Integrating Cognitive Views Into Psychometric Models for Reading Comprehension Assessment

Taslima Rahman
Robert J. Mislevy

December 2017
Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research freely available to the professional community and to the general public. Published accounts of ETS research, including papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that outside organizations may provide as part of their own publication processes. Peer review notwithstanding, the positions expressed in the ETS Research Report series and other published accounts of ETS research are those of the authors and not necessarily those of the Officers and Trustees of Educational Testing Service.

The Daniel Eignor Editorship is named in honor of Dr. Daniel R. Eignor, who from 2001 until 2011 served the Research and Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.
To demonstrate how methodologies for assessing reading comprehension can grow out of views of the construct suggested in the reading research literature, we constructed tasks and carried out psychometric analyses that were framed in accordance with 2 leading reading models. In estimating item difficulty and subsequently, examinee proficiency, an item response theory (IRT) model called the linear logistic test model was extended to incorporate reader as well as task attributes as covariates. A novel aspect of this modeling was reader effects—interest and prior knowledge—specific to text passages that the examinees read in the assessment. In the demonstration, the theory-motivated task and reader attributes were found to be significantly related to item difficulty. In particular, examinees' comprehension proficiency estimates positively affected within-person effects concerning the reader's familiarity and interest in a passage. This study suggests that it is both feasible and informative to incorporate variables for various comprehension components into the psychometric analysis.

Keywords Comprehension; construction–integration theory; linear logistic test model; model of domain learning; prior knowledge; interest

doi:10.1002/ets2.12163

Reading comprehension, a precondition to learning from text, has been a subject of educational assessment in the United States since the early 20th century (e.g., Brown, 1916; Kelly, 1916; Starch, 1915). Reading comprehension assessment, nonetheless, has been a source of dissatisfaction throughout its history (e.g., Gates, 1921; RAND Reading Study Group [RRSG], 2002). Reading researchers believe the tests administered to assess the comprehension ability of U.S. students inadequately represent the complexity of the construct emerging from research in the learning sciences in general and on reading in particular (e.g., Johnston, 1984; Keenan, Betjemann, & Olson, 2008; Magliano, Millis, Ozuru, & McNamara, 2007; Sarroub & Pearson, 1998; Valencia & Pearson, 1987). This misalignment is evident in the reporting of results, which seldom delineate what students read, what they were asked to do with what they read, or student attributes specific to the task that might have influenced comprehension of what was read. W. Kintsch and Kintsch (2005) contended that an assessment conceptualized within a theory of comprehension can also enhance our understanding of that theory. One way forward is to design a reading comprehension assessment and a coordinated measurement model that incorporate suggestions derived from research on comprehension.

Embretson (1994, 1998) repeatedly urged that cognitive theory play an integral part in designing educational tests. Integrating cognitive theory in a test design can make the test black box involving psychometric parameters (e.g., item difficulty, examinee proficiency) more transparent and provide test users with more detail on the strengths and needs of those who take the test (Mislevy, 2006). The present study was conducted to show how reading research could be leveraged in designing tasks that are explicitly aligned to aspects of two complementary theories of reading comprehension and how psychometric models could be employed to explicitly incorporate this theoretical stance into the analysis. To this end, illustrative psychometric models incorporating both task effects and reader*task interaction effects were fit to a small data set of students’ responses to a test designed on cognitive principles.

A Cognitive View of Comprehension

According to reading research, each critical reading comprehension component—reader, text, activity, and situation—plays a role in the comprehension of what is being read, and each comprises many attributes (RRSG, 2002). For example,
a reader brings her experiences and knowledge to bear when asked to read a text. A text passage that a reader reads is characterized by its content, structure, language, and level of coherence. A task that a reader is asked to perform to demonstrate comprehension could be simple recognition of what is explicitly stated in a text; it might require reasoning through the given information, or it may further require the reader to integrate information in the text with world knowledge that the reader brings to the encounter. Reading research confirms that attributes of comprehension components, individually and collectively, affect a reader's comprehension of a text (Alexander & Fox, 2004; Duke, 2005; van den Broek, Young, & Tzeng, 1999).

W. Kintsch's (1998) construction and integration (CI) model explains that a text usually describes a real or imaginary situation in the world, and the description is seldom fully coherent. Readers fill the gaps with their knowledge—about language, the world, and the specific communicative situation. Both what is read and who reads it influence the understanding of a text. However, in CI theory, their roles vary for the different levels of comprehension. A higher level of comprehension—what Kintsch referred to as the situation model—is a blend of text-driven and knowledge-driven representation of the text. A lower level, or textbase, comprehension results when a reader's representation of a text passage addresses just what is explicitly stated in the text. Kintsch further suggested that the product of comprehension depends on the nature of texts because each type of text—for example, literary or nonliterary and genre within each—must satisfy certain constraints and can demand specific encoding strategies and specific knowledge.

In the model of domain learning (MDL) of Alexander (1997, 2005), two reader attributes were identified as critical for comprehension of a given text. First, reading researchers consider prior knowledge or "readers' familiarity with the content" of a text being read (Alexander & Jetton, 1996, p. 99) to be pivotal to comprehension (Alexander, 2005; Millis & Cohen, 1994; Pearson & Johnson, 1978; RRSG, 2002; van den Broek et al., 1999). Alexander and Jetton (2000) stated that a reader needs prior knowledge because it helps the reader allocate attention, direct interest, and judge the importance of information, all of which are necessary to deriving meaning. Johnston (1984) even said that “if test constructors managed to produce a test in which performance was indeed unaffected by prior knowledge, whatever is measured, it would not be measuring reading comprehension” (p. 221).

