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Introduction

This article presents a number of simple tasks that  
may be suitable for stimulating students’ mathematical 
reasoning. While each task is presented as a possible 
context in which mathematical reasoning can be applied, 
solutions may also be obtained by non-mathematical 
means. This allows all students to be engaged, although 
the teacher may wish to guide discussion towards the 
salient mathematical aspect(s) of the task. The open- 
ended nature of the tasks also allows various levels  
of mathematical reasoning to be applied.

According to Stacey (2012), opportunities to reason 
should feature in mathematics classes at all year levels, 
and students’ reasoning should become more sophistic- 
ated over time. Students need to understand the distinc-
tive ways in which we reason and justify assertions in 
mathematics (Haylock & Manning, 2014). As students 
formulate and test mathematical conjectures, they deve- 
lop a foundation for later studies in reasoning and proof. 

It can be difficult for teachers to introduce challenging 
tasks in such a way that makes them accessible, rather 
than daunting, to students (Cheeseman, Clarke, Roche, 
& Walker, 2016). According to Boaler (2016), effective 
mathematical tasks should be open-ended and provide 
an appropriate degree of challenge for a range of stu-
dents. One of the ways such tasks can be developed is  
by locating dimensions of possible variation and chang-
ing them. In this way, it is left to the learner to select 
the appropriate level of challenge at any given moment 
(Mason, Burton, & Stacey, 2010). 

Features of tasks that foster the development of 
mathematical reasoning include open-ended questions, 
encouraging multiple conjectures, and are appropriate  

for students at multiple year levels (Richardson, Carter, 
& Berenson, 2010). Open-ended questions generate 
discourse, allow flexibility in thinking, and encourage 
various solutions at different ability levels. Earlier, 
Sullivan and Lilburn (2005) identified three character-
istics of ‘good’ questions. Firstly, good questions require 
more than simply remembering a fact or reproducing 
a skill. Secondly, good questions may have several 
acceptable answers. Finally, both students and teachers 
learn from good questions; students learn by answering 
the questions and teachers learn about student thinking 
from the answers that they provide. 

The tasks presented here incorporate concepts from 
the mathematics content strands including perimeter 
and area, symmetry, number properties, and fractions. 
This content is explored through the contexts of prob-
lem solving and reasoning described in The Australian 
Curriculum: Mathematics (Australian Curriculum and 
Reporting Authority [ACARA], 2016). For the purposes 
of consistency, all tasks have been presented using  
a common format. 

Shapes

In this task, students are presented with three 2-D  
shapes (see Figure 1) and asked to select one shape that 
is unique based on their understanding of its properties. 
Since this task permits multiple solutions, students’ 
responses can be evaluated on the basis of their math-
ematical reasoning. For example, students could select 
the circle because it is the only shape with no corners. 
The square is an equally valid choice because it is the 
only shape with four sides, the only example of a regular 
polygon, and the only shape which contains right angles. 

The importance of mathematical reasoning is unquestioned and providing opportunities 
for students to become involved in mathematical reasoning is paramount. The open- 
ended tasks presented incorporate mathematical content explored through the contexts 
of problem solving and reasoning.
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Alternatively, the triangle could be selected because it 
is the only shape with three sides, the only example of 
an irregular polygon, and the only shape that contains 
acute angles. 

Figure 1. Which of these shapes is the odd one out?

Each of the shapes has certain characteristics in  
common with one or both of the others, allowing 
students to apply various lines of mathematical and 
non-mathematical reasoning to the task. For example, 
students could compare the reflective and rotational 
symmetry of the three shapes. The triangle has one line 
of reflective symmetry, and the square has four lines; 
the circle is the only shape with an infinite degree of 
symmetry. The circle and square possess rotational 
symmetry, while the triangle does not. Furthermore, 
while both the square and triangle tessellate, the circle 
does not. The square and triangle can be constructed 
from triangular pieces while the circle cannot. 

