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Wollack, Cohen, and Eckerly suggested the “erasure detection index” (EDI) to

detect fraudulent erasures for individual examinees. Wollack and Eckerly

extended the EDI to detect fraudulent erasures at the group level. The EDI at the

group level was found to be slightly conservative. This article suggests two

modifications of the EDI for the group level. The asymptotic null distribution of

the two modified indices is proved to be the standard normal distribution. In a

simulation study, the modified indices are shown to have Type I error rates close

to the nominal level and larger power than the index of Wollack and Eckerly. A

real data example is also included.
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There is a growing interest in erasure analysis, which comprises analyses of

erasure patterns in an attempt to detect test tampering that leads to fraudulent or

aberrant erasures. Standard 8.11 of the Standards for Educational and Psycho-

logical Testing (American Educational Research Association, American Psy-

chological Association, & National Council for Measurement in Education,

2014) includes the recommendation that testing programs may use technologies

such as computer analyses of erasure patterns in the answer sheets to detect

possible irregularities.

Erasures on paper-and-pencil tests have received the most attention. However,

erasures essentially mean answer changes (ACs), and computer-based tests

(CBTs) may also suffer from fraudulent ACs. Tiemann and Kingston (2014) and

Sinharay, Duong, and Wood (2017) provided examples of CBTs in which ACs

are allowed—fraudulent ACs can definitely occur for such tests.

Wollack, Cohen, and Eckerly (2015) suggested the erasure detection index

(EDI) to detect fraudulent erasures for individual examinees. The EDI is based on

item response theory (IRT). Wollack and Eckerly (2017) extended the EDI to

detect fraudulent erasures at the group or aggregate level, where a group could be

a class, school, or district that the examinees belong to. Henceforth, the EDI at

the group level would be denoted as EDIg. Note that the groups in applications of

the group-level EDI are known in advance, that is, the groups do not have to be

identified using a statistical/psychometric method.
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A continuity correction is used with EDIg. Wollack and Eckerly (2017) found

EDIg to be slightly conservative and attributed the conservativeness to the con-

tinuity correction. The purpose of this article is to demonstrate, first using theory

of large-sample statistical inference and then using a simulation, that this con-

tinuity correction is not required and it unnecessarily reduces the power of EDIg.

It is demonstrated that two modified versions of EDIg that involve no continuity

correction have Type I error rates closer to the nominal level and larger power

compared to EDIg.

The next section includes some background material including a review of the

EDI at the individual level (Wollack, Cohen, & Eckerly, 2015) and at the group

level (EDIg; Wollack & Eckerly, 2017). The modified versions of EDIg are

discussed in the Method section. In the Simulation Study section, the Type I

error rates and power of the modified versions of EDIg are compared with those

of EDIg. Conclusions and recommendations are provided in the last section.

As in Wollack et al. (2015) and Wollack and Eckerly (2017), this article

focuses only on dichotomous items and involves the assumption that the item

parameters are known. Note that to apply any of the analysis discussed in this

article, the investigator has to know, for each examinee, the items on which he or

she produced an erasure. As discussed in Cizek and Wollack (2017, p. 15),

several states use scanners to collect such information on erasures.

Background

Erasure Analysis in Practice and Research

Erasure analysis was brought into prominence during the widespread allega-

tion of educator cheating in Atlanta Public Schools on the Georgia Criterion–

referenced competency tests in 2009 (e.g., Kingston, 2013; Maynes, 2013;

Wollack et al., 2015). A special investigation by the state of Georgia identified

178 educators within Atlanta Public Schools as being involved in cheating (e.g.,

Maynes, 2013, p. 173). Since then, erasure analysis has been performed in

several state tests. A survey conducted by USA Today in September 2011 of

State Education Agencies found that 20 states and Washington, D.C., conducted

some type of erasure analysis (e.g., McClintock, 2015). In a report for the Coun-

cil of Chief State School Officers, Fremer and Olson (2015) mentioned that

erasure analysis and analysis of gain scores are used more often to investigate

testing irregularities than other types of analyses because they are “so readily

performed and because they have proven their value in practice.”

The average wrong-to-right (WTR) erasure count is operationally used in

several states to detect fraudulent erasure at the school level or class level

(e.g., Bishop & Egan, 2017; McClintock, 2015; Wollack & Eckerly, 2017).

Typically, the average (�x) and standard deviation (SD; sx) of WTR count are

computed over all the examinees (e.g., of a state) who took the test; then, as
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described in, for example, Bishop and Egan (2017, pp. 204–205), one flags a

group (e.g., a class or a school) with ng examinees if the average WTR count for

the group is outside a confidence bound ð�x� Qsx=
ffiffiffiffiffi
ng
p

; �xþ Qsx=
ffiffiffiffiffi
ng
p Þ, where Q

is an appropriate quantile of the standard normal distribution. The basis of this

flagging is the assumption that

WTRstd ¼
�xg � �x

sx=
ffiffiffiffiffi
ng
p ; ð1Þ

which is a standardized version of the average WTR count for the group, follows

a standard normal distribution under the null hypothesis of no fraudulent era-

sures, where �xg is the average WTR count for the group. The performance of

WTRstd will be examined later in this article.

To address the increasing interest in practice on erasure analysis, there has

been an upswing in research on the topic. Recently, researchers such as Belov

(2015), Sinharay et al. (2017), Sinharay and Johnson (2017), van der Linden and

Jeon (2012), van der Linden and Lewis (2015), Wollack et al. (2015), and

Wollack and Eckerly (2017) presented new statistics for individual-level or

group-level erasure analysis. Sinharay et al. (2017) performed a comprehensive

comparison of several of these statistics at the individual level—they found the

EDI (Wollack et al., 2015) and their suggested statistic L-index, which is based

on the likelihood ratio statistic, to have performed the best.

EDI at the Individual Level

Let us consider a test that consists of only dichotomous items whose para-

meters are assumed known and are equal to the estimates computed from a

previous calibration using an IRT model. Let us consider examinee j; let Ej

denote the set of items on which erasures were found for the examinee. Note

that the erasures could have been produced by the examinee and/or an educator

and some erasures could be benign, that is, not fraudulent. Let Nj denote the

number of items in Ej. Let Ej denote the set of items on which no erasures were

found for examinee j.1 Let Xj denote the raw score of the examinee on the items

in Ej. Note that Xj is also the number of WTR erasures2 and is often referred to as

the WTR score. Let mj and sj, respectively, denote the expected value and SD of

Xj, given the true ability parameter (yj) of the examinee. For example, mj can be

computed as the sum of the probabilities of correct answers on the items in Ej.

Wollack et al. (2015) and Wollack and Eckerly (2017) used, in their erasure

analysis, the nominal response model (NRM; Bock, 1972) under which pikðyjÞ,
the probability that an examinee of ability yj chooses the response option k on

item i, is given by:

pikðyjÞ ¼
exp½zik þ likyj�P
mexp½zim þ limyj�

;
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where zim and lim, respectively, are the intercept and slope parameters for

response option m of item i.

