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Abstract

To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors.
A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians
should be able to defend their choice of prior to a skeptical audience. Collaboration between
evaluators and stakeholders could make their choices more defensible. This article describes how
evaluators and stakeholders could combine their expertise to select rigorous priors for analysis. The
article first introduces Bayesian testing, then situates it within a collaborative framework, and finally
illustrates the method with a real example.
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Bayesian methods are promising statistical tools for evaluators (Pollard, 1986). Yet a lesser known fact

is that they could facilitate collaboration. Evaluators have multiple reasons for collaborating with

stakeholders (Azzam, 2010; Brandon, 1989; Cousins & Earl, 1992; Fetterman, 2001; House & Howe,

1998; Orr, 2010; Patton, 1978; Smith, 1999). For example, collaboration could improve relevance,

shared ownership, and accuracy of evaluations (Rodrı́guez-Campos, 2012). This article clarifies how

authentic collaboration could increase the rigor of data analysis with Bayesian methods.

Bayesian methods, in particular Bayesian testing, have a different logic than conventional sta-

tistical tests, such as t tests, F tests, and w2 tests. Because Bayesian logic may be unfamiliar, we begin

with an overview to foreground the methods described in this article in their theoretical context.

After we present an overview, we provide an example illustrating the focal procedure in an actual

collaborative evaluation.

The Bayesian Approach to Statistical Testing

This section introduces the logic of Bayesian methods to newcomers, and those already familiar with

it can skip this section. Suppose a fortune-teller claimed to be a reliable predictor of the future.
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Skeptical, you test her claim. You discover that in 10 of 12 attempts, she predicted the outcome of a

fair coin toss. Perhaps she got lucky. You decide to formally test this model (i.e., she was guessing).

Traditional tests only “reject” or “fail to reject” models depicting null hypotheses. This binary

is not optimal. It makes accepting the null model impossible—a “failure to reject” is not the same

as an “accept.” Although you prefer the null model, you proceed with the conventional test. Much

to your frustration, the p value comes out very low (p < .05). Thus, the test rejects the null model at

the 5% level.

Despite the unwelcome outcome, you persist in clinging to the null model. You still find it to be

defensible in comparison to the alternative (i.e., the fortune-teller predicted the future). You argue to

yourself that, despite the p value, the best science supports the null model. Albeit less certain, you

are not yet ready to give up the null model.

Your reaction in the above scenario strikes Bayesians as prudent (Berger, 1985). One problem

with traditional tests, according to Bayesians, is that they may exclude knowledge that should

stay in play (i.e., background knowledge). Although background knowledge can have a subjec-

tive component, its integration could improve a test’s accuracy (Bolstad, 2007). When tests

consider all information, including contextual evidence, they reach better conclusions (Howson

& Urbach, 2006).

Recall, when conventional p value procedures reject the null, we knock the null out of the com-

petition. Yet p values say nothing about the probability of the null model given data. Properly

interpreted, a p value only tells us how frequently random sampling would yield data more surprising

than the obtained data, if the null was true. Thus, a null with a low p value may still end up being more

probable than an alternate model, given our contextual knowledge (Hoff, 2009; Rouder, Speckman, Sun,

Morey, & Iverson, 2009). In this light, testers may prefer a different approach to testing.

Bayesian Testing

The foremost consideration in Bayesian testing is the probability of a model given sample

data, PðM jY Þ, where M is the model and Y is the obtained data. In Bayesian vocabulary, PðM jY Þ
is called a “posterior.” If M0 and M1 denote a null and alternate model, respectively, then testers

compare their posteriors. If PðM0jY Þ ¼ 0.80 and PðM1jY Þ ¼ 0.20, then the null is 4 times more

probable than the alternative given data.

Bayesian methods derive their name from the formula for posteriors, Bayes’s rule:

PðM jY Þ / PðMÞPðM jY Þ; ð1Þ

where PðMÞ is the prior and PðM jY Þ is the likelihood.

Simply put, the posterior is proportional to the product of the “prior” and the “likelihood.” The

prior is the credibility of the model apart from data. The likelihood is the chance that we obtained

the data given the model.

