-based tools used, at least once daily by the lecturers, laboratory technologist and clinical instructors in the medical colleges (Albarrak and Al-Ghammas, 2009; Baxi et al., 2011; Potomkova et al., 2012). Also, Prensky (2006) supports this finding through their reports of the need for availability and accessibility of ICT-based tools for instructional purposes in medical colleges. Yusuf et al. (2014) support the fact that ICT-based instructional tools usage in the teaching/learning process can enhance instructional methods with emphasis on learner’s active participation.

The findings of the study also revealed that electronic class records, multimedia AV Centers, MP3 playback recording and e-learning are not being used by the lecturers, laboratory technologist and clinical instructors in the medical colleges. The plausible reasons for this might traced to the fact that these ICT-based tools are part of the ICT-based instructional tools recently recommended for use in medical colleges and might still be in the process of acquisition.

Conclusion

The study revealed that ICT-based instructional tools were not adequately available in the medical colleges, and accessibility of the tools are moderate and still needs be improved. Hence, availability and access to ICT-based instructional tools such as Computer Aided Instruction (CAI), Social Media, and Human Patient Simulation HPS, PowerPoint Slides Microsoft: PP slides, and Medical Videos MV, Multimedia Classrooms Audio Visual Centre, Projectors, and E-Medical journals, and Animation Clips in medicine education will bring about quality and appropriate improvement in training medical students in the medical colleges.

Recommendations

1. Based on the findings of this study, there is a great need for medical colleges to provide MP3 lecturers recorded playback devices, E-learning platforms, and digital libraries for lecturers, so as to enhance the Instructional tools in the medical colleges.
2. Medical colleges should provide institutionally-produced educational software applications that will be installed on
student’s smartphones and tablets through the laboratory technologist, which in turn create a knowledge sharing hub between teachers and learners in the medical colleges.

3. Medical colleges should provide virtual patients and screen based virtual reality for clinical instructions, which will help students handle situations that involves strong emotions like bad news or dealing with violent, aggressive patients and reduce the dangers of hospital infections.

The scope of the study was limited to medical colleges in Ogun State, Nigeria, which was as a result of financial incapability. Hence, there is a need to expand the scope to other medical colleges in the southwestern part of Nigeria for adequate generalization of research findings.

Finally, further studies need to be done to assess teacher’s competence on the use of ICT-based instructional tools in medical colleges.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Nigeria Undergraduate Medical and Dental Curriculum Template, (2012). Email info@healthsystems2020.org or visit our website at pg. 5 www.healthsystems2020.org

The Association of American Medical Colleges (AAMC) Institute for Improving Medical Education. (2007). Effective Use of Educational Technology in Medical Education. Colloquium on Educational Technology: Recommendations and Guidelines for Medical Educators March 2007.