Let PiðyjÞ denote the probability of a correct answer on item i by examinee j

whose ability is equal to yj. For the NRM, PiðyjÞ ¼ piki
ðyjÞ; where the alternative

ki represents the correct answer option for item i. One then obtains:

mj ¼
X
i2Ej

PiðyjÞ and sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2Ej

PiðyjÞ½1� PiðyjÞ�
s

� ð2Þ

The ability yj is unknown for real data. Wollack et al. (2015) recommended

estimating yj from the responses on the items in Ej. Let us denote this estimate

as ŷj. The estimate ŷj is robust to potentially aberrant erasures and, because Ej is

usually a large part of the whole test, typically has a small standard error and

hence can be considered close to yj.

The estimated mean and SD, denoted by m̂j and ŝj, respectively, are obtained

by replacing yj by ŷj in Equation 2.

The EDI at the examinee level is then defined as

EDI ¼
Xj � m̂j þ c

ŝj

� ð3Þ

The quantity c, which represents a continuity correction, was assumed to be equal

to �0.5 by Wollack et al. (2015), who assumed that the EDI approximately

follows the standard normal distribution under the null hypothesis of no fraudu-

lent erasures. The null hypothesis is rejected and an examinee is flagged for

potentially fraudulent erasures if the examinee’s EDI is a large positive number.

For example, one would flag the examinees whose EDIs are larger than 2.33 if

the significance level (or a level) of .01 is used.

The Extension of the EDI to the Group Level

Consider a group of examinees, where a group could refer to a class, school, or

district. Suppose that at least one erasure was found for J examinees in the group.

Wollack and Eckerly (2017) defined the EDIg as:

EDIg ¼
PJ

j¼1ðXj � m̂jÞ � 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 ŝ

2
j

q � ð4Þ

Because each statistic is defined for one examinee group at a time in this article,

no subscript for the group is used in the notations. The subtraction of 0.5 in the

numerator of the right-hand side of the above equation denotes a continuity

correction of �0.5 for EDIg . Wollack and Eckerly (2017) commented that the

continuity correction is small at the group level because it represents a small

fraction of the expected number of erasures and its impact on power should be
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minimal (p. 219). Wollack and Eckerly also noted that EDIg essentially treats the

entire group of examinees as if it were a single student taking a very long test and

computes the index over all erasures in the group.

Wollack and Eckerly (2017) assumed that EDIg approximately follows the

standard normal distribution under the null hypothesis of no fraudulent erasures.

The null hypothesis is rejected and the examinee group is flagged for potentially

fraudulent erasures if the group’s EDIg is a large positive number.

Wollack and Eckerly (2017) found, in a detailed simulation study, that EDIg,

either at the class level or school level, was slightly conservative, that is, its

Type I error rate was slightly smaller than the nominal level. For example, in

their table 11.2, the Type I error rate of EDIg for classes, aggregated over all of

their simulation conditions, was .005 at level .01 and .029 at level .05. Wollack

and Eckerly noted that a possible reason of this conservativeness is the continuity

correction. However, they did not provide any results on the Type I error rate or

the power of EDIg without a continuity correction.

Method: Two Modified Versions of EDIg

The Continuity Correction Involved in EDIg

The continuity correction involved in the EDI (at the examinee level) given by

Equation 3 was introduced to reduce the Type I error rate of the index; without

the correction, the EDI often led to inflated Type I error rates, especially when Ej

includes only a few items. Sinharay and Johnson (2017) showed in a simulation

study that the null distribution of the EDI without a continuity correction is quite

different from the standard normal distribution when Nj is 5 or smaller but is

close to the standard normal distribution when Nj is larger than 5. Primoli,

Liassou, Bishop, and Nhouyvanisvong (2011) found that erasures are found on

2% items per examinee on average; therefore, on average, the number of erasures

per examinee is 2 on a 50-item test. So, the EDI without a continuity correction at

the examinee level will often not follow a standard normal distribution and be

larger on average than a standard normal random variable and the continuity

correction suggested by Wollack et al. (2015) is one way to control the Type I

error rate of the EDI.

Further, a continuity correction is often used when the distribution of a

test statistic consisting of discrete observations is approximated by a continuous

random variable. Yates’s (1934) continuity correction of the Pearson’s w2

statistic, in which 0.5 is subtracted from the absolute difference of the observed

and expected frequency in the numerator, is a prime example of a continuity

correction.

However, the normality assumption is more likely to be satisfied for EDIg

without any continuity correction than for the EDI without a continuity correc-

tion at the individual level. Given the erasure rate of 2% items per examinee
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(e.g., Primoli, Liassou, Bishop, & Nhouyvanisvong, 2011), the number of era-

sures on a test by an examinee roughly follows a binomial distribution with

N ¼ the number of items and success probability ¼ .02 (e.g., Wollack et al.,

2015). Then, the probability of finding at least one erasure for any given exam-

inee on a 50-item test is .64, which means that the expected number of examinees

with at least one erasure on such a test is about 13 in a class with 20 examinees.

Further, for such a class and a test, 20 erasures would be found on average and the

chance of finding more than a total of 5 erasures is 1.00 up to two decimal places.

Then, in practice, EDIg without a continuity correction would most often follow

a standard normal distribution, given that EDIg treats the entire group of exam-

inees as if it were a single student taking a very long test and computes the index

over all erasures in the group (Wollack & Eckerly, 2017), and the null distribu-

tion of the EDI without a continuity correction is very close to the standard

normal distribution when the number of erasures is more than 5 (Sinharay &

Johnson, 2017). Also note that several researchers (e.g., Furr, 2010) noted that

the Yates’s correction leads to conservative tests and is not needed except for

very small sample sizes.

The First Modified Version and Its Asymptotic Null Distribution

A modified group-level EDI, or EDIN
g , is defined as:

EDIN
g ¼

PJ
j¼1ðXj � m̂jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1 ŝ
2
j

q � ð5Þ

The EDIN
g is similar to EDIg with the only difference that the former does not

involve a continuity correction. The superscript N in the symbol EDIN
g denotes

“no” continuity correction.

Under the null hypothesis of no fraudulent erasures,

�
PJ

j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 s

2
j

q !d Nð0; 1Þ; where the symbol !d denotes “converges in dis-

tribution” and Nð0; 1Þ denotes the standard normal distribution, by the central

limit theorem (CLT; e.g., Rao, 1973, pp. 127–128).

� As ŷj ! yj (e.g., Chang & Stout, 1993),
PJ

j¼1 m̂j !
PJ

j¼1 mj andPJ
j¼1 ŝ

2
j !

PJ
j¼1 s

2
j .