A second reader attribute, interest (a facet of motivation), is considered in MDL to be a driving force for comprehension. Text-related interest, or interest in the topic of the text being read, can be triggered by a title, a word, a paragraph, or a theme presented in a text (Ainley, Hidi, & Berndorff, 2002; Ainley, Hillman, & Hidi, 2002; Alexander & Jetton, 1996; Hidi, 2000). Interest results in focused attention to content and tends to produce a relatively enduring predisposition to engage in certain ideas or descriptions of a text (Ainley, Hidi, & Berndorff, 2002; Alexander, 1997; Hidi, 2000).

Studies conducted in the context of testing have also indicated that both prior knowledge and interest influence the comprehension of a text (Artelt, Schiefele, & Schneider, 2001; Bray & Barron, 2004). In spite of these findings and suggestions, research incorporating reader attributes into the formal assessment of comprehension is at only early stages (e.g., O’Reilly & Sabatini, 2013; Sabatini, Albro, & O’Reilly, 2012). The model described next is an initial step for incorporating these effects into a psychometric model so that the presence and magnitudes of these effects can be made manifest at the level of individual examinees.

Psychometric Model

Most reading comprehension assessments are analyzed using classical test theory methodology, where examinees’ scores are total number of correct answers or some scaling thereof. More advanced methods are based on item response theory (IRT; Yen & Fitzpatrick, 2006), which incorporates parameters for both examinee proficiencies and individual test items. As currently practiced, the attributes of a task that make the items difficult or the attributes of an examinee that may lead to a higher probability of making a correct response are not taken into consideration in a basic IRT model, such as the Rasch (1960) model described next or the three-parameter logistic model. Extensions enable these possibilities, some of which have begun to appear in the research literature (e.g., De Boeck & Wilson, 2004).

The particular extension employed here was built from the Rasch model for dichotomous items. The probability of a correct response by Examinee i to Item j is

$$P_{ij} = P(x_{ij} = 1 | \theta_i, \beta_j) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)},$$
where x_{ij} denotes the response of Examinee i to Item j, 1 if correct and 0 if incorrect, β_j represents the difficulty of Item j, and θ_i represents the ability of an Examinee i, in this study, a reader.

The linear logistic test model (LLTM; Fischer, 1973, Scheiblechner, 1972) modifies the Rasch model to allow researchers to model item difficulty parameters in terms of features of tasks, thereby offering insight into the question, “What aspects of a task make an item difficult?”

The probability of a correct response under the LLTM is:

$$P_{ij} = P(x_{ij} = 1|\theta_i, \beta_j, q_{jk}, \eta_k) = \frac{\exp\left(\theta_i - \sum_k q_{jk}\eta_k\right)}{1 + \exp\left(\theta_i - \sum_k q_{jk}\eta_k\right)},$$

where the difficulty parameter of the Rasch model, β_j, is a linear function of the item characteristics.

$$\beta_j = \sum_{k=1}^{K} q_{jk}\eta_k = q_j^T\eta,$$

where q_{jk} is a known value that represents the extent to which Feature k is reflected in Item j (often 1 or 0, as in this study, but not necessarily), and $\eta = (\eta_1, \ldots, \eta_K)$, where η_k is the relative contribution of Feature k to an item's difficulty. In matrix notation, $\beta = Q^T\eta$. These features can be used to reflect differences in tasks' induced cognitive processing demands on examinees. (The innovation in this study is using the LLTM structure to introduce reader-by-text interaction effects, as explained in the “Data Analysis” subsection in the “Method” section.)

Although the possibility of multiple processing variables within persons is acknowledged, the LLTM is a unidimensional model of individual differences among examinees: Examinee ability, θ_i, and item difficulty, β_j, are located on a common measurement scale: namely, positions on the latent trait. Note that LLTM models estimate fewer parameters than the unconstrained Rasch model, and items with identical features are constrained to have identical difficulty estimates. LLTM item parameter estimates from the fitted regression model are not generally expected to account for all the variations in unconstrained item difficulties. The LLTM has been applied retroactively to understand the difficulty of various sorts of items (e.g., calculus, verbal ability, and literacy) and the influences of different testing conditions on item difficulty. For example, Sheehan and Mislevy’s (1990) LLTM for document literacy item difficulties used features from Kirsch and Mosenthal’s (1988) four-step cognitive processing model.

The present study applied the LLTM with a set of tasks specifically developed through a conceptualization of comprehension driven by cognitive theory, using item features to model difficulties in the manner described earlier. Further, this study extended the use of the LLTM beyond task features alone to address text-specific reader-attribute effects on comprehension in assessment settings in a manner detailed next.

To achieve the study’s goal, several tasks were undertaken. One major task was constructing two measures. An assessment measure was constructed to probe comprehension, specifically of Grade 8 students. The tasks on the comprehension measure targeted two levels of text representation, textbase and situation model (W. Kintsch, 1998, 2004), that focused on various relations among events described in each text passage. Another measure was constructed to assess two reader attributes, familiarity and interest (Alexander, 1997, 2005), as they pertained to each student for the passages included in the comprehension measure.

A second major task entailed defining a psychometric approach to model students’ comprehension performance. In order to estimate student proficiencies and task difficulties and to characterize the effects of task features and examinee-by-task interest and background, the LLTM was adapted to take into account the attributes as related to the cognitive items (Figure 1). Analyses of the data addressed the question, “Do these task and reader attributes contribute to the item difficulties and reader comprehension proficiencies?” As the studied group is a relatively small convenient sample of students, the contribution of the paper is not so much the answer (although it is interesting) but the model for addressing it.

Method

Participants

The participants were 160 Grade 8 students. Among them, 66 were male and 94 were female; 53% self-identified as White, 22% as Black, and 25% as other races; 79% attended public and 21% attended nonpublic schools located in a U.S.
mid-Atlantic state. None was identified as receiving services for special education. All students participated with permission from their parent or guardian.