Posterior odds ratios (PO01) rather than p values facilitate Bayesian testing, briefly:

PO01 ¼
PðM0jY Þ
PðM1jY Þ

; ð2Þ

where M0 is the null model and M1 is the alternate model.

The subscripts in PO01 indicate that the null model is in the numerator position (PO10 indicates

that the alternate is in the numerator).

Posterior odds ratios (PO01) are the product of two terms, odds prior ratios and Bayes’s factor:

PðM0jY Þ
PðM1jY Þ

¼ PðM0Þ
PðM1Þ

PðY jM0Þ
PðY jM1Þ

; ð3Þ
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where
PðM0Þ
PðM1Þ is the ratio of priors and

PðY jM0Þ
PðY jM1Þ is the ratio of likelihoods.

The ratio of likelihoods is known as Bayes’s factor (B01). It quantifies the relative disparity in

the likelihoods of data under each model. A B01 of 10, for example, shows that the data are 10

times likelier under the null than alternate model. The ratio of prior probabilities quantifies the

relative disparity in priors between models. A prior odds ratio of 1, for example, indicates no

disparity in priors.

Priors introduce contextual knowledge into the analysis. Returning to the fortune-teller example,

you strongly expected M0 to be accurate. Setting PðM0Þ ¼ 0:99 is one way you could incorporate

your scientific expectation into the test. Because only two models were considered in the example,

the prior for the alternate must be 0:01½0:01 ¼ 1� PðM0Þ�. Priors, like any model component, need

only to approximate reality to work.

In the alternate model, modelers need to depict the fortune-teller as a reliable predictor of the

future, yet they may disagree over how to quantify “reliable.” Obviously, reliability should exceed

50% (i.e., better than a coin flip). However, reliable could be far less than 100%. Perhaps it makes

sense to operationalize reliability as 75% (i.e., halfway between 50% and 100%). Later, we will

show how Bayesians could define reliability with a range of values.

¼If analysts model the number of correct predictions as binomially distributed, then they could

test two models:

M0 : 10*Binomialðy ¼ 0:50; N ¼ 12Þ; ð4Þ
M1 : 10*Binomialðy ¼ 0:75; N ¼ 12Þ; ð5Þ

where y is the probability of a successful prediction and N is the number trials.

Because a fair coin toss only has two outcomes, random guessing has a 50% chance of being

accurate. Consequently, y is set to 0.50 in the null model (M0) to express the “lucky guess” scenario.

In the alternate model (M1), y is set to 0.75 to depict a reliable prediction rate.

The prior odds ratio favors the null model at 99:1 [99 ¼ 0:99=0:01]. The null is thus 99 times

more probable than the alternate apart from data. The Bayes’s factor (B10), obtained by hand

calculations favors the alternate at 14.416:1. It indicates that the data are 14.416 times likelier if

she reliably predicted them rather than guessed. Balancing these considerations with Bayes’s rule,

the alternate will win (i.e., PO01 ¼ 6.87). Yet because the odds for your null shrank from 99 to 6.87

times, you might collect more data to resolve the matter.

Bayesian Modeling

Recall the value of y in M1 was set to 0:75. But why not 0.76 or 0.74? In this light, 0.75 seems

arbitrary. Uncertainty about how to set y can be made transparent in Bayesian modeling through

priors. Setting a prior on y would indicate the uncertainty modelers had about the best value to plug

into the alternate model before they examined data.

A sensible choice for a prior on y in M1 could be a uniform distribution from 0.60 to 1. This prior

affords flexibility. It assumes our fortuneteller’s accuracy rate could be as low as 0.60 or as high as 1.

This new alternate model (M1
0) can be formally stated as follows:

M1
0 : 10*Binomialðy; N ¼ 12Þ PðyÞ*Uniformð0:60; 1Þ: ð6Þ

Comparison of M1 and M1
0 reveals that they only differ in the value of y. In M1, the value of y is

certain 0.75. However, in M1
0 the value of y is uncertain. It could be anywhere from, say, 0.60 to 1,

and any value in that range is as credible as another.