�
PJ

j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 ŝ

2
j

q ¼
PJ

j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 s

2
j

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 s

2
j

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1 ŝ
2
j

q !d Nð0; 1Þ by the Slutsky’s

theorem (e.g., Casella & Berger, 2002, pp. 239–240) and the standard normality

of

PJ
j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1 s
2
j

q :
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�
PJ

j¼1ðXj � m̂jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 ŝ

2
j

q ¼
PJ

j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 ŝ

2
j

q þ
PJ

j¼1 mj �
PJ

j¼1 m̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 ŝ

2
j

q !d Nð0; 1Þ; ð6Þ

by the Slutsky’s theorem and the standard normality of

PJ
j¼1ðXj � mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1 ŝ
2
j

q :

Thus, EDIN
g has an asymptotic standard normal distribution under the null

hypothesis. Further, EDIN
g , because of no continuity correction, will always be

larger than EDIg.

The Second Modified Version and Its Asymptotic Null Distribution

From Equations 2 and 5, EDIN
g can be expressed as:

EDIN
g ¼

PJ
j¼1ðXj �

P
i2Ej

PiðŷjÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

P
i2Ej

PiðŷjÞ½1� PiðŷjÞ�
q ; ð7Þ

where the denominator is supposed to be the estimated SD of the numerator.

However, the above formula was obtained by assuming that the examinee abil-

ities are known and then by replacing the abilities by their estimates. However,

researchers have found that when the examinee abilities are replaced by their

estimates in a statistic, the resulting statistic often does not follow the theorized

null distribution. For example, the popular person-fit statistic lz (Drasgow,

Levine, & Williams, 1985), which is obtained by replacing the examinee ability

by its estimate in an expression somewhat similar to the right-hand side of

Equation 7 (similar in the sense of being the standardized version of another

statistic), has been shown to not follow its theorized standard normal null distri-

bution even for long tests. Snijders (2001) and Sinharay (2016) suggested an

adjusted statistic l�z that has a standard normal null distribution asymptotically.

The adjustment of Snijders (2001) and Sinharay (2016) is based on the Taylor

series expansion (e.g., Casella & Berger, 2002, p. 240). A similar Taylor series

expansion is applied here on EDIN
g in the following derivation.

The variance of the numerator in Equation 7 is equal to the sum of the

variances of ½Xj �
P

i2Ej
PiðŷjÞ� over j because of the independence of the exam-

inees in a group under the null hypothesis of no fraudulent erasures. Further,

Var

 
Xj �

X
i2Ej

PiðŷjÞ
!
¼ VarðXjÞ þ Var

 X
i2Ej

PiðŷjÞ
!
; ð8Þ

because, conditional on the examinee abilities,3 Xj and
P

i2Ej
PiðŷjÞ are indepen-

dent by the local independence assumption of IRT, given that Xj is based on the

item scores on Ej whereas ŷj is based on Ej. Then
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VarðXjÞ ¼
X
i2Ej

PiðyjÞ½1� PiðyjÞ�: ð9Þ

Further, by the Taylor series expansion of the first order (e.g., Casella & Berger,

2002, p. 240), X
i2Ej

PiðŷjÞ �
X
i2Ej

PiðyjÞ þ ðŷj � yjÞ
X
i2Ej

P0iðyjÞ; ð10Þ

where P0iðyjÞ is the first derivative of PiðyjÞ with respect to yj. For the NRM

(Bock, 1972), P0iðyjÞ is equal to PiðyjÞ½liki
�
P

mlimpimðyjÞ� as shown in, for

example, Baker and Kim (2004, p. 252). Taking variances of both sides of

Equation 10 and noting that the first term of the right-hand side of Equation

10 is a constant,

Var

 X
i2Ej

PiðŷjÞ
!
¼ VarðŷjÞ

"X
i2Ej

P0iðyjÞ
#2

� ð11Þ

The above expression of variance can also be obtained by the delta method (e.g.,

Casella & Berger, 2002, p. 243). Thus, by Equations 8, 9, and 11,

Var

 XJ

j¼1

"
Xj �

X
i2Ej

PiðŷjÞ
#!
¼
XJ

j¼1

X
i2Ej

PiðyjÞ½1� PiðyjÞ� þ
XJ

j¼1

VarðŷjÞ
"X

i2Ej

P0iðyjÞ
#2

�

ð12Þ
An estimate of the quantities in the right-hand side of the above equation can

be obtained by replacing the yj by ŷj for all j. Then, using Equation 12, another

modified version of EDIg can be defined as the ratio of
PJ

j¼1ðXj �
P

i2Ej
PiðŷjÞÞ

and its estimated SD,4 that is, as

EDIA
g ¼

PJ
j¼1

�
Xj �

P
i2Ej

PiðŷjÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

P
i2Ej

PiðŷjÞ½1� PiðŷjÞ� þ
PJ

j¼1
dVarðŷjÞ½

P
i2Ej

P0iðŷjÞ�2
q ; ð13Þ

where dVarðŷjÞ can be computed as the reciprocal of the estimated information on

the ability for student j based on Ej. If ŷj is computed using the Newton–Raphson

algorithm, then dVarðŷjÞ can be obtained from the same computer program.5 The

superscript A in the symbol EDIA
g denotes “adjusted.” Thus, EDIA

g may be con-

sidered to be an adjusted version of EDIg whose denominator has been adjusted

to reflect the correct variance of the numerator. The asymptotic null distribution

of EDIA
g is standard normal by the CLT for independent random variables6 (e.g.,

Rao, 1973, pp. 127–128) and the Slutsky’s theorem (e.g., Casella & Berger,

2002, pp. 239–240). A comparison of Equations 7 and 13 shows that the numera-

tor of EDIN
g and EDIA

g is the same, but the denominator of the latter is larger than

that of the former by the (nonnegative) term
PJ

j¼1
dVarðŷjÞ½

P
i2Ej

P0iðŷjÞ�2. Thus,
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EDIA
g will always be smaller than or equal to EDIN

g in absolute value. It is

difficult to prove such a relationship between EDIA
g and EDIg in general. The

numerator of EDIA
g is larger than that of EDIg by 0.5, but the denominator of

EDIA
g is larger than that of EDIg by

PJ
j¼1
dVarðŷjÞ½

P
i2Ej

P0iðŷjÞ�2. It was found in

the simulations and the real data example (described later) that EDIA
g is most

often larger than EDIg. For the schools/districts that have large values of these

statistics, however, EDIg was larger than EDIA
g ; this is somewhat expected; for a

school with a large value of EDIg, the numerator of the right-hand side of

Equation 4 is much larger than its denominator and an addition ofPJ
j¼1
dVarðŷjÞ½

P
i2Ej

P0iðŷjÞ�2 to the denominator, especially for a large school

(for which J would be large), will have a comparatively larger effect than the

addition of 0.5 to the numerator—that would lead to EDIg being larger

than EDIA
g .