The study targeted Grade 8 students because they are routinely assessed for their reading comprehension ability at the state and national levels. Further, we expected that those students who had reached this educational level would manifest more variability in knowledge of and interest in the selected topics comprising the formal assessment than would be found at earlier levels. The sample size was determined based on guidelines suggested for studies employing similar LLTM and Rasch IRT analyses (e.g., Embretson, 1983; Lord, 1983).

Measures

The study measure had three components: comprehension, reader attributes, and demographic profile. These measures were constructed specifically for this study in the absence of readily available measures that systematically incorporate the
Table 1 Features of the Four Text Passages Included in the Comprehension Measure

<table>
<thead>
<tr>
<th>Text topic</th>
<th>Text type</th>
<th>Length in words</th>
<th>Number of sentences</th>
<th>Words per sentence</th>
<th>Grade level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cry of the Kalahari</td>
<td>Narrative</td>
<td>923</td>
<td>48</td>
<td>19.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Going Green</td>
<td>Expository</td>
<td>686</td>
<td>38</td>
<td>16.6</td>
<td>10.8</td>
</tr>
<tr>
<td>Kid Fights Cheater Meters and Wins</td>
<td>Narrative</td>
<td>708</td>
<td>48</td>
<td>14.8</td>
<td>8.2</td>
</tr>
<tr>
<td>Shifting Sands</td>
<td>Expository</td>
<td>575</td>
<td>28</td>
<td>20.5</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Note. Grade level in the table represents Flesch–Kincaid Grade Level. The above-listed text passages can be downloaded from the following sites:
bhttp://www.mde.k12.ms.us/acad/osalv2.Grade_8_v2.pdf.

task as well as reader attributes identified in reading literature as relevant for comprehension. The study’s comprehension measure incorporated a cluster of tasks. Each task required reading of a unique text passage and answering a set of questions about the text passage that were developed in accordance with W. Kintsch’s (1998) CI theory of comprehension and, more specifically, a design pattern for developing tasks to assess cause-and-effect reasoning (Mislevy & Rahman, 2009). The passages varied in text type and topic. The attributes of comprehension items and the attributes probed by the reader-attribute measure were consistent across the text passages in the comprehension measure. The demographic profile was included to describe the sample.

Comprehension Measure

The reading comprehension measure asked participants to read four text passages and answer eight multiple-choice questions about each passage.

Text Passages

Two texts were expository and two were narrative. All four described a unique topic. The passages, selected from a pool of Grade 8 test materials compiled from those released to the public by various U.S. education agencies, were reviewed by a group composed of reading researchers and teachers with experience teaching at middle schools. They were asked to confirm the text type identified for the passages and reveal any issues that might make the selected passages inappropriate. Teacher reviewers also provided input on the approximate amount of time an eighth grader might take to read each passage and the familiarity of the topics to prospective participants. The final four text passages are further described in Table 1.

Comprehension Items

Of the eight passage-related cognitive questions asked after reading a passage, four questions targeted the textbase and four targeted situation model comprehension. A pair of them (one textbase and one situation model question) targeted each of four relations—causal antecedent, causal consequence, spatial, and temporal—embedded among events described in a text passage. In constructing these items, the researchers consulted the reading literature for examples of questions asking about textbase and situation model comprehension (e.g., Best, Floyd, & McNamara, 2008; Magliano et al., 2007; Ozuru, Dempsey, & McNamara, 2009), suggestions from E. Kintsch (2005) for asking questions to probe aspects of comprehension as seen through CI theory, and research on relations among events in a situation (e.g., Millis & Cohen, 1994; Mislevy & Rahman, 2009; Zwaan & Oostendorp, 1993; Zwaan & Radvansky, 1998).

For each cognitive item, four response options were offered; the options were constructed to differ in their degree of plausibility, with one considered correct. In wording the items, the researchers consulted guidelines suggested in the test-construction literature (e.g., E. Kintsch, 2005; Haladyna, 1997; Johnston & Pearson, 1982) and a list that contained vocabulary identified as appropriate for various grades (Taylor, Frackenpohl, White, Nieroroda, & Browning, 1989). Each of the 32 cognitive items was scored 1 (correct) or 0 (otherwise).

In constructing the measure, several steps generally followed in developing a formal assessment instrument were undertaken. All cognitive items were reviewed by multiple reading researchers familiar with the CI model and the event relations...
to ensure that the items fit the classification scheme of mental representation crossed with event dimensions. In addition, multiple professional item developers and teachers reviewed the items to detect any ambiguities in the stem or response choices and to identify features such as response position, length, or language that might distinguish the correct option from the distracters. Items were also tested in cognitive labs and in a pilot study before they were incorporated into the final measure.

Four sets of booklets with different passage orders were prepared in order to mitigate possible order effects of the passages. The order of items, which targeted different mental representations and event relations, was also varied across the four text passages so a pattern was not apparent. The proportion of correct responses based on the final administration ranged from 0.09 to 0.89 ($m = 0.57$, $SD = 0.20$).

Reader-Attribute Measure

The study participants were asked to self-report their familiarity with and interest in the topics of each of the four text passages. For each text topic, the familiarity questions asked readers (a) how much they knew about two concepts considered relevant to the respective passage, (b) whether they knew what the text might cover given the text title, (c) whether they had previously read a passage similar to what they just read, (d) whether they knew about the topic, and (e) how much their prior knowledge helped them understand what they read. The interest questions asked readers (a) how interested they were in knowing about two relevant concepts for the respective passage, (b) how interested they were in a topic given the title of the text, (c) how much they enjoyed reading the text, (d) whether they would read the text again, (e) how much they would share with others what they read, and (f) how interesting they found the passage. These questions were posed at different time points in the passage reading process (e.g., prior to reading any passage, immediately after reading a passage, and after reading the last cognitive item of the last text passage). These self-report reader-attribute questions were constructed following examples in the literature (e.g., Ainley, Hidi, & Berndorff, 2002; Bray & Barron, 2004; Graesser & Bertus, 1998; Schraw, 1997). All reader-attribute questions were reviewed by a group that included reading researchers and teachers, and all were tested in a pilot study.