It is also conceivable that subjective factors such as 
prior knowledge could impact on students’ reasoning. 
For example, students who have learned to calculate 
perimeter but not circumference might select the circle 
as the odd one out based on their personal understand-
ing. In a similar manner, a student might know how 
to partition squares and circles (but not triangles) into 
equal-sized pieces. A less mathematical (but equally 
valid) line of reasoning could be that square and round 
windows both feature on Play School, while triangular 
windows do not. 

This task has been designed to elicit discussion  
of mathematical concepts such as area and perimeter, 
regular and irregular polygons, and line and rotational 
symmetry. Such discussions provide opportunities  
for teachers to introduce and scaffold the use of age- 
appropriate mathematical vocabulary. Students could 
also be asked to create their own examples that are 
illustrative (or not) of the concept being discussed, such 
as regular polygons or shapes with rotational symmetry. 

Numbers

In this example, drawn from Cotton (2016), students 
are presented with a set of three numbers (3, 4 and 9) 
and asked to identify the ‘odd’ one out. Once again 
there is no incorrect answer to the problem. For this 
reason, the task is equally appropriate for a diverse 
range of learners. Rather than assessing the correctness 

of a particular response, the teacher should focus on 
listening to the students’ explanations to gauge the 
sophistication of the mathematical reasoning that  
is being applied. 

For example, three could be selected as the ‘odd’ one 
out because it is the only prime number. In addition, 
three is the only one of the numbers that is not itself 
either a perfect square and/or the square of a prime  
(since 4 = 22 and 9 = 32). Four could be selected because 
it is the only one of the three numbers that is even. Four 
is also the only multiple of four or, alternatively, the only 
number that is not a multiple of three. Nine could be 
selected because it is the only number that is larger than 
5. It is also 

3
4 of 3 × 4.

It is also possible to justify the selection of the ‘odd’ 
one out for non-mathematical reasons. For example, the 
numeral four is usually written using straight pen strokes, 
while three and nine are not. Lateral thinkers might 
conclude that three is the ‘odd’ one out after counting 
the number of letters used to write three, four, and nine 
(i.e., 5, 4, and 4), respectively. 

Ultimately the teacher is in the best position to decide 
on the appropriate degree of scaffolding to provide for 
any given task. Here it is suggested that emphasising the 
word ‘odd’ when presenting the task ensures that the task 
retains a low floor by drawing attention to one of the 
mathematically significant aspects of the problem. Such 
clues can be provided either as part of the task descrip-
tion or used to prompt students if necessary. 

3D objects

We live in a three-dimensional world. Any objects that 
can be seen or touched (i.e., solids) are three-dimension-
al. The stimulus for this task consists of three solids, and 
students are asked to select one that is unique (see Figure 
2). The three solids are a rectangular-based pyramid, a 
hexagonal prism, and a solid with uniform cross section. 
While the latter object is a right cylinder (albeit with 
non-circular cross section), referring to it as such belies 
the common usage of the term. This is an example of 
a situation in which mathematical terminology should 
be used judiciously in order to prevent confusion. For 
convenience the objects are henceforth referred to as a 
prism, pyramid, and ‘other’ solid, respectively. 

 

Figure 2. Which of these 3-D objects is the odd one out?
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Note that there are various reasons why each of the 
three objects could be considered unique. Based on its 
geometric properties, the pyramid is unique in that it  
is the only object which has an apex. Since it tapers to  
a point, the pyramid is also the only object which does 
not have a uniform cross section. The pyramid is also  
the only object which has a number of triangular faces  
or, equivalently, whose net includes triangles. 

The hexagonal prism is unique because it is the only  
object that contains regular polygons. It is also the only 
object which has hexagonal faces. Both the pyramid and 
‘other’ solid have horizontal cross sections and so the 
prism is the only object with a vertical cross section. Put 
another way, the hexagonal prism is the only object that 
is not sitting on its ‘base’ (which is necessarily hexagonal).

The right cylinder is unique because it is the only 
object with a non-polygonal base. It is also the only 
object that does not have one or more rectangular faces, 
although its net does contain a rectangle. Since the 
cylinder has no polygonal faces, it is the only one of  
the objects that is not a polyhedron. 