The Role of Independence

Because the examinee group is known in the computation of EDIg, EDIN
g , and

EDIA
g , statistical inference on these indices can be performed conditional on the

true abilities of the group of examinees—this conditional inference allows the

use of the local independence assumption of IRT (that implies that conditional on

the examinee ability, the scores on two different parts of the test, Ej and �Ej, are

independent) in determining the distribution of these indices under the null

hypothesis of no fraudulent erasures. For example, as described earlier, local

independence leads to the independence of Xj and
P

i2Ej
PiðŷjÞ, given the true

ability. Further, under the null hypothesis of no fraudulent erasures, the scores (or

ability estimates) of the different examinees in a group are independent of each

other—this independence allows the denominators of Equations 4, 5, 13, and so

on, to be a simple sum over the examinees and makes the null distribution of

these indices relatively simple.

A Simulation Study

A detailed simulation study, similar to that in Wollack and Eckerly (2017),

was performed to compare the Type I error rate and power of EDIg to those of

EDIN
g and EDIA

g .

Design of the Simulation

The design of the simulation study was exactly as in Wollack and Eckerly

(2017) except that while 1,000 schools were used in Wollack and Eckerly, 10,000
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schools were used here for each simulation condition to estimate the Type I error

rate and power more precisely.7 A 50-item test and the NRM (Bock, 1972) were

used. The following factors were varied:

� the number of classes within a school (1, 3, or 6),

� the number of students within a class (15, 25, or 35),

� the proportion of tampered classes within a school (0, 0.33, 0.67, or 1),

� the number of erasure victims in a class (1, 3, 5, or 10), and

� the number of (fraudulent) erasures per erasure victim (3, 5, or 10).

The data for a simulation condition were simulated using the following steps:

� Complete and untampered data for the number of classes and students stipulated by

the simulation condition on a 50-item, five-alternative test were simulated under

the NRM (Bock, 1972) using item parameters from the college-level test of English

language used in Wollack et al. (2015) and Wollack and Eckerly (2017). Schools

were generated to be of different quality by sampling the mean school ability (yS)

from a normal distribution with mean 0 and SD of 0.5. Within each school, item

scores were simulated for all examinees. All classes with a school were assumed to

be of the same average ability,8 that is, the ability of students in all classes of a

school was simulated from a normal distribution with mean yS and SD of 1.

� Benign erasures, which include both misalignment erasures and random erasures,

were simulated. Misalignment erasures (or shift errors) occur when an examinee

accidentally bubbles in the answer to item i in the space on the answer sheet

reserved for item i þ 1 (or i � 1) and continues to mark answers for a string of

consecutive items in the wrong fields. The erasure comes about when the examinee

finally realizes the mistake, changes the answers to the misaligned items, and

marks those same answers again, this time in the correct fields on the answer sheet.

Random erasures occur when an examinee either accidentally bubbles in the wrong

answer on the answer sheet, identified it immediately, and changes it to the

intended answer or initially answers an item one way but on reconsideration

changes that answer. Within each school, reflecting what is observed in reality,

2% students were randomly selected as candidates to produce misalignment era-

sures and the remaining 98% students were candidates to produce random erasures.

For each candidate of misalignment erasure, the number of misaligned items was

sampled from a binomial distribution with 50 trials and success probability of .25.

Then, the starting point of the misalignment was determined by randomly selecting

an item between Item 1 and 50-k þ 1, where k is the number of misaligned items.

The initial answer was determined by shifting the final answers one spot. If the

initial and final answers were different, it was recorded as an erasure. For candi-

dates of random erasures, the number of randomly erased items was sampled from

a binomial distribution with 50 trials and success probability of .02. The specific

items that were erased were selected at random from all items.

� Fraudulent erasures were simulated. Within each school, the specific classes for

which tampering occurred and specific items on which tampering occurred were

determined randomly. All tampered items were assumed to result in WTR erasures.

To generate, for example, five fraudulent erasures for an examinee, five incorrect
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answers were randomly chosen among all incorrect answers of the examinee and

were changed to correct answers. In the event that a student’s raw score was too

high to produce the number of WTR erasures stipulated by the simulation condi-

tion, the student was given a perfect score.

Computation

The maximum likelihood estimate (MLE) of the examinee ability was used as

the ability estimate and the MLE was restricted between �4.5 and 4.5. Note that

for each examinee, the MLE was computed from the items without erasures.

Because the number of fraudulent erasures was 3, 5, or 10 and the expected

number of benign erasure was 1 for 98% of the examinees, the MLE was com-

puted between 39 and 46 untampered items for a majority of examinees—so the

MLEs can be considered stable, that is, they had small standard errors. The MLEs

were computed using the Newton–Raphson algorithm.

Distribution of the Indices Under the Null Hypothesis

The left panel of Figure 1 shows the kernel density estimates9 of the distribu-

tions of the values of EDIg , EDIN
g , and EDIA

g for a random subset of 2,000 classes

under the condition of one class per school, 15 students per class, and proportion

of tampered classes within a school¼ 0; thus, this condition is associated with no

fraudulent erasures and hence the distribution of EDIN
g and EDIA

g should be close

to the standard normal distribution according to the theoretical results included

earlier. The standard normal distribution is shown in the figure using a solid line

for comparison. Table 1 provides the first four moments (mean, SD, skewness,

and kurtosis10) and five percentiles (25th, median, 75th, 95th, and 99th) for the
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distributions shown in the left panel of Figure 1. The right panel of Figure 1

shows a plot for the distributions of the values of EDIg, EDIN
g , and EDIA

g of 2,000

schools for the simulation condition of three classes per school, 15 students per

class, and proportion of tampered classes within a school¼ 0; thus, this condition

is also associated with no fraudulent erasures and hence the distribution of EDIN
g

and EDIA
g should be close to the standard normal distribution. The distributions of

EDIN
g and EDIA

g are much closer than that of EDIg to the standard normal

distribution in both panels. The distributions of EDIN
g and EDIA

g appear indis-

tinguishable in the right panel (presumably because the values of EDIN
g and EDIA

g

are based on information from 45 students each); however, in the left panel

(where the values of EDIN
g and EDIA

g are based on information from only 15

students each), the distribution of EDIA
g is slightly closer to the standard normal

distribution compared to that of EDIN
g , especially at the right tail of the normal

distribution where the rejection decisions are made; further, Table 1 shows that

the values for EDIA
g are closer than those for EDIN

g to the standard normal

distribution for classes.

So, it seems that EDIA
g follows the standard normal distribution slightly more

closely than does EDIN
g under the null hypothesis, especially for classes. A w2

test11 (e.g., Cochran, 1952) rejected the null hypothesis that EDIN
g for the classes

follows the standard normal distribution but did not reject the same hypothesis

for EDIA
g .

Results on Type I Error Rates

Table 2 of the current article, like table 11.2 of Wollack and Eckerly (2017),

shows the Type I error rates of EDIg , EDIN
g , and EDIA

g for classes and schools

collapsed over the levels of the different factors from the simulation conditions

TABLE 1.