Each reader-attribute question had four Likert-type options, from very positive to very negative. The information on topic familiarity and interest was summarized to identify each student as being more familiar or less familiar with each topic and more interested or less interested in each topic, based on the following procedure: Responses to the questions were summarized in three steps. First, the four response options, the most negative to most positive, were coded as .1, .3, .7, and .9, respectively. Second, for each text passage, an average was calculated across responses to all questions that contributed to the particular reader attribute. Third, the obtained average for each study participant was compared to the mean value of the distribution based on the study sample. If a participant's average score was higher than the distribution mean, the respective student was identified as familiar and was coded as 1, otherwise as 0.3 This coding scheme was also applied in determining whether a student was more interested or less interested in a topic. For the four passage-related reader attributes, the Cronbach's alpha ranged from .59 to .65 for the topic familiarity measure and .78 to .85 for the topic interest measure. These values indicate sufficient reliability to proceed with the illustration of the methodology, although the estimated LLTM effects will be more attenuated for the familiarity measure than for the interest measure.

Procedure

A pilot study was conducted with 25 students to determine the amount of time the participants should be allowed to evaluate the materials and to see if any revisions were needed in the measures or data-gathering procedures. Some of those pilot study participants (three boys and three girls) were interviewed to better understand their grasp of the directions and their thinking processes while performing the task. With four additional students who were not included in the pilot study, a passage-independence check was conducted to verify that the comprehension questions could not be easily answered correctly without reading the relevant passage.

In the final administration with an additional 160 students, each study participant completed a booklet in a single session. The majority of the students participated in a group; nearly all participants completed the task within an hour. The four omitted item responses were treated as missing at random.
Table 2 Examples of Coding of Items in Linear Logistic Test Models

<table>
<thead>
<tr>
<th>An item belongs to …</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
</tr>
<tr>
<td>An expository text, with topic A, targets textbase and causal consequence</td>
<td>1</td>
</tr>
<tr>
<td>An expository text, with topic B, targets textbase and causal antecedent</td>
<td>1</td>
</tr>
<tr>
<td>A narrative text, with topic A, targets situation model and spatial relation</td>
<td>0</td>
</tr>
<tr>
<td>A narrative text, with topic B, targets situation model and temporal relation</td>
<td>0</td>
</tr>
</tbody>
</table>

Note. Code #1 represents text type, Code #2 represents expository topic, Code #3 represents narrative topic, Code #4 represents mental representation (textbase vs. situation model), Code #5 represents causal consequence relation, Code #6 represents causal antecedent relation, and Code #7 represents spatial relation.

Data Analysis

Prior to the LLTM analyses, data were analyzed to check the quality of cognitive item scores that ranged from 0 to 32 across passages and from 0 to 8 within passages (e.g., mean, median, standard deviation, skewness) and reader-attribute questions (e.g., Cronbach’s alpha). The study participants were then classified into four groups with respect to each passage separately, following the final coding assigned to the reader attributes. For each passage, Group 1 included those readers who were identified as having both familiarity with and interest in the topic. Group 2 included readers having familiarity but less interest in the topic. Group 3 included readers having interest but less familiarity. Group 4 included readers having both less familiarity and less interest in the topic.

The application of LLTM required coding for each item on attributes that represent the theoretical complexity factors of the item. As depicted in Figure 1, each of the 32 cognitive items had seven binary codes to represent the item attributes: text type, text topic, and the nature of the items (i.e., if an item targeted the textbase or situation model and if the item targeted a particular one of the four relations). In each case, a positive feature was coded as 1, otherwise 0. See Table 2 for coding of items in LLTM models that incorporated task-structure effects.

In addition, reader attributes were incorporated into the LLTM analysis using a device called technical items—virtual items that represent the same actual item under different conditions (Fischer & Formann, 1982). In this study, each real item could be represented as four technical items based on the four familiarity*interest groups of readers defined previously. Note that for a given student, familiarity*interest group coding was the same for all eight items in a passage but could differ from one passage to another. The LLTM effect parameters for familiarity and interest indicate change in difficulty induced by these conditions, that is, effects on item difficulty associated with reader familiarity and interest. Therefore, there were 128 technical items to represent 32 cognitive items, as an item might be encountered by a reader with any of the four familiarity*interest conditions. For a given actual item, a given examinee’s response to that item was coded as correct or incorrect for only the technical item that corresponded to the familiarity and interest categories of that examinee. The examinee’s responses to the other three technical items corresponding to this actual item were coded as “missing” and treated as missing at random in the analysis (coded as NA in the BUGS data file).

Consider, for example, a particular item in a given text passage. A student would answer correctly or incorrectly, 1 or 0. But the student’s categorization as to familiarity and interest could be 11, 10, 01, or 00. The four technical items for this one actual item correspond to a response to this item if the student is in the 11 category, the 10 category, the 01 category, or the 00 category. Thus, a student whose background responses put her in the 11 category and happened to answer correctly would have a response string to the four technical items corresponding to this actual item of (1, NA, NA, NA). A student in the 01 category who answered incorrectly would have a response string to the technical items of (NA, NA, 0, NA).