To perform a Bayesian test comparing M0 (null) to M1
0 (new alternative), testers would again

obtain the requisite Bayes’s factor (B10Þ. This time it requires taking an integral and can be
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accomplished by hand:

LðY jM1
0Þ

LðY j M0Þ
¼

ZP¼1

P¼0:6

p10ð1� pÞ2

ð0:5Þ12
dp: ð7Þ

The calculus derivation (not shown) intimates the data are 4.497 likelier under M1
0 than M0. If the

previous arrangement for priors is employed, that is, PðM1
0Þ ¼ 0:01 and PðM0Þ ¼ 99, then

PO01 ¼ 22:01. The null model is (about) 22 times more probable.

Bayesian and Traditional Testers

The abovementioned example shows that the conclusions of Bayesian and traditional testing can

diverge. Defenders of traditional tests, such as t tests, w2 tests, and F tests are frequentists. This name

derives from their concern about a statistical procedure’s frequency properties (Hacking, 2001). For

example, frequentists designed p value procedures to control error rates in the limits (e.g., a t test

may have a 5% chance of making a Type I error in repeated applications). Bayesian tests, in contrast,

serve a different purpose.

Instead of balancing error rates in the limits, Bayesians conform tests to the formal logic of

induction (Howson & Urbach, 2006). Bayesian tests subscribe to Bayes’s rule—a rule showing how

a rational agent would modify uncertain beliefs with evidence (Jaynes, 1968). Should tests balance

error rates or conform to Bayes’s rule? It depends on the goals of the tester (Gelman & Shalizi,

2013). Frequentists care about what happens in the limits. However, Bayesians such as Keynes

(1923) have argued that controlling what happened in the limits was moot because “we are all dead

in the long run” (p. 80).

To recap, the fortune-telling example illustrates the usefulness of priors for data analysis. With

a frequentist test, we would reject the hypothesis that the fortune-teller was guessing because of a

low p value. However, this conclusion ignores contextual knowledge about fortune telling. When

we appropriate outside knowledge into the analysis through a prior, we would conclude the null

was more probable than the alternative. Posterior odds ratios, unlike p values, consider the data as

well as contextual knowledge. The remainder of this article explores how to pick defensible priors

for analysis.

A Test for Collaborative Evaluators

The Model of Collaborative Evaluation

Several collaborative methodologies exist (Fetterman, Rodrı́guez-Campos, Wandersman, &

O’Sullivan, 2014), each has advantages and disadvantages. We prefer the one articulated in the

model for collaborative evaluations (MCE; Rodrı́guez-Campos & Rincones-Gómez, 2012). The

MCE has six interdependent components: (a) identify the situation, (b) clarify the expectations,

(c) establish a collective commitment, (d) ensure communication is open, (e) encourage effective

practices, and (f) follow specific guidelines. Within an MCE approach, evaluators retain control of

production while collaborating with stakeholders. This arrangement helps safeguard the credibility

of evaluation products, such as models, while integrating collaboration into the design.

Capitalizing on the MCE, we propose testers blend insights from both evaluators and stake-

holders to create models depicting rival hypotheses. When people invest in the models, they are

more likely to care about the models. Another advantage of teamwork is that it increases the buy-in

for the overall evaluation finding. There are three steps to constructing an insightful prior in partner-

ships with stakeholders (Gill & Walker, 2005): (a) select an appropriate distribution for the prior
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(e.g., a normal-shaped, a t-shaped, or customized), (b) specify the parameters that will define it, if

any (e.g., a normally shaped prior can be defined with a mean and a standard deviation), and then (c)

crossvalidate the prior. This last step typically involves verifying that the prior is a passable repre-

sentation of an expert’s opinion—that is, one that could survive critical scrutiny.

An Example of Collaboratively Setting Priors

A good partner in prior setting would be a stakeholder who (a) had limited exposure to the data (i.e.,

the sample being tested), (b) was well positioned to articulate hypotheses (e.g., participated in past

evaluations, a qualified expert in the content area, some understanding of statistics), and (c) would

be a credible expert to others.