Summaries of the Distributions of EDIg, EDIN
g , and EDIA

g for the Class Level

Index

Moments Percentiles

Mean SD Skewness Kurtosis 25 50 75 95 99

Nð0; 1Þ .00 1.00 .00 .00 �0.67 .00 .67 1.64 2.33

EDIg �.31 1.05 �.04 �.03 �1.03 �.31 .41 1.42 2.04

EDIA
g �.01 1.00 �.04 �.02 �0.69 �.02 .67 1.64 2.21

EDIN
g �.01 1.05 �.04 �.03 �0.73 �.02 .71 1.72 2.35

Note. EDIg ¼ erasure detection index at the group level; EDIN
g ¼modified group-level EDI; EDIA

g ¼
adjusted version of EDIg; SD ¼ standard deviation.
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that did not involve any fraudulent erasures. Four significance (a) levels were

considered: .0001, .001, .01, and .05. The rates for EDIg are very close to those in

table 11.2 of Wollack and Eckerly and support the conclusion of Wollack and

Eckerly that EDIg is slightly conservative in all conditions. The rates for EDIN
g

are the closest, in comparison to the other two indices, to the nominal level; they

are slightly larger than the nominal level in some cases (e.g., the average Type I

error rate for level .05 is .052) but are satisfactory according to Cochran’s

criterion for robustness (e.g., Cochran, 1952; Wollack, Cohen, & Serlin, 2001).12

The Type I error rates for EDIA
g , while further from the nominal level compared to

EDIN
g , are closer to the nominal level compared to EDIg and are always slightly

smaller than or equal to the nominal level. Keeping in mind the important conse-

quences of a false alarm in the context of erasure analyses, some practitioners would

probably prefer EDIA
g , whose Type I error rate is smaller than the nominal level (and

yet quite close to the nominal level), over EDIN
g , whose Type I error rate is closest to

the nominal level but can occasionally be slightly larger than the nominal level.

The only factor (among those manipulated here) that influenced the Type I

error rates of the indices for the classes is the class size. This is expected, given

that the assumption of a standard normal null distribution of EDIg , EDIA
g , and

EDIN
g would be satisfied to a greater extent as class size increases. Figure 2 shows

the Type I error rates of the indices for different class sizes for significance levels

.05, .01, .001, and .0001. Each panel, which corresponds to a significance level,

shows three dashed lines connecting one among three types of points that denote

the Type I error rates for different class sizes. Each point type corresponds to an

index. For example, the point type for EDIg is a hollow circle. In each panel, the

significance level is denoted by a solid horizontal line. The figure shows that as

the class size increases, the Type I error rate of each index increases. For EDIg

and EDIA
g , the increase is desirable because their Type I error rates are smaller

TABLE 2.

The Overall Type I Error Rates for EDIg, EDIN
g , and EDIA

g

Level of Aggregation Index a ¼ .0001 a ¼ .001 a ¼ .01 a ¼ .05

Class EDIg .00005 .0005 .005 .031

Class EDIA
g .00007 .0008 .008 .046

Class EDIN
g .00012 .0011 .011 .052

School EDIg .00006 .0006 .007 .035

School EDIA
g .00010 .0009 .009 .048

School EDIN
g .00013 .0011 .010 .052

Note. EDIg ¼ erasure detection index at the group level; EDIN
g ¼ modified group-level EDI;

EDIA
g ¼ adjusted version of EDIg .

Detecting Fraudulent Erasures

298



than the nominal level. For EDIN
g , the increase is not desirable because its Type I

error rate is slightly inflated. However, even with the increase, the Type I error

rate of EDIN
g is satisfactory according to Cochran’s robustness criterion

(Cochran, 1952) for the largest class size.

Also note that the increase of the Type I error rate with an increase in the class

size in Figure 2 does not mean that the Type I error rate of one or more of these

indices will keep increasing or will be severely inflated for much larger groups of

examinees (of, say, size 100). The Type I error rates at the school level, which are

shown in Table 2, are computed using somewhere between 15 and 210 exam-

inees (i.e., because a school includes one, three, or six classes with 15, 25, or 35

students each) and they are quite close to the nominal level. To further investigate
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this issue, some limited simulations were performed with an additional class size

of 100. Figure 3 shows the Type I error rates for class sizes between 15 and 100 at

levels of .05 and .01. For class size of 100, the Type I error rates of both EDIN
g

and EDIA
g are very close to the nominal level while that of EDIg is closer to the

nominal level compared to a class size of 35 but is still considerably smaller than

the nominal level.

Results on Power

Table 3 shows the power (at a levels .0001, .001, .01, and .05) of EDIg, EDIN
g ,

and EDIA
g for classes and schools collapsed over the levels of the different factors

from the conditions of the simulation that involved some fraudulent erasures. The

values of power for EDIg are always slightly smaller than those of either of EDIA
g

or EDIN
g , with the difference being smaller for schools than classes. The values of

power of EDIA
g and EDIN

g are the same up to two decimal places for schools at

three of the four significance levels. The power of EDIA
g for classes is either equal

to or smaller by .01 than that of EDIN
g up to two decimal places.

Figure 4, whose left and right panels are like figures 11.1 and 11.2, respec-

tively, of Wollack and Eckerly (2017), shows the power of EDIg, EDIN
g , and

EDIA
g for significance level .001 to detect classes for different number of erasures
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TABLE 3.

The Overall Power of the Indices

Level of Aggregation Index a ¼ :0001 a ¼ :001 a ¼ :01 a ¼ :05

Class EDIg .39 .47 .58 .69

Class EDIA
g .40 .49 .60 .72

Class EDIN
g .41 .50 .61 .72

School EDIg .38 .44 .52 .60

School EDIA
g .39 .45 .53 .62

School EDIN
g .39 .45 .54 .62

Note. EDIg ¼ erasure detection index at the group level; EDIN
g ¼ modified group-level EDI;

EDIA
g ¼ adjusted version of EDIg .
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(left panel) or different class sizes (right panel) and different number of erasure

victims in a class. For each line type, the power of EDIN
g , EDIA

g , and EDIg for

different number of erasure victims in a class is shown using a line of that type

joining hollow triangles, plus signs, and hollow circles, respectively. Each line

type corresponds to a value of the number of erasures per erasure victim (left

panel) or class size (right panel). For example, in the left panel, a solid line

joining hollow circles denotes the power for EDIg for 1, 3, 5, or 10 erasure

victims per class where each victim made five erasures.

Figures 5 and 6, which are like figures 11.3 and 11.4, respectively, of Wollack

and Eckerly (2017), show the power of EDIg, EDIA
g , and EDIN

g at significance

level of .001 to detect schools. In these figures, “#T. Class” denotes the number

of tampered classes. Figure 5 shows power for different number of erasures and

Figure 6 shows power for different class sizes.