Calibration analyses were carried out using the Rasch model and the following three forms of the LLTM model:

1. **LLTM Model I** (i.e., task-only model): Item parameters were modeled as depending only on task attributes. Therefore, the items were represented by a 32×7 matrix (items by item features) and the examinees were represented by a 160×32 matrix (examinees by item responses).
2. **LLTM Model II** (i.e., reader-only model): Item parameters were modeled with only effects for the reader*topic familiarity and reader*topic interest, as well as a difficulty parameter for each item. Therefore, the item matrix included the number of technical items (128) by the number of reader*topic familiarity and reader*topic interest variables (two, for familiarity and interest main effects), concatenated with an identity matrix for the items. More simply
stated, an item difficulty for a given technical item (a given combination of actual item and familiarity*interest category) was the sum of a common estimate of a difficulty associated with the actual item, plus an effect for interest, plus an effect for familiarity. This means there are four technical item difficulties corresponding to each actual item. This one that is combined with a student’s ability in the IRT model is the one that corresponds to that student’s interest and familiarity with the passage that the item addresses. Thus, the item matrix was 128 × 34 and the examinee matrix was 160 × 128 (examinees by technical items).

3. LLTM Model III (i.e., task and reader combination model): Item parameters were modeled as depending on task attributes and effects for reader*topic familiarity and reader*topic interest variables. The item matrix was 128 × 9, and the examinee matrix, as with Model II, was 160 × 128.

All analyses involving the Rasch and LLTM models were conducted using WinBUGS for Bayesian statistical analysis using Markov chain Monte Carlo estimation (MCMC; Lunn, Thomas, Best, & Spiegelhalter, 2000). The coding for the Bayesian estimates had four parts. Part I specified the prior distribution of the difficulty contribution of the features. Standard normal priors were specified for difficulty parameters and for difficulty-effect parameters, as required in each model. These are quite mild in the context of estimating difficulty effects on the logit scale. Part II modeled the item difficulty as a linear combination of features without the item-specific error. Part III specified the measurement model with the response probability of getting the item correct as a function of examinee parameters and item difficulties as determined by the particular model being used in that run. Part IV specified the examinee parameters as normally distributed, with mean set to zero to fix the scale and unknown precision (τ = inverse of variance) modeled with a Gamma prior distribution (Gelman, Carlin, Stern, & Rubin, 2004); see the appendix for BUGS code for the LLTM Model III.

The prior used for the parameters of the distribution of student comprehension proficiency θ was normal prior with a fixed mean of zero and a standard deviation (σ = τ^{1/2}) to be estimated from the data. For item parameters, a mild normal prior centered at zero was used for effects for task attributes and also examinee-by-task attributes as required in a given model. All models were run with 25,000 MCMC cycles after 5,000 burn-in cycles. Convergence was checked by comparing results of multiple independent chains. All WinBUGS estimates were additionally reported as z-scores (posterior mean divided by standard deviation). Further, the relation between the two sets of estimates obtained by the Rasch model and LLTM Model I (i.e., task-only model) was also examined for the proportion of variance in Rasch difficulty estimates that could be accounted for by the estimates of LLTM Model I. The proportion-of-variance-accounted-for and estimates of the effects of each item and reader attributes were also tested for their statistical significance.

Results

The analyses conducted prior to estimating item difficulty and student proficiency provided an initial look at patterns in the data related to overall effects of the factors that would be included in the IRT models. With respect to the four text topics, a one-way repeated measure ANOVA suggested that the number of items correctly answered, on average, varied among the text passages, \(F(3,477) = 28.40, p < .01 \). As shown in Table 3, additional analyses conducted using paired \(t \)-tests indicated that the number of items answered correctly, on average, was higher for the narrative texts than for the expository texts, and the difference between the two topics within each text type was statistically significant. For item-attribute relation, a one-way repeated measure ANOVA showed that the number of items answered correctly varied among the relations, \(F(3,477) = 34.09, p < .01 \). Analyses also indicated that the study participants, on average, correctly answered more items that were identified as targeting the textbase (\(M = 10.00, SD = 2.96 \)) than those items that were identified as targeting the situation-model representations, (\(M = 8.16, SD = 2.79 \)), \(t(159) = 9.84, p < .001 \).

As shown in Table 4, the analyses conducted with respect to the reader attribute of topic familiarity showed in the case of both expository-type text topics that the study participants who were identified as familiar with a topic answered, on average, more items correctly than those who were identified as not familiar with the topic. With respect to topic interest, in the case of one narrative-type text topic, analyses indicated that those who were identified as being interested answered, on average, more items correctly than those who were identified as not interested in the topic.\(^5\) These effects were consistent with expectations from the reading research literature cited previously.

Comparisons of IRT item difficulty (\(\beta_j \)) and student proficiency (\(\theta_i \)) estimated under the Rasch model and the LLTM Model I showed the following patterns. The posterior means of item difficulty (\(\beta_j \)) of the 32 cognitive items estimated by the Rasch model were within \(-3.0 < \beta_j < +3.0\), whereas the difficulties estimated by the LLTM model I (i.e., task-only model)
Table 3: Means and Standard Deviations of Item Scores by Task Attributes