To illustrate, suppose a prior must be set on an effect ðmdÞ. First, you specify a shape for the

distribution. You either select a standard distribution for the prior shape, such as normal, or ask the

stakeholder to help you stretch out its shape (Kruschke, 2011). Let us suppose we picked a normal

shape. Next, ask a stakeholder to provide an upper and lower boundary (i.e., What is the smallest

credible effect? What is the largest credible effect?). These two guesses mark the points three SDs

away from the mean.

To be more concrete, suppose that a stakeholder thinks a phonics-based reading program works

well for fifth graders struggling to decode words. The stakeholder frames her guesses about the

effect in a standardized metric (e.g., Cohen’s d). She posits that the lowest credible effect is d ¼ 0.2

while the highest passable effect is d¼ 0.8. She thinks any estimate outside of that range is unlikely.

Combining your chosen shape for the prior (i.e., normal) and her best guess of the effect, a mean and

SD for the prior can be defined, as shown below.

The requisite prior can be given a mean of 0.5 (i.e., the midpoint between 0.2 and 0.8) and a SD of

0.1 (i.e., 0:1 ¼ ð0:8� 0:5Þ=3). Let m0 denote this mean and s0 denote this SD, then the normally

shaped prior for the effect can be precisely defined as follows: PðmdÞ*Nðm0 ¼ 0:5;s0 ¼ 0:1Þ. This

notation is read as the prior for the effect is normal with a mean (m0) of 0.5 and an SD (s0Þ of 0.1.

Testers can use this prior to build an alternate model for testing against a null hypothesis.

An Example of a Bayesian Test for Collaborative Evaluation

This example comes from the education sector and is focused on a new school reform model—the

Schoolwide Integrated Framework for Transformation (SWIFT). SWIFT was the product of the

SWIFT Center, a national K–8 technical assistance center at the University of Kansas. The core of

SWIFT reform is a Multi-Tiered System of Support (MTSS; McCart, Sailor, Bezdek, & Satter,

2014). A fuller description of MTSS can be found online (www.swiftschools.org). For present

purposes, it suffices to know that schools outfitted with MTSS can educate students, with and

without disabilities, in integrated environments. In MTSS, all school resources are accessible to all

students rather than to just the select few taught in entitlement programs.

In this evaluation, evaluators sought to quantify the typical effect of MTSS on reading outcomes.

Two elementary schools participated. In the first year of implementation, evaluators visited each

school and rated fidelity of implementation using a validated tool, SWIFT-FIT (Algozzine et al.,

2014). The fidelity of implementation was low at one school and moderate at the other.

The evaluators matched schoolchildren between schools using propensity score matching. The

evaluators matched schoolchildren on baseline covariates linked by past research to reading out-

comes, such as previous reading achievement, grade, and disability. For the main analysis, differ-

ences in annual reading gains among matched pairs (n ¼ 20), as indexed by state reading tests, was

computed using the following formula:

YD ¼ YM � YL; ð8Þ
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where YD represents the difference in annual reading gain between paired students and YM and YL the

annual reading gain of matched students from the moderate- and low-fidelity school, respectively.

Figure 1 depicts the distribution of difference scores. The typical difference in annual gain scores

in reading between matched pairs in the sample ð �Y D � 6; SD � 10Þ was found to be of moderate

size, d � 0:6.

To proceed with a Bayesian test, evaluators first needed to identify a model structure. The data

were ultimately modeled as being normally distributed:

YD*NðmD;sYD
Þ;

where mD ¼ DðsYD
Þ: ð9Þ

In this model, D is the standardized effect, mD the raw effect, and sYD
the SD. This parameteriza-

tion is convenient because a prior can be set on D rather than mD.

Next, evaluators needed to set up a null and alternate model. The value of the effect (D) in the null

model (M0) can be set to 0. However, the claim “MTSS has an effect” (i.e., D 6¼ 0) is too vague for

an alternate model in a valid Bayesian test. To build an adequate model depicting an effective MTSS

scenario, evaluators had to collaborate with stakeholders. In particular, evaluators needed help

formulating a meaningful prior on D in the alternate model.

To move forward in Bayesian modeling, evaluators partnered with a stakeholder who had exten-

sive experience with both MTSS and evaluations. She participated in a related pilot study on MTSS

in another school district. In that study, her team had not seen dramatic increases in outcomes until

full fidelity of implementation was reached. She thus did not expect to see a large effect in this case

but considered a modest effect likely.