In Figures 4 through 6, the power of each index follows patterns that are very

similar to those in Wollack and Eckerly (2017); for example, in both Figures 5

and 6, the power of each index increases as the number of tampered classes

increases and as the number of erasure victims per class increases. Figures 4

through 6 also show that EDIA
g and EDIN

g are slightly more powerful than EDIg
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under all simulation conditions for classes and, to a lesser extent, for schools. The

gain in power for EDIN
g over EDIg in these figures is sometimes up to .05

(especially in Figure 4). Thus, even though Wollack and Eckerly (2017) stated

that the impact of the continuity correction involved in EDIg on power should be

minimal, these figures show that the impact may not be minimal under some

circumstances. Between EDIA
g and EDIN

g , the latter has slightly larger or equal

power than the former in all simulation cases.

A casual look at Table 3 and Figures 4 through 6 may provide the impression that

the power of the statistics decreases with an increase in sample size; for example,

� In Table 3, at any significance level, the overall power for schools is smaller than

that for classes even though the schools include more students than classes.

� In the right panel of Figure 4, the power for Class size 15 is larger than that for

Class size 35.

However, one should be careful about comparing the numbers in Table 3 and

Figures 4 through 6 and a careful comparison shows that Table 3 and Figures 4

through 6 do not defy the principle of power increasing with sample size (e.g.,

Rao, 1973, p. 464). For example,
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� The smaller overall power for schools than classes in Table 3 is partially explained

by the fact that the computation of the overall power of schools involved many

classes with no fraudulent erasures whereas the overall power of schools was

computed only using classes with some fraudulent erasures.

� In Figure 4, given a number of erasure victims, the proportion of erasure victims

increases as the class size decreases, which causes the increase in power as one

goes from, say, Class size 35 to Class size 15, both for five erasure victims. If one

keeps the proportion of erasure victims constant, however, the power increases

with an increase in class size as one would expect; for example, in Figure 4, the

power of EDIA
g is about .40 for class size ¼ 15 and number of erasure victims ¼ 3,

but it is about .65 for class size ¼ 25 and number of erasure victims ¼ 5 (the

proportion of erasure victims in a class ¼ .20 in both of these cases).

Figure 7 shows the average power of the three statistics for schools when the

proportion of erasure victims in a class ¼ .20 for two class sizes and three levels

of number of erasures. The figure shows that other factors remaining the same,

the power of any index increases with an increase in the class size, which is

expected. For example, for three erasures per examinee, the power of EDIA
g is .89

for class size of 15, but it is .98 for class size of 25.

Discussion on the Comparative Performance of the Indices

The values of Type I error rates and power from the simulations demonstrate

that EDIA
g has a better balance of Type I error rates and power compared to EDIg;

the Type I error rates of EDIA
g are smaller than or equal to the nominal level on

average and the power of EDIA
g is larger than that of EDIg. Thus, the practitioners

should seriously consider applying EDIA
g to detect fraudulent erasures at group
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level. The results from the simulations also show that EDIN
g may be preferred by

some practitioners; EDIN
g is computationally simpler than EDIA

g (and computa-

tionally as easy as EDIg) and is more powerful than EDIA
g and EDIg, and the Type

I error rates of EDIN
g are closest to the nominal level on average among these

three indices; however, one limitation of EDIN
g , keeping in mind the severe

consequences of a false alarm in the context of erasure analysis, is that its Type

I error rate may sometimes be slightly larger than the nominal level.

The Type I error rate and power of the WTR count, which is operationally used

in several states, were also examined in the simulation study. Specifically, the

WTRstd statistic provided by Equation 1 was computed for each class and school.

Overall, WTRstd did not have satisfactory Type I error rate or power; a part of it can

be attributed to the simulation design; for example, in the case when the proportion

of tampered classes is 1, the level of tampering is the same in each school13 and

hence the power of WTRstd would be close to the Type I error rate. However, even

in the simulation conditions most favorable to WTRstd, the statistic was less

powerful than each of EDIg, EDIA
g , and EDIN

g . For example, while the average

power of EDIg, EDIA
g , and EDIN

g to detect classes were .53, .56, and .55 at level .01

for the simulation cases where the proportion of tampered classes is .33, the

average power of WTRstd over the same simulation cases was only .29. Wollack

and Eckerly (2017) found the correlation between EDIg and the WTR count and

several other similar and popular statistics to be rather small (.51 or smaller).

Application to Real Data

Data Set and Analyses

Wollack and Eckerly (2017) analyzed a data set that includes the responses of

72,686 fifth-grade students to 53 dichotomous items on a state mathematics test.

The students belonged to 3,213 classes in 1,187 schools in 630 districts. The data

providers did not reveal if there were any fraudulent erasures on the test. Erasures

were captured through a scanning process by looking for “light marks” (Cizek &

Wollack, 2017, p. 15). On average, the number of erasures per examinee is two

(i.e., 3.7% of all the items on the test), which is about twice of what is typically

found in similar assessments (see, e.g., Primoli et al., 2011; Wollack et al., 2015).

About 50.9% of the total number of erasures were WTR erasures. As in Wollack

and Eckerly (2017), the NRM was used to analyze these data in this article and

the erased responses were treated as missing data in estimating the item para-

meters. The missing responses were also treated as missing data in estimating the

item and ability parameters. The items had four response categories each; an

additional response category (missing) was assumed in the analysis with the

NRM, so that five intercept parameters and five slope parameters14 were esti-

mated for each item using the version 1.25 of the R package mirt (Chalmers,

Sinharay

305



2012). The statistics EDIg, EDIA
g , and EDIN

g were computed for each district,

school, and class in the data set.

A significance level of .001 was used to determine the statistical significance

of the statistics as in Wollack and Eckerly (2017). A standard normal null dis-

tribution assumption for the statistics implies that a value larger than 3.09 of any

of this statistics is statistically significant.

Results

The top left and middle panels of Figure 8 show plots of EDIg versus EDIA
g

and of EDIg versus EDIN
g for the districts. The bottom left and middle panels of
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g , EDIg versus EDIN

g , and EDIN
g versus WTRstd for

districts (top row) and schools (bottom row) for the real data set.
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the figure show similar plots for the schools. In each panel, a diagonal solid line

and a horizontal and vertical dotted line at 3.09 (the critical value at level .001)

are shown. The figure shows that EDIN
g is always larger than EDIg, as expected

from their definitions, which means that EDIN
g would flag a larger number of

schools/districts compared to EDIg. The figure also shows that EDIA
g is mostly

larger than EDIg except for very large values (larger than about 3.3) of these

statistics for which EDIA
g is mostly smaller than EDIg .

Among the 630 districts in the data set, EDIg, EDIA
g , and EDIN

g were statis-

tically significant for 5, 5, and 6 districts, respectively. Among the 1,187 schools

in the data set, EDIg, EDIA
g , and EDIN

g were statistically significant for 8, 8, and

13 schools, respectively. Among the 3,213 classes in the data set, EDIg, EDIA
g

and EDIN
g were statistically significant for 10, 11, and 12 classes, respectively.