<table>
<thead>
<tr>
<th>Item attributes</th>
<th>M (max)</th>
<th>SD</th>
<th>t (p-value)</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic: Expository</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Going Green</td>
<td>4.53 (max = 8)</td>
<td>1.73</td>
<td>5.00 (<.001)</td>
<td>0.39</td>
</tr>
<tr>
<td>Shifting Sands</td>
<td>3.87 (max = 8)</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic: Narrative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cry of the Kalahari</td>
<td>5.14 (max = 8)</td>
<td>1.91</td>
<td>3.75 (<.001)</td>
<td>0.29</td>
</tr>
<tr>
<td>Kid Fights Cheater Meters and Wins</td>
<td>4.63 (max = 8)</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expository</td>
<td>8.40 (max = 16)</td>
<td>2.81</td>
<td>6.64 (<.001)</td>
<td>0.46</td>
</tr>
<tr>
<td>Narrative</td>
<td>9.76 (max = 16)</td>
<td>3.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental representations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textbase</td>
<td>10.00 (max = 16)</td>
<td>2.96</td>
<td>9.84 (<.001)</td>
<td>0.64</td>
</tr>
<tr>
<td>Situation model</td>
<td>8.16 (max = 16)</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation: Causal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal antecedent</td>
<td>5.06 (max = 8)</td>
<td>1.87</td>
<td>6.70 (<.001)</td>
<td>0.49</td>
</tr>
<tr>
<td>Causal consequence</td>
<td>4.21 (max = 8)</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation: Noncausal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>5.03 (max = 8)</td>
<td>1.48</td>
<td>8.11 (<.001)</td>
<td>0.68</td>
</tr>
<tr>
<td>Temporal</td>
<td>3.86 (max = 8)</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal</td>
<td>9.27 (max = 16)</td>
<td>3.06</td>
<td>1.63 (0.106)</td>
<td>0.13</td>
</tr>
<tr>
<td>Noncausal</td>
<td>8.89 (max = 16)</td>
<td>2.94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. N = 160 for all paired t-tests presented in the table. Effect size represents Cohen’s d.

Table 4: Means and Standard Deviations for Readers by Topic Familiarity and Topic Interest

<table>
<thead>
<tr>
<th>Text passage</th>
<th>Topic familiarity (Familiar vs. Not familiar)</th>
<th>Topic interest (Interested vs. Not interested)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Mean (SD)</td>
<td>n Mean (SD)</td>
</tr>
<tr>
<td>Cry of the Kalahari</td>
<td>75 5.17 (2.06)</td>
<td>85 5.11 (1.79)</td>
</tr>
<tr>
<td>Going Green</td>
<td>100 4.86 (1.63)</td>
<td>60 3.98 (1.77)</td>
</tr>
<tr>
<td>Kid Fights Cheater Meters and Wins</td>
<td>71 4.59 (1.61)</td>
<td>89 4.65 (1.54)</td>
</tr>
<tr>
<td>Shifting Sands</td>
<td>70 4.24 (1.65)</td>
<td>90 3.58 (1.37)</td>
</tr>
</tbody>
</table>

Note. N = 160.

*p < .05. Effect size represents Cohen’s d.

were within \(-1.0 < b_j < +1.0\). The correlation between the two sets of estimates was \(r(30) = 0.50\), associated \(t(31) = 3.08\), \(p < .01\). In other words, the features of tasks and passages that would be expected to affect difficulty did in fact significantly do so. The LLTM uses the predicted values in subsequent estimation of persons’ \(\theta\)s.

There were also differences in posterior means of individual reader proficiency \(\theta\)s, estimated by the Rasch and LLTM models. These are illustrated in Figure 2, in the metric of each model’s percentile ranks among \(\theta\)s in order to control for irrelevant differences due to the differing item parameter values in each model. Differences in relative proficiencies were minimal between the Rasch model and the LLTM Model I, which included only task effects, and between LLTM Model II and LLTM Model III, which both contain reader task effects. Differences between these two groupings, however, are relatively much larger. These differences in \(\theta\) estimates are due to the familiarity and interest effects.

To illustrate the nature of the differences in proficiency estimates across models, Table 5 compares estimated abilities results for four selected groups of students with the total scores. As anticipated under the Rasch model for common items and a common student prior distribution, the Rasch model proficiency estimates were the same for all the students in a total-score group. Differences were found in proficiency estimates using LLTM II and LLTM III models depending on whether the students had familiarity with and/or interest in topics they read. Recall that the patterns of performance in the reader-effect models indicated that a given student tended to perform better when interested and/or familiar and less so...
Figure 2 Differences in proficiencies estimated by Rasch and linear logistic test models.

Table 5 Proficiencies (θ_i) Estimated by Three Psychometric Models

<table>
<thead>
<tr>
<th>Student ID</th>
<th>Total items correct</th>
<th>Cry of the Kalahari</th>
<th>Going Green</th>
<th>Kid Fights Cheater Meters and Wins</th>
<th>Shifting Sands</th>
<th>Rasch θ_i</th>
<th>LLTM II θ_i</th>
<th>LLTM III θ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXAA</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>-1.49</td>
<td>-1.35</td>
<td>-1.29</td>
</tr>
<tr>
<td>XXBB</td>
<td>10</td>
<td>11</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>-1.49</td>
<td>-1.52</td>
<td>-1.54</td>
</tr>
<tr>
<td>XXCC</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>-1.50</td>
<td>-1.57</td>
<td>-1.61</td>
</tr>
<tr>
<td>XXDD</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>-0.60</td>
<td>-0.44</td>
<td>-0.35</td>
</tr>
<tr>
<td>XXEE</td>
<td>15</td>
<td>01</td>
<td>10</td>
<td>00</td>
<td>11</td>
<td>-0.60</td>
<td>-0.62</td>
<td>-0.64</td>
</tr>
<tr>
<td>XXFF</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>-0.60</td>
<td>-0.68</td>
<td>-0.72</td>
</tr>
<tr>
<td>XXGG</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>0.11</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>XXHH</td>
<td>19</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>11</td>
<td>0.11</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>XXII</td>
<td>19</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>0.11</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>XXJJ</td>
<td>24</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>1.09</td>
<td>1.28</td>
<td>1.37</td>
</tr>
<tr>
<td>XXKK</td>
<td>24</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>1.09</td>
<td>1.13</td>
<td>1.15</td>
</tr>
<tr>
<td>XXLL</td>
<td>24</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>1.09</td>
<td>1.06</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Note. LLTM = linear logistic test model. To maintain confidentiality, actual student IDs are not shown here. 11 = the student identified as having familiarity with and interested in the topic, 10 = the student identified as having familiarity with but not interested in the topic, 01 = the student identified as not familiar with but interested in the topic, 00 = the student identified as neither familiar with nor interested in the topic. Proficiency estimates (θ_i) in the above table represent standardized scores.