Figure 1. Visual depiction of the difference in scores among matched pairs of schoolchildren at low and
moderate fidelity schools, YD ¼ Ytreated � Ycontrol. As a reference, we imposed a “normal” and “kernel” density
to reconstruct the population density. The first curve assumes normalcy and the second curve makes no such
assumptions. We obtained the kernel curve by “smoothing” the obtained sample distribution.
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A prior for D in the alternate model was coconstructed using the above information. Evaluators

first asked the stakeholder to guess the smallest and largest credible effect. She responded with d ¼
0.4 and d ¼ 0.7, respectively. She did not think estimates outside of these boundaries were believ-

able. Evaluators decided to use the procedure described in the last section to translate these guesses

into a normal prior. The result was a normal prior with a mean of 0.55, that is, 0.55 ¼ (0.4 þ 0.7)/2,

and an SD of 0.05, that is, 0.05 ¼ (0.55 � 0.40)/3.

Having settled on adequate values for D in both models, evaluators subsequently considered the

second parameter, sYD
. They treated it as a nuisance parameter rather than the focus of the test.

Consequently, they set a “neutral” prior on it, Jeffreys (1946) prior. Jeffreys priors can be determined

by formulas. For an SD, the formula for a Jeffreys prior is:

PðsYD
Þ / 1

sYD

: ð10Þ

A Jeffreys prior exerts little influence on posteriors, and posteriors make convenient defaults for

nuisance parameters needing priors.

The null and alternate models to be tested in this evaluation can be formally defined as:

M0 : YD*Nð0;sYD
Þ PðsYD

Þ / 1

sYD

; ð11Þ

M1 : Y*NðDsYD
;sYD
Þ PðsYD

Þ / 1

sYD

;PðDÞ*Nðm0 ¼ 0:55;s0 ¼ 0:05Þ; ð12Þ

where m0 and s0 are the prior’s mean and SD.

Having specified these models, the next step for the evaluators was to obtain the Bayes’s factor.

Evaluators used a procedure in SAS 9.4 (PROC MCMC) designed for Bayesian modeling to obtain

Bayes’s factor. Annotated SAS code is available with the article online at http://journals.sagepub.

com/doi/suppl/10.1177/1098214017704302.

Obtaining Bayes’s Factors With Simulation Methods

To estimate B01 with PROC MCMC, testers needed to set up a complex model, wherein M0 and M1

were included as subcomponents (Kruschke, 2011). In this umbrella model, a new parameter, say

Mi, is introduced to index the two models. This new parameter takes on two possible values, 1 and 0.

The conditional probability of D given Mi is:

PðDjMiÞ
M0ðDÞ if Mi ¼ 0

M1ðDÞ if Mi ¼ 1
:

�
ð13Þ

The notation M0ðDÞ is interpreted as D defined in accordance with M0. Thus, if, in the big model,

Mi ¼ 0, then D ¼ 0, as M0 states. (Otherwise, M1 wins.) The parameter Mi needs a prior. If a binary

prior is set on Mi, that is, Mi*B(p0), then p0 can be given an impartial value, such as 0.5, to obtain

the Bayes’s Factor (Christensen, Johnson, Branscum, & Hanson, 2011).

Testers then used Markov Chain Monte Carlo (MCMC) simulation to derive the relevant poster-

ior. Recall that statisticians are fond of using samples to reconstruct unknown populations. Astonish-

ingly, statisticians can reconstruct abstract populations, such as posteriors, through sampling.

Posteriors are populations of possible parameter values and, hence, recoverable through sampling.

In particular, MCMC methods simulate sampling from posteriors. The logic of MCMC methods has

been amply described elsewhere (Kruschke, 2011). In short, MCMC involves randomly jumping

back and forth between values in the target population. At each jump, we will sample either the new

or the last value, depending on their relative frequencies in the population. This random walk then

creates a “chain” of simulated draws from the target density.
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In this example, when Mi is included, at each step in an MCMC simulation it will be assigned

either a 1 or 0 depending on which model (i.e., M0 or M1) yielded the higher posterior for the set of

parameter values at that iteration (i.e., D; s). For example, if Mi¼ 1 in the third step of the chain,

then M1 must have had a higher posterior at whatever spot it landed. As the values of Mi fluctuate

back and forth between 1 and 0, the consequent posterior sample will eventually approximate

Bayes’s factor.