Table 4 shows the districts, schools, or classes for which at least one of the EDIg,

EDIA
g ,and EDIN

g was statistically significant. For any school, the district that the

school belongs to is shown in the same row of the table. For any class, the district

and the school that the class belongs to is shown in the same row of the table. For

example, the first row includes Class 9, which is within School 344969, which is

within District 401600. All districts with significant values of the statistics

included at least a school with significant values of the statistics.

The number of significant values for EDIg is one more here for both schools

and districts and two more here for classes compared to that in Wollack and

Eckerly (2017) who found four districts, seven schools, and eight classes to have

statistically significant values of EDIg.15 This difference is most likely an out-

come of the way missing data were handled in these two studies and because of

the use of different software packages (MULTILOG by Wollack & Eckerly,

2017, vs. R in this study) in these two studies. However, the values of EDIg

from our calculations were very close to those of Wollack and Eckerly (2017) for

the classes, schools, and districts that are listed in table 11.7 of Wollack and

Eckerly. For example, while Wollack and Eckerly reported the value of EDIg of

District 401600 to be 6.54 in their table 11.7, the corresponding value here is

6.61. Further, all the EDIg values (for classes, schools, or districts) that were

statistically significant in Wollack and Eckerly were significant here as well.16

Some of the values of EDIg that are significant here and not in Wollack and

Eckerly are justified; for example, Wollack and Eckerly found EDIg to be sig-

nificant (and very large) for School 354770 but did not find EDIg to be signif-

icant for District 55558 that the school belonged to; in contrast, EDIg was

significant for the district in this article.

There are one district, five schools, and two classes for which EDIg was not

statistically significant, but EDIN
g was significant; there were two classes for which

EDIg was not statistically significant, but EDIA
g was significant.17 Especially, note
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that School 165894 belongs to District 424557, and EDIN
g was found significant

and EDIg was found not significant for both of them. Some of the instances with

significant EDIN
g and nonsignificant EDIg provide strong evidence in favor of the

use of EDIN
g . For example, EDIg is significant for both Classes 3667 and 3666;

however, EDIg is not significant for School 241507 that these two classes belong

to; in contrast, EDIN
g is significant for School 241507. Thus, the larger power of

EDIN
g and EDIA

g (observed in the simulation studies earlier) may manifest itself as a

practically different result for certain groups of examinees for real data.

The statistic WTRstd provided by Equation 1 was also computed for each

district and school. The correlation between EDIg and WTRstd was found to be

TABLE 4.

Districts, Schools, and Classes for Which EDIg, EDIN
g , or EDIA

g Was Statistically

Significant

District School Class

ID EDIg EDIN
g EDIA

g ID EDIg EDIN
g EDIA

g ID EDIg EDIN
g EDIA

g

401600 6.61 6.68 6.17 344969 6.61 6.68 6.17 9 7.72 7.82 6.96

274475 5.14 5.20 4.92 273425 6.50 6.60 5.95

71771 4.01 4.03 3.87 244544 3.32 3.45 3.31 5010 3.30 3.47 3.32

274152 3.06 3.12 2.96

55558 3.86 3.88 3.70 354770 4.78 4.87 4.55 331 4.89 4.99 4.59

13758 3.61 3.68 3.29 65825 5.63 5.73 5.25

424557 2.96 3.21 2.89 165894 2.96 3.21 2.89

102235 NS NS NS 391665 4.67 4.78 4.56

88033 NS NS NS 187462 3.55 3.66 3.50

123845 NS NS NS 335982 3.27 3.35 3.25

24093 NS NS NS 125561 3.05 3.20 2.97

182640 NS NS NS 241507 3.02 3.12 2.70 3667 4.09 4.24 3.47

3666 3.24 3.49 2.75

350388 NS NS NS 15517 3.01 3.10 2.99 5108 3.23 3.40 3.26

374941 NS NS NS 388551 NS NS NS 102 3.29 3.44 3.28

38891 NS NS NS 216471 NS NS NS 1000 3.64 3.75 3.62

243971 NS NS NS 12900 NS NS NS 8 3.26 3.40 3.03

190527 NS NS NS 351598 NS NS NS 441 3.15 3.31 3.19

362963 NS NS NS 367962 NS NS NS 512 3.04 3.23 3.17

305498 NS NS NS 204528 NS NS NS 444 2.80 3.21 3.17

Note. The values of EDIg given in bold and italicized font were not significant in Wollack and

Eckerly (2017) but are significant in this article. The values of EDIN
g or EDIA

g given in bold and

regular font correspond to cases for which EDIg is not significant, but EDIN
g or EDIA

g is significant.

NS ¼ not statistically significant; EDIg ¼ erasure detection index at the group level;

EDIN
g ¼ modified group-level EDI; EDIA

g ¼ adjusted version of EDIg .
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.30 for districts and .39 for schools. The two rightmost panels of Figure 8 show

plots of EDIN
g versus WTRstd for districts and schools, respectively. The value of

WTRstd was significant at the level of .001 for 18 districts and 29 schools, that is,

for a much larger number of districts and schools compared to the other statistics.

Among the six districts for which EDIN
g was significant, WTRstd was significant

for four but was 2.79 and �5.08 (and hence not significant) for the remaining

two. For one district (with more than 300 students), EDIN
g was�1.3 (i.e., far from

being statistically significant), but WTRstd was 4.8, which is significant and

indicates that statistics such as EDIN
g can be small even for groups that produce

a large number of WTR changes on average. For another district, EDIN
g was 3.88

(i.e., statistically significant), but WTRstd was �5.08, which is not significant

and indicates that statistics such as EDIN
g can be significant even for groups that

produce fewer number of WTR changes on average.

Erasure analysis was also performed at the individual level using the L-index

(Sinharay, Duong, & Wood, 2017). The values of the L-index agree with the

values of EDIg, EDIN
g , and EDIA

g for the data set. For example, the L-index was

significant at the level of .01 for 13%, 12%, 15%, 14%, and 10% of examinees,

respectively, in the schools 344969, 273425, 65825, 354770, and 391665 that had

the largest values of EDIN
g in Table 4.

Conclusions

This article follows up on the research of Wollack and Eckerly (2017) by

suggesting two modifications of their index for detection of fraudulent erasures

at the group level. The suggested modifications have slightly larger power

compared to the index of Wollack and Eckerly (2017). The Type I error rate

of one of the modified indices is smaller than or equal to the nominal level

while that of the other modified index is close to the nominal level but can

occasionally be slightly larger than the nominal level. The choice of an index in

a particular application would depend on the preference of the testing program.

If one is willing to allow a couple more false alarms in exchange for a slightly

larger power, EDIN
g would be a better choice. If controlling of the false alarms

is the top priority, then EDIA
g would be a better choice. Note that the computa-

tional complexity of the indices is about the same; EDIA
g involves the deriva-

tives of the response probabilities and estimated variances of the ability

estimates, but, remembering that all these indices require the fitting of an IRT

model, it is natural to assume that an investigator who has the capability of

fitting IRT models should be able to compute derivatives of the response

probabilities and estimated variances of the ability estimates.18 Each of

EDIg, EDIN
g , or EDIA

g was modestly correlated with and much more powerful
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than standardized average WTR count, which is operationally used in erasure

analysis by several states.