When not interested and/or familiar. Among a group of students with the same total score, then, the baseline proficiencies reflected in their θs of students were lower when the passages were ones they indicated interest and/or familiarity with, and higher when they did not. Implicit in this model, it will be noted, is that reading proficiency is not a single fixed value for all tasks and situations, but rather a distribution of effective proficiencies. Effective proficiency is seen here to depend on interest and familiarity, and, as the reading research suggests, almost certainly with other factors not addressed in this study, such as purpose and context.

Table 6 shows posterior means, standard deviations, and z-scores of the effects η_k of the respective item attributes represented by seven variables modeled by LLTM I; reader attributes were represented by two variables modeled by LLTM.
Table 6 Effects (\(\eta_k\)) of Task and Reader Attributes Estimated by the Linear Logistic Test Model (LLTM) Model I, Model II, and Model III

<table>
<thead>
<tr>
<th>Attributes</th>
<th>LLTM Model I and Model II</th>
<th>LLTM Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Posterior mean</td>
<td>SD</td>
</tr>
<tr>
<td>eta[1]: Text type</td>
<td>0.536</td>
<td>0.078</td>
</tr>
<tr>
<td>eta[2]: Expository topic</td>
<td>-0.376</td>
<td>0.084</td>
</tr>
<tr>
<td>eta[3]: Narrative topic</td>
<td>0.103</td>
<td>0.078</td>
</tr>
<tr>
<td>eta[4]: Mental representation</td>
<td>0.434</td>
<td>0.059</td>
</tr>
<tr>
<td>eta[5]: Causal consequence compared to temporal</td>
<td>-0.371</td>
<td>0.077</td>
</tr>
<tr>
<td>eta[6]: Causal antecedent compared to temporal</td>
<td>-0.863</td>
<td>0.078</td>
</tr>
<tr>
<td>eta[7]: Spatial compared to temporal</td>
<td>-0.845</td>
<td>0.078</td>
</tr>
<tr>
<td>eta[8]: Familiarity with topic</td>
<td>-0.204</td>
<td>0.082</td>
</tr>
<tr>
<td>eta[9]: Interest in topic</td>
<td>-0.122</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Note. LLTM = linear logistic test model. Estimates shaded in the table are those obtained by the LLTM Model II. Posterior means and standard deviations of Bayesian posterior distributions correspond roughly to point estimates and standard errors in randomization-based inference.

*p < .05.

II, and all of these attributes were represented by the nine variables modeled by LLTM III. In LLTM Model I, a higher difficulty was estimated for items of the expository-type texts compared to items of the narrative-type texts. Further, within expository-type texts, the items related to two topics had different difficulties. A higher difficulty was estimated for items that targeted the situation model mental representation compared to items that targeted the textbase mental representation. Additionally, different difficulties were estimated for items representing different relations among events of a situation. These task attributes accounted for about 25% of the variance in the item difficulties.

In LLTM Model II, a higher item difficulty was estimated for a reader who was not familiar with the topic described in the text. However, the amount by which this model estimated a higher difficulty of items when a reader was not interested in the topic was not statistically significant in this model. These two reader attribute-related variables accounted for about 12% of the variance in the item difficulties when sets of item parameters that differed by interest-and-familiarity effects were included, nearly half as much as the theoretically motivated effects in the task construction seen in LLTM Model I.

In LLTM Model III, effects of all attributes were statistically significant. The task and reader attributes altogether accounted for about 38% of the variance in the item difficulties (this percentage represents a ratio of between-condition variance and the between- plus within-condition variances in LLTM-modeled item difficulties). It should be noted that familiarity and interest effects (\(\eta_k\)) were assumed in this model to be the same over all the examinees, items, and text passages. This is the average amount by which items become easier or harder for an examinee depending on whether the examinee is familiar with or interested in a text topic. As noted later, one way the model could be extended and fit in larger samples would be to look at more individuated effects.

The results presented here suggest that the task and reader attributes considered in the current study contribute to the items’ difficulties and the examinees’ estimated comprehension proficiencies. More importantly, the results suggest that it is possible to model in a psychometric tool the effects of attributes of the major components of reading comprehension.

Discussion and Conclusion

What we learned from this methodological study is as follows: This successful application of the LLTM indicates that it is viable to integrate theoretically and empirically grounded views of reading comprehension into psychometric models. Task attributes have previously been employed in analyses in reading comprehension tests. By extending the LLTM model to incorporate reader-by-task attributes, this approach shows how we can build a network among the attributes of various comprehension components into the psychometric analysis. Such a network gives us a means to explain variance in the difficulty of comprehension items as well as the comprehension proficiency of readers. Additional information (such as unexpectedly large differences in students’ performance on narrative compared to expository texts or scores on textbase compared to situation model items) can benefit those who are interested in a fuller understanding of what students know and can do given text passages to read. By further extending the model for student-level effects of interest and familiarity, it will, for example, be possible to report on the effect of these reader-by-task variables for individual students. This study thus
puts forward empirical evidence in support of the argument for being able to frame psychometric analyses aligned with conceptualizations of comprehension suggested in reading research when assessing students’ comprehension proficiency. (It is worth stating that the same modeling structure is by no means limited to reading comprehension and could be applied in other domains as well.)