A similar procedure is employed to find the volume  
of the prism, pyramid, and cylinder. Calculating the  
volume of each of the three objects involves multiply- 
ing the area of the base by the height. In the case of  
the pyramid, the volume is one-third of the resulting  
product. This makes the pyramid unique in yet  
another sense. 

Fractions

The purpose of this task is to stimulate discussion of the 
various models used to represent fractions, since students 
encounter fractions in a range of familiar contexts. This 
task was designed for students in the middle and upper 
primary years. Figure 3 shows three representations of 
three-quarters: the regional (or area) model, the set (or 
discrete) model, and the number line (or linear) model. 
While the three representations are numerically equiva-
lent, each of the models has unique features that contrib-
ute to the understanding of the broader fraction concept. 

Figure 3. Which of these is the odd one out?

For example, it could be argued that the number line 
is better suited to representing improper fractions than 
either the area or set models. Representing fractions 
greater than one whole is significantly challenging using 

the set model, while it can be done by adding one or 
more regions to the area model. The number line is also  
the only model that readily allows negative numbers  
to be represented. Complementary fractions such as 

1
4

and 
3
4 are also much less likely to be confused when 

represented on a number line than when using the set  
or area models. 

The set model is unique in that the unit is composed 
of discrete parts. Equivalent fractions therefore have 
clearly distinct representations in the set model. For 
example, 

3
4  is represented using a set of four items while 

6
8  is represented using a set of eight items. This is not the 
case for the area model, in which the fractions such as

3
4

and
6
8 are merely distinguished by the number of regions 

into which the whole is divided. Equivalent fractions are 
also more difficult to distinguish when represented on  
a number line since they occupy the same position. 

The area model is unique in that various representa-
tions of the same (or equivalent) fractions may appear 
quite distinct. While an essential aspect of this represent- 
tion is all regions have equivalent areas, the shapes 
themselves do not have to be congruent. Students must 
therefore understand the relationship between the area  
of the component parts and the whole.

Area and perimeter

In this task, students are presented with three shapes  
that have the same area (see Figure 4). Students are asked 
to identify similarities and differences between the three 
shapes. For example, students might reason that the rec-
tangle is unique because it consists of two rows and three 
columns, while the other figures each occupy three rows 
and three columns. Alternatively, while all of the shapes 
consist of six squares, the arrangement of squares in the 
rectangle means that there are seven common edges, 
while each of the other figures has five. The rectangle  
is also the only example of a convex polygon, while  
the other shapes are examples of concave dodecagons. 

 
Figure 4. Which of these shapes is the odd one out?

In Figure 5, students are provided with three shapes  
that each have a perimeter of 12 units. Students are 
asked to identify the similarities and differences between 
the shapes. For example, students might reason that the 
square is unique as it is the only quadrilateral (or indeed 
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the only regular polygon). In addition, the square is  
convex, while the other two shapes are concave. The 
square also has 12 common edges, while each of the 
other shapes has just four. Finally, the square has an area 
of nine square units, compared to five square units for 
each of the other two shapes. The second shape may be 
considered unique as it is the only one that is a net for 
an open cube. The third shape does not have a central 
square and does not have three rows and three columns. 
Unlike the other two shapes, it possesses a single axis  
of symmetry and does not have rotational symmetry. 

Figure 5. Which of these shapes is the odd one out?

Conclusion

Mathematical reasoning should feature in mathematics 
classes at all levels (Stacey, 2012). According to Boaler 
(2016), effective tasks should be open-ended, allowing 
students to demonstrate diverse levels of achievement. 
Such tasks need not be complex, since reasoning tasks 
are often much richer than they might initially appear 
(Clarke, Clarke, & Sullivan, 2012). It can be genuinely 
difficult for teachers to imagine how tasks can be  
introduced in such a way that makes them accessible  
to students (Cheeseman et al., 2016). The tasks present-
ed here attempt to stimulate reasoning about various 

mathematical ideas such as perimeter and area, num-
bers, symmetry, and fractions. Each task is open-ended 
in that it permits a variety of solutions that can be 
arrived at through mathematical (or non-mathematical) 
reasoning. Teachers are encouraged to modify the tasks 
to suit their individual contexts. 
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