Table 1 records a few draws from an MCMC simulation to illustrate Mi. The table shows that at

each iteration, Mi indexed which model yielded the highest posterior on that particular draw.

Because Mi was given a neutral prior and 1s counted in favor of the alternate, its posterior will

be equivalent to an estimated likelihood of the data under the alternate, LðY jM1Þ. To transform this

posterior into the estimated Bayes’s factor, plug the obtained likelihood value into the equation for

B10 i:e:;B10 ¼ LðY jM1Þ
1�LðY jM1Þ

� �
.

The Results and Interpretation of Bayesian Tests

To perform a Bayesian statistical test, evaluators requested that PROC MCMC produce a posterior

sample with 10,010,000 draws to estimate B10. To reduce autocorrelation, they discarded the first

10,000 (the “burn-in period”) and retained every 1,000th iteration thereafter (“thinning”). The

reduced MCMC chain had 100,000 iterations. Because convergence to the posterior is not a guar-

anteed proposition, diagnostics were performed to evaluate the chain’s convergence. Figure 2

presents a summary of diagnostics information outputted from PROC MCMC.

The estimate for the model index parameter (Mi) drawn from a posterior sample obtained through

MCMC methods strongly indicated that, in comparison to the null model (M0), the alternate model

(M1) is more probable than the null given data (Mi > 0:94). If a default prior rather than a cocon-

structed one had been used in the alternate model then the estimated for B10 would be 18.6971 (i.e.,

18.6971 ¼ 0:9492
1�0:9492

). This suggests data would be almost 19 times likelier on the alternate than the

null. But B10 rose to 110.1 when a coconstructed prior was used rather than a neutral prior. This

increase shows why constructed priors can be real assets. Kass and Raftery (1995) reported a

reference scale to help interpret B10. On their scale, a B10 > 3 is positive evidence, a B10 > 20 is

strong evidence, and a B10 > 150 is very strong evidence.

Frequentist testers might conclude “There was a statistically significant difference (M ¼ 6,

SD ¼ 10) between the groups, t(19) ¼ 3.56, p ¼ .0021.” Yet, in this case, their test presumes the

fiction of randomization (i.e., they randomly selected 20 matched pairs from the population to

perform the test). Without such a fiction, there is no matter of fact about the correct p value

(Howson & Urbach, 2006). Simply put, we cannot predict what will happen in an infinite series of

Table 1. Selected Output of Records From a Posterior Sample Drawn Generated Using Markov Chain
Monte Carlo Simulation Methods for the Bayesian Test of the Schoolwide Integrated Framework for
Transformation Program.

Records D s MI LogPrior LogLike LogPost

32 .9640 14.8114 0 �5.1905 �79.6690 �84.8594
78 .7987 12.5666 0 �4.8624 �79.2548 �84.1172
303 .7384 10.3979 1 �4.6146 �74.2091 �78.8238
500 .8792 9.1228 1 �4.6213 �74.2672 �78.8885

Note. The posterior sample had 100,000 records, and MI obtained the value 1 nearly 95% of the time. The selected output
suggests that when the random walk stumbled upon relatively high values for s (say 15), then the posterior for the null model
might win on that occasion. Because s rarely happened to draw a value that high, the alternate model won the vast majority of
time. The ratio of wins for the alternate model estimates its posterior probability.
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replication studies, even if we assume the null was true, unless we first imagine testers used a

random sampling plan. Bayesian tests do not require such a fiction for their warrant. The data, as

the Bayesian test showed, were likelier to occur under the alternate than null. The point is that

Bayesian tests are logically valid even in cases when samples are not truly random, a common

occurrence in evaluations (Hicks, 2015).