This single illustrative study cannot address all issues necessary to be resolved prior to integrating cognitive views into psychometric models in an operational assessment of comprehension. The line of research suggested in this study can be enhanced by psychometric research as well as reading research. We would want to study the number of tasks and reader-attribute questions related to each task that an assessment instrument should include without introducing examinee fatigue effect. It is also necessary that we have reader attribute measures that were designed specifically for formal comprehension assessment and that the measures have sufficient reliability for the self-reported information. In other words, apportioning a total amount of testing time among comprehension tasks and background questions poses a design tradeoff to be resolved, addressing the relative value of the two kinds of information for the inferences that are most important. The balance might differ between formative and summative uses. This issue would need to be explored. Alternatively, studies could be carried out where students’ interest and familiarity were determined a priori and passages were assigned to students in an experimental design with interest and familiarity as independent variables.

Further, we need to know the optimal sample size for applying psychometric models similar to LLTM when multiple attributes of readers are incorporated. We would want to explore forms of the psychometric models that can treat task and reader attributes as continuous variables. The assumption of common reader-by-task effects for interest and background knowledge could be relaxed to compare, for example, the effects for different passage types or item types and for different students (i.e., a random-effects model).

In addition, we need to know how other IRT models can be framed so cognitive models of comprehension could be integrated to explain variances in other item characteristics. More research similar in nature to the current study where theory-motivated covariates are systematically incorporated in measures and analyses will allow reading researchers to make generalizations about contributions of comprehension components in assessment situations. Additional research will enable test developers to more accurately interpret contributions of comprehension components when estimating students’ ability to comprehend.

We emphasize that, in this study, no claim has been made about the “best way” to design a comprehension assessment that is aligned with the reading literature. Although choices as to cognitive theories and emphases must be made to reflect the intended use of an assessment, the same task design and modeling strategies can be applied with theories of comprehension other than the CI and MDL. What is required is indications of task and reader-by-task variables that are important under whatever theory is proposed for comprehension.

Comprehension assessments based on conceptualizations shared by reading researchers and test developers have implications for what we measure and how we measure this critical ability. In particular, there is a beginning of a methodology to address the issue that “reading comprehension ability” is not a single, well-defined, universally applicable construct, but the result of resources a reader deploys, with comprehension depending on personal factors such as the interest and familiarity effects addressed here and others that might be conceived of, such as context and purpose. The point is that machinery originally developed to measure a well-defined “latent ability” can be extended to address questions framed in more advanced theories of cognition. This new way of measuring comprehension could more efficiently serve the purpose of an assessment: namely, to provide educators with feedback on student learning.

Notes

1 For a review of developments in comprehension tests, see W. Kintsch and Kintsch (2005) and Pearson and Hamm (2005).
2 See Adams, Wilson, and Wang (1997) for a multivariate extension of the LLTM, and Rijmen and De Boeck (2002) and Sheehan and Mislevy (1990) for an extension to random effects.
3 Although the LLTM analysis could have proceeded using the measured values rather than the dichotomized groupings, the discretized version was chosen in order to simplify the modeling for the demonstration. Note also that categorizing students based on passage familiarity and interest mean scores led to similar but nonidentical counts of students being more or less interested in, and more or less familiar with, each passage.
4 For the reader group classification, both differential weighting based on a factor analysis and equal weighting were applied to the reader attribute questions. The analyses proceeded with the simpler equal weighting because the two weighting approaches yielded essentially the same classifications for all passages.
Note that reader attribute groupings were made based on the students’ self-reported familiarity and interest rather than assigned by the researchers, so even though these results are suggestive, they should not be considered as causative. As indicated earlier, the purpose of these preliminary between-subjects analyses was not to make generalizations or provide explanations about the underlying contributions of these attributes but rather to better understand patterns in the data to see if they were generally in accord with reading literature and to help understand how to model and interpret the within-subjects LLTM effects.

References

Brown, H. A. (1916). The measurement of ability to read (Bulletin No. 1). Concord, NH: Department of Public Instruction, Bureau of Research.

WinBUGS Code for the Linear Logistic Test Model (LLTM) Model III

```r
model LLTM; # With item and examinee attribute LLTM III
{
  for (m in 1:F) {
    eta[m] ~ dnorm(0,1);  # Feature parameters
  }
  for (k in 1:I) {
    b[k] <- inprod(q[k,],eta[]);         # Item difficulty as linear
    # combination of features
  }
  for (j in 1:N) {
    for (k in 1:I) {
      pi[j,k] <- (exp(theta[j] – b[k])/(1 + exp(theta[j] – b[k])));        # Measurement Model
      r[j,k] ~ dbern(pi[j,k]);
    }
    theta[j] ~ dnorm(0,tautheta);                      # Person parameters
  }
  taugamma ~ dgamma(1,1);
  vartheta <- 1/taugamma;
}
#init
#data
list(N=160, I=128, F=9,
q=structure(.Data=c(I,J,F),
1,0,0,0,0,0,1,1,0,
....
0,0,0,1,0,0,0,0,0
), .Dim=c(128,9)),
r = structure(.Data = c(NA,NA,NA,1,NA,NA,NA,0,NA,NA,NA,0,NA,NA,NA,0,NA,NA,1,NA,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,0,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,1,NA,NA,0
), .Dim=c(160,128)))
```

Note. NA indicates a missing value.

Action Editor: Shelby Haberman

Reviewers: John Donoghue and Jesse Sparks

ETS, the ETS logo, and MEASURING THE POWER OF LEARNING are registered trademarks of Educational Testing Service (ETS). All other trademarks are property of their respective owners.

Find other ETS-published reports by searching the ETS ReSEARCHER database at http://search.ets.org/researcher/