The choice of the significance level to be used with EDIg, EDIN
g , or EDIA

g is an

important issue. Wollack and Eckerly (2017, p. 227) used the significance level

of .001 in their real data example to limit the number of false positives and

commented that states or test sponsors would apply a more conservative criterion

in practice. Another option to limit the number of false positives is to choose a

critical value that adjusts for multiple comparisons by controlling the family-

wise error rate (using, e.g., a Bonferroni correction) or controlling the false

discovery rate (using the procedure of Benjamini & Hochberg, 1995). If one

applies the Bonferroni correction to the real data example discussed above, then

critical values of 4.16, 4.30, and 4.52, respectively, would allow one to control

the family-wise Type I error rate at .01 for districts, schools, and classes, respec-

tively (EDIN
g is significant for two districts, five schools, and two classes if one

applies this Bonferroni correction).

Although EDIg and the suggested modifications were applied in the context of

erasure analysis, it is possible to apply them to problems in which (a) examinees

belong to groups (like districts, schools, or classes); (b) the investigator is inter-

ested in the difference, at the group level, between the performance of the

examinees on two sets of items that are supposed to measure a common con-

struct; and (c) the estimates of the parameters of the two sets of items are

available.19 At an individual level, the difference between the performance of

the examinees on two sets of items was of interest in Finkelman, Weiss, and Kim-

Kang (2010) because the difference would quantify the change that occurred in

the examinee abilities, in Guo and Drasgow (2010) because a difference would

indicate possible cheating, and in Sinharay (2017) because a difference would

indicate possible item preknowledge; in all these applications, the null hypothesis

is that the ability of the examinees is the same on average over the two sets of

items and the alternative hypothesis is that the ability is not the same (due to

change/growth or cheating or item preknowledge). One may be interested in

quantifying such differences at an aggregate level and EDIg, EDIA
g , and EDIN

g

may be applied to quantify the differences. For example, if it is known that a

certain subset of items may have been compromised (a problem considered

by, e.g., Sinharay, 2017), one can apply EDIg, EDIA
g , and EDIN

g to detect

possible item preknowledge at an aggregate level; the set of compromised

items and the remaining items on the test would constitute the two sets of

items in such an application.

Statistical indices for the determination of fraudulent erasures are useful for

providing confirming evidence of inappropriate behavior when evidence from

other sources also exist, but the evidence provided by statistical indices is insuf-

ficient by itself. For example, Hanson, Harris, and Brennan (1987) commented

that no statistical method on its own can provide conclusive proof that copying
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occurred (p. 25); the comment is true about erasures as well. Researchers such as

Tendeiro and Meijer (2014, p. 257) recommended complementing statistical

indices of detecting irregularities with other sources of information such as

seating charts, video surveillance, or follow-up interviews. However, test secu-

rity experts such as Wollack and Cizek (2017, p. 200) have recently presented

the viewpoint that statistical evidence based on even a single statistic may

constitute conclusive proof of cheating provided the statistic has been properly

vetted and accepted by the research community and the degrees of aberrance is

clearly extreme.

There are several limitations of this article and, consequently, several related

topics can be further investigated. First, it is possible to extend other indices for

detection of fraudulent erasures for individual examinees including those sug-

gested by Sinharay and Johnson (2017), Sinharay et al. (2017), and van der

Linden and Lewis (2015) to the group level and a future study may compare the

extensions suggested in this article to extensions of other individual-level statis-

tics for detecting fraudulent erasures. Second, while our simulation study was

detailed, it is possible to perform more simulations, possibly with other IRT

models. Similarly, it is possible to consider applications of the indices to more

real data examples. Finally, since classes and schools involve a hierarchical

structure where students are nested within classes, which are nested within

schools, it is possible to apply a hierarchical model to perform erasure analysis;

Skorupski and Egan (2014) suggested a hierarchical linear model for detection of

group-level cheating; their approach uses the score on a vertical scale as the

response variable and treats an unusually large increase in score for a group from

a previous grade as possible evidence of cheating. It may be possible to use a

similar approach for an aggregate-level erasure analysis.
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Notes

1. Ej and Ej are nonoverlapping and their union is the set of all items adminis-

tered to the examinee.

2. This is because a right-to-right erasure is impossible for regular dichoto-

mously scored multiple-choice items that involve only one correct answer

option.

3. The variances in Equation 8 and elsewhere are conditional on the true ability

and item parameters. For convenience, the notations do not reflect the

conditioning.

4. Note here that the asymptotic mean of
PJ

j¼1ðXj �
P

i2Ej
PiðŷjÞÞ is 0.

5. Each step of the Newton–Raphson algorithm involves the estimated

information at the current ability estimate (e.g., Casella & Berger, 2002,

pp. 66–67). So, the reciprocal of the estimated information after the algo-

rithm has converged can be used as dVarðŷjÞ.
6. Where the variables are Xj �

P
i2Ej

PiðŷjÞ; j ¼ 1; 2; . . . ; J .

7. For example, at level ¼ .001, the standard error of the Type I error rate for

schools is .001 if 1,000 schools are used in the simulations, but .0003 if

10,000 schools are used.

8. Limited simulations show that making the classes within a school to have

different average abilities does not alter the conclusions from the

simulation.

9. Created using the function “density” in the R software (R Core Team, 2017).

10. Note that 3 has been subtracted from the formula of kurtosis, so that the

kurtosis of the standard normal distribution is 0 according to the formula

used in this article.

11. Where the values of each of the indices were grouped into 1 of the 10

roughly equal-size groups and then the observed and expected numbers in

the groups were used to compute a w2 statistic whole null distribution is the

w2 distribution with nine degrees of freedom.

12. According to Cochran’s criterion for robustness, estimated Type I error rates

smaller than .06, .015, .0015, and .00015 are satisfactory at levels .05, .01,

.001, and .0001, respectively.

13. Whereas the wrong-to-right count would be powerful only when the level of

fraud is very low in most schools and very high in a few schools.

14. For each item, the sum of the five intercept parameters is 0 and the sum of the

five slope parameters is 0.
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15. Erasure detection index at the group level ðEDIgÞ was significant in this

article but not in Wollack and Eckerly (2017) for District 55558, School

335982, and Classes 8 and 441.

16. It was confirmed with James Wollack that in the third row and fourth column

of table 11.7 of Wollack and Eckerly (2017), 13758 should be replaced by

65825.

17. EDIg was statistically significant, but EDIA
g was not significant for Class 8 in

School 12900.

18. The Newton–Raphson algorithm for computing ability estimates involves

both derivatives of response probabilities and estimated variances.

19. Note that in erasure analysis in this article, the two sets of items are Ej and Ej.
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