In the official write-up, testers could nicely summarize Bayesian test results as follows:

Bayes’s factor analysis with a coconstructed prior on the effect in reference to the null indicates

the obtained data was almost 110 times likelier to occur given a moderate effect of MTSS than a null

effect, as indexed by state tests ðD̂ ¼ 0:55; b01 ¼ 110:1Þ.

Discussion

The integration of prior probabilities into statistical tests requires a change in how we evaluate test

performance. Performance standards must align with statistical paradigms. In a conventional para-

digm, a test’s abstract performance in the limits is what matters. Frequentists, for example, insist a

valid t test should balance Type I error rate and Type II error rate. Bayesians do not normally design

their tests to meet frequentist standards, like balanced error rates.

Figure 2. Summary of diagnostic plots on the posterior sample yielded by Markov Chain Monte Carlo
(MCMC) simulation to check for convergence. Recall that Mi can assume any value between 0 and 1, and if Mi¼
0.5 then B10 ¼ 1. The trace plot (top) shows values for Mi returned at steps in the “random walk.” This plot
indicates adequate exploration. The plot of lag (bottom right corner) indicates minimal autocorrelation in the
sample. Thus, the MCMC simulated sample approximates a simple random sample of the posterior. The
posterior plot (bottom left corner) depicts the posterior for the model index parameter (Mi). We can trans-
form this posterior into an approximate Bayes’s factor.
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Recall, Bayesian tests conform to Bayes’s rule. Given two rival models and the evidence, a

posterior odds ratio shows which model is more probable given evidence and by how much. As

long as the test conforms to inductive logic (i.e., Bayes’s rule), Bayesians will not care how the tests

performs in an infinite series of repeated applications. Testers who use posterior odds ratios have

switched from a frequentist to a Bayesian statistical paradigm.

The subjectivity of Bayesian modeling is worth some discussion. Whether in a Bayesian or fre-

quentist context, testing is controlled by subjective choices (e.g., in a frequentist framework testers

must set an a-level). Because priors are a component of models in a Bayesian scheme, Bayesian tests

are sensitive to them. It is thus helpful to see how the choice of priors affects the test by running the test

a few times with different priors. One may find that results were not very sensitive. However, if they

were sensitive to the chosen prior, then the choice of prior is critical. In such situations, collaboration in

the process of setting up the prior could increase buy-in for the test outcome.

Moreover, testers always have the option of gathering more data to make conclusions insensitive

to priors. Bayesian convergence theorems guarantee that, under sensible conditions, large samples

cause likelihoods to dominate priors in the formation of posteriors (Hawthorne, 1994). Priors count

most when data are scarce. This strikes us as exactly how it should be. Before evidence reaches a

critical mass, reasonable people will disagree.

To illustrate Bayesian convergence theorems, consider three scientists. One thinks a hypothesis is

highly probable, another thinks it highly improbable, while the last is unsure. Naturally, if they use

different priors, their posteriors will differ. However, if more data arrive, and they recycle their old

posteriors as new priors, they will reach consensus. Figure 3 illustrates such convergence, regardless

of prior, as evidence accumulates. Note that the theorem holds regardless posteriors were obtained

(e.g., analytically, MCMC simulation, etc.).

Final Remarks

Collaboration rather than formulas may be the more successful route for prior setting in many

evaluations. This recognition affords room for innovation in mixed methods. Perhaps testers could
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Figure 3. Illustration of Bayesian convergence. The cynic, credulous, and impartial tester start with different
priors in the beginning but converge in their posteriors as evidence accumulates so long as they all use Bayes’s
rule to modify their beliefs as evidence arrives.
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deploy qualitative methods to attain insights from evaluators and stakeholders about modeling

hypotheses. This mixed methods approach could enhance the rigor of data analysis. Such a novel

realignment of qualitative and quantities methods is long overdue.

Bayesian methods permit testers a way to leverage previous knowledge, make evaluators and

stakeholders partners in analysis, and accept null models. Yet Bayesian tests are only as meaningful

as the models they compare (Kruschke, 2011). Consequently, statisticians have sought to automate

the process of setting up priors to build models (Kass & Wasserman, 1996; Rouder et al., 2009). Yet,

in all the hype over formulas, one can forget about the rewards of using collaboration rather than a

textbook equation to specify priors.
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